Search results for: life-long learning for sustainable development
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23693

Search results for: life-long learning for sustainable development

20453 Architectural Design Studio (ADS) as an Operational Synthesis in Architectural Education

Authors: Francisco A. Ribeiro Da Costa

Abstract:

Who is responsible for teaching architecture; consider various ways to participate in learning, manipulating various pedagogical tools to streamline the creative process. The Architectural Design Studio (ADS) should become a holistic, systemic process responding to the complexity of our world. This essay corresponds to a deep reflection developed by the author on the teaching of architecture. The outcomes achieved are the corollary of experimentation; discussion and application of pedagogical methods that allowed consolidate the creativity applied by students. The purpose is to show the conjectures that have been considered effective in creating an intellectual environment that nurtures the subject of Architectural Design Studio (ADS), as an operational synthesis in the final stage of the degree. These assumptions, which are part of the proposed model, displaying theories and teaching methodologies that try to respect the learning process based on student learning styles Kolb, ensuring their latent specificities and formulating the structure of the ASD discipline. In addition, the assessing methods are proposed, which consider the architectural Design Studio as an operational synthesis in the teaching of architecture.

Keywords: teaching-learning, architectural design studio, architecture, education

Procedia PDF Downloads 391
20452 Examining How Employee Training and Development Contribute to the Favourable Results of a Business Entity: A Conceptual Analysis

Authors: Paul Saah, Charles Mbohwa, Nelson Sizwe Madonsela

Abstract:

Organisations that want to have a competitive edge over their rivals in their industry are becoming more and more aware of the value of staff training and development programs. This conceptual study's primary goal is to determine how staff development and training affect an organization's ability to succeed. A non-empirical methodological approach was chosen because this was a conceptual study, and a thorough literature analysis was conducted to determine the contribution of staff training and development to the performance of a commercial organization. Twenty of the 100 publications about employee training and development that were obtained from Google Scholar and regarded to be more pertinent were examined for this study. The impact of employee training and development in an organization was found and documented during the analyses. According to the study's findings, some of the major advantages of staff development and training include greater productivity, the discovery of employee potential, job satisfaction, the development of skills, less supervision, a decrease in turnover and absenteeism as well as less supervision and reduction of errors and accidents. The findings show that organisations that make significant investments in the training and development of their personnel are more likely to succeed than those who do not.

Keywords: impact, employment, training and development, success, business, organization

Procedia PDF Downloads 70
20451 Teaching Research Methods at the Graduate Level Utilizing Flipped Classroom Approach; An Action Research Study

Authors: Munirah Alaboudi

Abstract:

This paper discusses a research project carried out with 12 first-year graduate students enrolled in research methods course prior to undertaking a graduate thesis during the academic year 2019. The research was designed for the objective of creating research methods course structure that embraces an individualized and activity-based approach to learning in a highly engaging group environment. This approach targeted innovating the traditional research methods lecture-based, theoretical format where students reported less engagement and limited learning. This study utilized action research methodology in developing a different approach to research methods course instruction where student performance indicators and feedback were periodically collected to assess the new teaching method. Student learning was achieved through utilizing the flipped classroom approach where students learned the material at home and classroom activities were designed to implement and experiment with the newly acquired information, with the guidance of the course instructor. Student learning in class was practiced through a series of activities based on different research methods. With the goal of encouraging student engagement, a wide range of activities was utilized including workshops, role play, mind-mapping, presentations, peer evaluations. Data was collected through an open-ended qualitative questionnaire to establish whether students were engaged in the material they were learning, and to what degree were they engaged, and to test their mastery level of the concepts discussed. Analysis of the data presented positive results as around 91% of the students reported feeling more engaged with the active learning experience and learning research by “actually doing research, not just reading about it”. The students expressed feeling invested in the process of their learning as they saw their research “gradually come to life” through peer learning and practice during workshops. Based on the results of this study, the research methods course structure was successfully remodeled and continues to be delivered.

Keywords: research methods, higher education instruction, flipped classroom, graduate education

Procedia PDF Downloads 103
20450 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 105
20449 Large-Scale Electroencephalogram Biometrics through Contrastive Learning

Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes

Abstract:

EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.

Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification

Procedia PDF Downloads 157
20448 Manage an Acute Pain Unit based on the Balanced Scorecard

Authors: Helena Costa Oliveira, Carmem Oliveira, Rita Moutinho

Abstract:

The Balanced Scorecard (BSC) is a continuous strategic monitoring model focused not only on financial issues but also on internal processes, patients/users, and learning and growth. Initially dedicated to business management, it currently serves organizations of other natures - such as hospitals. This paper presents a BSC designed for a Portuguese Acute Pain Unit (APU). This study is qualitative and based on the experience of collaborators at the APU. The management of APU is based on four perspectives – users, internal processes, learning and growth, and financial and legal. For each perspective, there were identified strategic objectives, critical factors, lead indicators and initiatives. The strategic map of the APU outlining sustained strategic relations among strategic objectives. This study contributes to the development of research in the health management area as it explores how organizational insufficiencies and inconsistencies in this particular case can be addressed, through the identification of critical factors, to clearly establish core outcomes and initiatives to set up.

Keywords: acute pain unit, balanced scorecard, hospital management, organizational performance, Portugal

Procedia PDF Downloads 148
20447 Preservice Science Teachers' Understanding of Equitable Assessment

Authors: Kemal Izci, Ahmet Oguz Akturk

Abstract:

Learning is dependent on cognitive and physical differences as well as other differences such as ethnicity, language, and culture. Furthermore, these differences also influence how students show their learning. Assessment is an integral part of learning and teaching process and is essential for effective instruction. In order to provide effective instruction, teachers need to provide equal assessment opportunities for all students to see their learning difficulties and use them to modify instruction to aid learning. Successful assessment practices are dependent upon the knowledge and value of teachers. Therefore, in order to use assessment to assess and support diverse students learning, preservice and inservice teachers should hold an appropriate understanding of equitable assessment. In order to prepare teachers to help them support diverse student learning, as a first step, this study aims to explore how preservice teachers’ understand equitable assessment. 105 preservice science teachers studying at teacher preparation program in a large university located at Eastern part of Turkey participated in the current study. A questionnaire, preservice teachers’ reflection papers and interviews served as data sources for this study. All collected data qualitatively analyzed to develop themes that illustrate preservice science teachers’ understanding of equitable assessment. Results of the study showed that preservice teachers mostly emphasized fairness including fairness in grading and fairness in asking questions not out of covered concepts for equitable assessment. However, most of preservice teachers do not show an understanding of equity for providing equal opportunities for all students to display their understanding of related content. For some preservice teachers providing different opportunities (providing extra time for non-native speaking students) for some students seems to be unfair for other students and therefore, these kinds of refinements do not need to be used. The results of the study illustrated that preservice science teachers mostly understand equitable assessment as fairness and less highlight the role of using equitable assessment to support all student learning, which is more important in order to improve students’ achievement of science. Therefore, we recommend that more opportunities should be provided for preservice teachers engage in a more broad understanding of equitable assessment and learn how to use equitable assessment practices to aid and support all students learning trough classroom assessment.

Keywords: science teaching, equitable assessment, assessment literacy, preservice science teachers

Procedia PDF Downloads 304
20446 E-Portfolios as a Means of Perceiving Students’ Listening and Speaking Progress

Authors: Heba Salem

Abstract:

This paper aims to share the researcher’s experience of using e-Portfolios as an assessment tool to follow up on students’ learning experiences and performance throughout the semester. It also aims at highlighting the importance of students’ self-reflection in the process of language learning. The paper begins by introducing the advanced media course, with its focus on listening and speaking skills, and introduces the students’ profiles. Then it explains the students’ role in the e-portfolio process as they are given the option to choose a listening text they studied throughout the semester and to choose a recorded oral production of their collection of artifacts throughout the semester. Students showcase and reflect on their progress in both listening comprehension and speaking. According to the research, re-listening to work given to them and to their production is a means of reflecting on both their progress and achievement. And choosing the work students want to showcase is a means to promote independent learning as well as self-expression. Students are encouraged to go back to the class learning outcomes in the process of choosing the work. In their reflections, students express how they met the specific learning outcome. While giving their presentations, students expressed how useful the experience of returning and going over what they covered to select one and going over their production as well. They also expressed how beneficial it was to listen to themselves and literally see their progress in both listening comprehension and speaking. Students also reported that they grasped more details from the texts than they did when first having it as an assignment, which coincided with one of the class learning outcomes. They also expressed the fact that they had more confidence speaking as well as they were able to use a variety of vocabulary and idiomatic expressions that students have accumulated. For illustration, this paper includes practical samples of students’ tasks and instructions as well as samples of their reflections. The results of students’ reflections coincide with what the research confirms about the effectiveness of the e-portfolios as a means of assessment. The employment of e-Portfolios has two-folded benefits; students are able to measure the achievement of the targeted learning outcomes, and teachers receive constructive feedback on their teaching methods.

Keywords: e-portfolios, assessment, self assessment, listening and speaking progress, foreign language, reflection, learning out comes, sharing experience

Procedia PDF Downloads 98
20445 Extending the Flipped Classroom Approach: Using Technology in Module Delivery to Students of English Language and Literature at the British University in Egypt

Authors: Azza Taha Zaki

Abstract:

Technology-enhanced teaching has been in the limelight since the 90s when educators started investigating and experimenting with using computers in the classroom as a means of building 21st. century skills and motivating students. The concept of technology-enhanced strategies in education is kaleidoscopic! It has meant different things to different educators. For the purpose of this paper, however, it will be used to refer to the diverse technology-based strategies used to support and enrich the flipped learning process, in the classroom and outside. The paper will investigate how technology is put in the service of teaching and learning to improve the students’ learning experience as manifested in students’ attendance and engagement, achievement rates and finally, students’ projects at the end of the semester. The results will be supported by a student survey about relevant specific aspects of their learning experience in the modules in the study.

Keywords: attendance, British University, Egypt, flipped, student achievement, student-centred, student engagement, students’ projects

Procedia PDF Downloads 118
20444 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools

Authors: M. Johnson, R. Faggian, V. Sposito

Abstract:

A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.

Keywords: agriculture, decision-support management tool, Geographic Information System, GIS, sustainable intensification

Procedia PDF Downloads 166
20443 Building Student Empowerment through Live Commercial Projects: A Reflective Account of Participants

Authors: Nilanthi Ratnayake, Wen-Ling Liu

Abstract:

Prior research indicates an increasing gap between the skills and capabilities of graduates in the contemporary workplace across the globe. The challenge of addressing this issue primarily lies on the hands of higher education institutes/universities. In particular, surveys of UK employers and retailers found that soft skills including communication, numeracy, teamwork, confidence, analytical ability, digital/IT skills, business sense, language, and social skills are highly valued by graduate employers, and in achieving this, there are various assessed and non-assessed learning exercises have already been embedded into the university curriculum. To this end, this research study aims to explore the reflections of postgraduate student participation in a live commercial project (i.e. designing an advertising campaign for open days, summer school etc.) implemented with the intention of offering a transformative experience by deploying this project. Qualitative research methodology has been followed in this study, collecting data from three types of target audiences; students, academics and employers via a series of personal interviews and focus group discussions. Recorded data were transcribed, entered into NVIVO, and analysed using meaning condensation and content analysis. Students reported that they had a very positive impact towards improving self-efficacy, especially in relation to soft skills and confidence in seeking employment opportunities. In addition, this project has reduced cultural barriers for international students in general communications. Academic staff and potential employers who attended on the presentation day expressed their gratitude for offering a lifelong experience for students, and indeed believed that these type of projects contribute significantly to enhance skills and capabilities of students to cater the demands of employers. In essence, key findings demonstrate that an integration of knowledge-based skills into a live commercial project facilitate individuals to make the transition from education to employment in terms of skills, abilities and work behaviours more effectively in comparison to some other activities/assuagements that are currently in place in higher education institutions/universities.

Keywords: soft skills, commercially live project, higher education, student participation

Procedia PDF Downloads 360
20442 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis

Authors: Saeed Karimi, Ali Behbahaninia

Abstract:

In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.

Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic

Procedia PDF Downloads 93
20441 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 135
20440 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability

Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa

Abstract:

COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.

Keywords: self-learning module, academic performance, statistics and probability, normal distribution

Procedia PDF Downloads 114
20439 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 161
20438 Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge

Authors: Luisa Cabezas, Karol Leal, Harold Mendoza, Fabio Trochez, Angel Lozada

Abstract:

According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors.

Keywords: ancestral knowledge, climate change, medicinal plants, solar energy

Procedia PDF Downloads 235
20437 The Relationship between Urbanization and the Rapid Development of Real Estate Industry in China: Taking Chongqing as an Example

Authors: Deng Tingting

Abstract:

There is a very close interaction between the rapid development of the real estate industry and regional urbanization. The real estate problem can be boiled down to the problem of urbanization, in essence. The growth of hundreds of millions of people in the future will determine the development of low-level demand in the real estate market. At the same time, the practical problems of urbanization also seriously restrict the healthy development of real estate itself. The latter two interact with each other by adjusting the industrial structure, economic aggregate, regional population flow, and many other linkage factors. Through the case analysis of Chongqing, this paper finds that the urbanization of Chongqing and the overall development level of the real estate industry are still in the stage of development and upgrading, and its development potential and future development and application space are still very large. Therefore, from the perspective of the regional economy, studying the interaction between the two is of great significance to accelerate the process of urbanization in Chongqing, promote the healthy development of the real estate industry, and promote the rapid growth of the regional economy.

Keywords: urbanization, demographics, real estate, interrelationships

Procedia PDF Downloads 130
20436 Poli4SDG: An Application for Environmental Crises Management and Gender Support

Authors: Angelica S. Valeriani, Lorenzo Biasiolo

Abstract:

In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.

Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality

Procedia PDF Downloads 113
20435 A Realist Review of Interventions Targeting Maternal Health in Low- and Middle-income Countries

Authors: Julie Mariam Abraham, G. J. Melendez-Torres

Abstract:

Background. Maternal mortality is disproportionately higher in low- and middle- income countries (LMICs) compared to other parts of the world. At the current pace of progress, the Sustainable Development Goals for maternal mortality rate will not be achieved by 2030. A variety of factors influence the increased risk of maternal complications in LMICs. These are exacerbated by socio-economic and political factors, including poverty, illiteracy, and gender inequality. This paper aims to use realist synthesis to identify the contexts, mechanisms, and outcomes (CMOs) of maternal health interventions conducted in LMICs to inform evidence-based practice for future maternal health interventions. Methods. In May 2022, we searched four electronic databases for systematic reviews of maternal health interventions in LMICs published in the last five years. We used open and axial coding of CMOs to develop an explanatory framework for intervention effectiveness. Results. After eligibility screening and full-text analysis, 44 papers were included. The intervention strategies and measured outcomes varied within reviews. Healthcare system level contextual factors were the most frequently reported, and infrastructural capacity was the most reported context. The most prevalent mechanism was increased knowledge and awareness. Discussion. Health system infrastructure must be considered in interventions to ensure effective implementation and sustainability. Healthcare-seeking behaviours are embedded within social and cultural norms, environmental conditions, family influences, and provider attitudes. Therefore, effective engagement with communities and families is important to create new norms surrounding pregnancy and delivery. Future research should explore community mobilisation and involvement to enable tailored interventions with optimal contextual fit.

Keywords: maternal mortality, service delivery and organisation, realist synthesis, sustainable development goals, overview of reviews

Procedia PDF Downloads 79
20434 Online Graduate Students’ Perspective on Engagement in Active Learning in the United States

Authors: Ehi E. Aimiuwu

Abstract:

As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework.  Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software.  Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email.  Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study.  About 42.9% appreciated syllabus usefulness and professor’s expertise.

Keywords: class facilitation, course management, online teaching, online education, student engagement

Procedia PDF Downloads 129
20433 Infrared Spectroscopy in Tandem with Machine Learning for Simultaneous Rapid Identification of Bacteria Isolated Directly from Patients' Urine Samples and Determination of Their Susceptibility to Antibiotics

Authors: Mahmoud Huleihel, George Abu-Aqil, Manal Suleiman, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman

Abstract:

Urinary tract infections (UTIs) are considered to be the most common bacterial infections worldwide, which are caused mainly by Escherichia (E.) coli (about 80%). Klebsiella pneumoniae (about 10%) and Pseudomonas aeruginosa (about 6%). Although antibiotics are considered as the most effective treatment for bacterial infectious diseases, unfortunately, most of the bacteria already have developed resistance to the majority of the commonly available antibiotics. Therefore, it is crucial to identify the infecting bacteria and to determine its susceptibility to antibiotics for prescribing effective treatment. Classical methods are time consuming, require ~48 hours for determining bacterial susceptibility. Thus, it is highly urgent to develop a new method that can significantly reduce the time required for determining both infecting bacterium at the species level and diagnose its susceptibility to antibiotics. Fourier-Transform Infrared (FTIR) spectroscopy is well known as a sensitive and rapid method, which can detect minor molecular changes in bacterial genome associated with the development of resistance to antibiotics. The main goal of this study is to examine the potential of FTIR spectroscopy, in tandem with machine learning algorithms, to identify the infected bacteria at the species level and to determine E. coli susceptibility to different antibiotics directly from patients' urine in about 30minutes. For this goal, 1600 different E. coli isolates were isolated for different patients' urine sample, measured by FTIR, and analyzed using different machine learning algorithm like Random Forest, XGBoost, and CNN. We achieved 98% success in isolate level identification and 89% accuracy in susceptibility determination.

Keywords: urinary tract infections (UTIs), E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, bacterial, susceptibility to antibiotics, infrared microscopy, machine learning

Procedia PDF Downloads 170
20432 Energy Mutual Funds: The Behavior of Environmental, Social and Governance Funds

Authors: Anna Paola Micheli, Anna Maria Calce, Loris Di Nallo

Abstract:

Sustainable finance identifies the process that leads, in the adoption of investment decisions, to take into account environmental and social factors, with the aim of orienting investments towards sustainable and long-term activities. Considering that the topic is at the center of the interest of national agendas, long-term investments will no longer be analyzed only by looking at financial data, but environmental, social, and governance (ESG) factors will be increasingly important and will play a fundamental role in determining the risk and return of an investment. Although this perspective does not deny the orientation to profit, ESG mutual funds represent sustainable finance applied to the world of mutual funds. So the goal of this paper is to verify this attitude, in particular in the energy sector. The choice of the sector is not casual: ESG is the acronym for environmental, social, and governance, and energy companies are strictly related to the environmental theme. The methodology adopted leads to a comparison between a sample of ESG funds and a sample of ESG funds with similar characteristics, using the most important indicators of literature: yield, standard deviation, and Sharpe index. The analysis is focused on equity funds. Results that are partial, due to the lack of historicity, show a good performance of ESG funds, testifying how a sustainable approach does not necessarily mean lower profits. It is clear that these first findings do not involve an absolute preference for ESG funds in terms of performance because the persistence of results is requested. Furthermore, these findings are to be verified in other sectors and in bond funds.

Keywords: mutual funds, ESG, performance, energy

Procedia PDF Downloads 114
20431 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp

Authors: Ali Mohammed Ali Lmbash

Abstract:

The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.

Keywords: smart architecture, Hatay Camp, sustainability, machine learning.

Procedia PDF Downloads 55
20430 Estimating Visitor’s Willingness to Pay for the Conservation Fund: Sustainable Financing Approach in Protected Areas in Ethiopia

Authors: Sintayehu Aynalem Aseres, Raminder Kaur Sira

Abstract:

Increasingly, protected areas have been confronting with inadequate conservation funds that make it tough to antithesis the continuing of annihilation. The problem is even grave in developing countries, where Protected Areas (Pas) are mainly government-administered. Subsequently, it needs a strong effort to toughen the self-financing capability of PAs by ripening alternative sources of sustainable financing for realizing the conservation goals, in particular, to save the remaining natural planet. This study, therefore, designed to estimate visitors’ willingness to pay (WTP) for the additional conservation fees using a contingent valuation method. The effect relationship between WTP and both socio-demographic and non-economic factors was scrutinized by binary logistic regression. The mean WTP of foreign visitors has estimated at US$ 7.4 and for that of domestic visitors at US$1, with annual aggregate revenue of US$29, 200. The WTP was strongly influenced by income, satisfaction, environmental concern and attitude. The study has policy implications for the conservationists and park authorities to estimate the non-use values of PAs for developing market-based conservation instruments.

Keywords: conservation, ecotourism, sustainable financing, willingness to pay, protected areas, bale mountains national park

Procedia PDF Downloads 162
20429 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 89
20428 Investigations into Transition from Traditional Construction to Industrial Construction in Afghanistan

Authors: A. Latif Karimi

Abstract:

Since 2001, construction works, especially the construction of new homes and residential buildings, witnessed a dramatic boom across Afghanistan. More so, the construction industry and house builders are relied upon as important players in the country’s job market, economy and infrastructural development schemes. However, a lack of innovation, quality assurance mechanism, substandard construction and market dominance by traditional methods push all the parties in house building sector to shift for more advanced construction techniques and mass production technologies to meet the rising demands for proper accommodation. Meanwhile, rapid population growth and urbanization are widening the gap between the demand and supply of new and modern houses in urban areas like Kabul, Herat, etc. This paper investigates about current condition of construction practices in house building projects, the associated challenges, and the outcomes of transition to more reasonable and sustainable building methods. It is obvious, the introduction and use of Modern Methods of Construction (MMC) can help construction industry and house builders in Afghanistan to tackle the challenges and meet the desired standards for modern houses. This paper focuses on prefabrication, a popular MMC that is becoming more common, improving in quality and available in a variety of budgets. It is revealed that this method is the way forward to improving house building practices as it has been proven to reduce construction time, minimize waste and improve environmental performance of construction developments.

Keywords: modern houses, traditional construction, modern methods of construction, prefabrication, sustainable building

Procedia PDF Downloads 287
20427 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries

Authors: Shafaq Rubab

Abstract:

One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.

Keywords: digital game-based learning, student’s motivation, instructional design model, learning process

Procedia PDF Downloads 432
20426 Big Data Analytics and Public Policy: A Study in Rural India

Authors: Vasantha Gouri Prathapagiri

Abstract:

Innovations in ICT sector facilitate qualitative life style for citizens across the globe. Countries that facilitate usage of new techniques in ICT, i.e., big data analytics find it easier to fulfil the needs of their citizens. Big data is characterised by its volume, variety, and speed. Analytics involves its processing in a cost effective way in order to draw conclusion for their useful application. Big data also involves into the field of machine learning, artificial intelligence all leading to accuracy in data presentation useful for public policy making. Hence using data analytics in public policy making is a proper way to march towards all round development of any country. The data driven insights can help the government to take important strategic decisions with regard to socio-economic development of her country. Developed nations like UK and USA are already far ahead on the path of digitization with the support of Big Data analytics. India is a huge country and is currently on the path of massive digitization being realised through Digital India Mission. Internet connection per household is on the rise every year. This transforms into a massive data set that has the potential to improvise the public services delivery system into an effective service mechanism for Indian citizens. In fact, when compared to developed nations, this capacity is being underutilized in India. This is particularly true for administrative system in rural areas. The present paper focuses on the need for big data analytics adaptation in Indian rural administration and its contribution towards development of the country on a faster pace. Results of the research focussed on the need for increasing awareness and serious capacity building of the government personnel working for rural development with regard to big data analytics and its utility for development of the country. Multiple public policies are framed and implemented for rural development yet the results are not as effective as they should be. Big data has a major role to play in this context as can assist in improving both policy making and implementation aiming at all round development of the country.

Keywords: Digital India Mission, public service delivery system, public policy, Indian administration

Procedia PDF Downloads 159
20425 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: ORR, fuel cells, batteries, electrocatalyst

Procedia PDF Downloads 113
20424 The Value of Dynamic Priorities in Motor Learning between Some Basic Skills in Beginner's Basketball, U14 Years

Authors: Guebli Abdelkader, Regiueg Madani, Sbaa Bouabdellah

Abstract:

The goals of this study are to find ways to determine the value of dynamic priorities in motor learning between some basic skills in beginner’s basketball (U14), based on skills of shooting and defense against the shooter. Our role is to expose the statistical results in compare & correlation between samples of study in tests skills for the shooting and defense against the shooter. In order to achieve this objective, we have chosen 40 boys in middle school represented in four groups, two controls group’s (CS1, CS2) ,and two experimental groups (ES1: training on skill of shooting, skill of defense against the shooter, ES2: experimental group training on skill of defense against the shooter, skill of shooting). For the statistical analysis, we have chosen (F & T) tests for the statistical differences, and test (R) for the correlation analysis. Based on the analyses statistics, we confirm the importance of classifying priorities of basketball basic skills during the motor learning process. Admit that the benefits of experimental group training are to economics in the time needed for acquiring new motor kinetic skills in basketball. In the priority of ES2 as successful dynamic motor learning method to enhance the basic skills among beginner’s basketball.

Keywords: basic skills, basketball, motor learning, children

Procedia PDF Downloads 170