Search results for: one side class algorithm
4529 A Trends Analysis of Yatch Simulator
Authors: Jae-Neung Lee, Keun-Chang Kwak
Abstract:
This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.Keywords: yacht simulator, simulator, trends analysis, SIFT
Procedia PDF Downloads 4344528 A Study on the Acquisition of Chinese Classifiers by Vietnamese Learners
Authors: Quoc Hung Le Pham
Abstract:
In the field of language study, classifier is an interesting research feature. In the world’s languages, some languages have classifier system, some do not. Mandarin Chinese and Vietnamese languages are a rich classifier system, however, because of the language system, the cognitive, cultural differences, so that the syntactic structure of classifier of them also dissimilar. When using Mandarin Chinese classifiers must collocate with nouns or verbs, in the lexical category it is not like nouns or verbs, belong to the open class. But some scholars believe that Mandarin Chinese measure words are similar to English and other Indo European languages. The word hanging on the structure and word formation (suffix), is a closed class. Compared to other languages, such as Chinese, Vietnamese, Thai and other Asian languages are still belonging to the classifier language’s second type, this type of language is classifier, it is in the majority of quantity must exist, and following deictic, anaphoric or quantity appearing together, not separation between its modified noun, also known as numeral classifier language. Main syntactic structure of Chinese classifiers are as follows: ‘quantity+measure+noun’, ‘pronoun+measure+noun’, ‘pronoun+quantity+measure+noun’, ‘prefix+quantity+measure +noun’, ‘quantity +adjective + measure +noun’, ‘ quantity (above 10 whole number), + duo (多)measure +noun’, ‘ quantity (around 10) + measure + duo (多) +noun’. Main syntactic structure of Vietnamese classifiers are: ‘quantity+measure+noun’, ‘ measure+noun+pronoun’, ‘quantity+measure+noun+pronoun’, ‘measure+noun+prefix+ quantity’, ‘quantity+measure+noun+adjective', ‘duo (多) +quanlity+measure+noun’, ‘quantity+measure+adjective+pronoun (quantity word could not be 1)’, ‘measure+adjective+pronoun’, ‘measure+pronoun’. In daily life, classifiers are commonly used, if Chinese learners failed to standardize this using catergory, because the negative impact might occur on their verbal communication. The richness of the Chinese classifier system contributes to the complexity in the study of the system by foreign learners, especially in the inter language of Vietnamese learners. As above mentioned, Vietnamese language also has a rich system of classifiers, however, the basic structure order of two languages are similar but both still have differences. These similarities and dissimilarities between Chinese and Vietnamese classifier systems contribute significantly to the common errors made by Vietnamese students while they acquire Chinese, which are distinct from the errors made by students from the other language background. This article from a comparative perspective of language, has an orientation towards Chinese and Vietnamese languages commonly used in classifiers semantics and structural form two aspects. This comparative study aims to identity Vietnamese students while learning Chinese classifiers may face some negative transference of mother language, beside that through the analysis of the classifiers questionnaire, find out the causes and patterns of the errors they made. As the preliminary analysis shows, Vietnamese students while learning Chinese classifiers made some errors such as: overuse classifier ‘ge’(个); misuse the other classifiers ‘*yi zhang ri ji’(yi pian ri ji), ‘*yi zuo fang zi’(yi jian fang zi), ‘*si zhang jin pai’(si mei jin pai); homonym words ‘dui, shuang, fu, tao’ (对、双、副、套), ‘ke, li’ (颗、粒).Keywords: acquisition, classifiers, negative transfer, Vietnamse learners
Procedia PDF Downloads 4564527 Ecology in Politics: A Multimodal Eco-Critical Analysis of Environmental Discourse
Authors: Amany ElShazly, Lubna A. Sherif
Abstract:
The entanglement of humans with the environment has always been inevitable and often causes destruction. In this respect, ‘Ecolinguistics’ helps humans to understand the link between languages and the environment. Stibbe (2014a) has indicated that ‘linguistics’, particularly, Critical Discourse Studies (CDS), provides an interpretation of language which shapes world views, while the ‘eco’ side maintains the life-sustaining interactions of humans and the physical environment. This paper considers two key ecological instances, namely: The Grand Ethiopian Renaissance Dam (GERD) as a focal point of political dispute and THE LINE project as well as Etthadar lel Akhdar (Go Green Initiative) as two examples of combating ecological degradation. ‘Ecosophy’ as explained by Naess (1996) is used to describe the ecolinguistic framework, which assesses discourse where the linguistic lens focuses on the use of metaphor, and ‘Positive Discourse’ framework, which resonates with respect and care for the natural world.Keywords: ecosophy, critical discourse studies, metaphor, positive discourse, social semiotics, ecolinguistics
Procedia PDF Downloads 1094526 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method
Authors: Rui Wu
Abstract:
In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning
Procedia PDF Downloads 1124525 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1114524 Myanmar Consonants Recognition System Based on Lip Movements Using Active Contour Model
Authors: T. Thein, S. Kalyar Myo
Abstract:
Human uses visual information for understanding the speech contents in noisy conditions or in situations where the audio signal is not available. The primary advantage of visual information is that it is not affected by the acoustic noise and cross talk among speakers. Using visual information from the lip movements can improve the accuracy and robustness of automatic speech recognition. However, a major challenge with most automatic lip reading system is to find a robust and efficient method for extracting the linguistically relevant speech information from a lip image sequence. This is a difficult task due to variation caused by different speakers, illumination, camera setting and the inherent low luminance and chrominance contrast between lip and non-lip region. Several researchers have been developing methods to overcome these problems; the one is lip reading. Moreover, it is well known that visual information about speech through lip reading is very useful for human speech recognition system. Lip reading is the technique of a comprehensive understanding of underlying speech by processing on the movement of lips. Therefore, lip reading system is one of the different supportive technologies for hearing impaired or elderly people, and it is an active research area. The need for lip reading system is ever increasing for every language. This research aims to develop a visual teaching method system for the hearing impaired persons in Myanmar, how to pronounce words precisely by identifying the features of lip movement. The proposed research will work a lip reading system for Myanmar Consonants, one syllable consonants (င (Nga)၊ ည (Nya)၊ မ (Ma)၊ လ (La)၊ ၀ (Wa)၊ သ (Tha)၊ ဟ (Ha)၊ အ (Ah) ) and two syllable consonants ( က(Ka Gyi)၊ ခ (Kha Gway)၊ ဂ (Ga Nge)၊ ဃ (Ga Gyi)၊ စ (Sa Lone)၊ ဆ (Sa Lain)၊ ဇ (Za Gwe) ၊ ဒ (Da Dway)၊ ဏ (Na Gyi)၊ န (Na Nge)၊ ပ (Pa Saug)၊ ဘ (Ba Gone)၊ ရ (Ya Gaug)၊ ဠ (La Gyi) ). In the proposed system, there are three subsystems, the first one is the lip localization system, which localizes the lips in the digital inputs. The next one is the feature extraction system, which extracts features of lip movement suitable for visual speech recognition. And the final one is the classification system. In the proposed research, Two Dimensional Discrete Cosine Transform (2D-DCT) and Linear Discriminant Analysis (LDA) with Active Contour Model (ACM) will be used for lip movement features extraction. Support Vector Machine (SVM) classifier is used for finding class parameter and class number in training set and testing set. Then, experiments will be carried out for the recognition accuracy of Myanmar consonants using the only visual information on lip movements which are useful for visual speech of Myanmar languages. The result will show the effectiveness of the lip movement recognition for Myanmar Consonants. This system will help the hearing impaired persons to use as the language learning application. This system can also be useful for normal hearing persons in noisy environments or conditions where they can find out what was said by other people without hearing voice.Keywords: feature extraction, lip reading, lip localization, Active Contour Model (ACM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Two Dimensional Discrete Cosine Transform (2D-DCT)
Procedia PDF Downloads 2864523 Mapping the Early History of Common Law Education in England, 1292-1500
Authors: Malcolm Richardson, Gabriele Richardson
Abstract:
This paper illustrates how historical problems can be studied successfully using GIS even in cases in which data, in the modern sense, is fragmentary. The overall problem under investigation is how early (1300-1500) English schools of Common Law moved from apprenticeship training in random individual London inns run in part by clerks of the royal chancery to become what is widely called 'the Third University of England,' a recognized system of independent but connected legal inns. This paper focuses on the preparatory legal inns, called the Inns of Chancery, rather than the senior (and still existing) Inns of Court. The immediate problem studied in this paper is how the junior legal inns were organized, staffed, and located from 1292 to about 1500, and what maps tell us about the role of the chancery clerks as managers of legal inns. The authors first uncovered the names of all chancery clerks of the period, most of them unrecorded in histories, from archival sources in the National Archives, Kew. Then they matched the names with London property leases. Using ArcGIS, the legal inns and their owners were plotted on a series of maps covering the period 1292 to 1500. The results show a distinct pattern of ownership of the legal inns and suggest a narrative that would help explain why the Inns of Chancery became serious centers of learning during the fifteenth century. In brief, lower-ranking chancery clerks, always looking for sources of income, discovered by 1370 that legal inns could be a source of income. Since chancery clerks were intimately involved with writs and other legal forms, and since the chancery itself had a long-standing training system, these clerks opened their own legal inns to train fledgling lawyers, estate managers, and scriveners. The maps clearly show growth patterns of ownership by the chancery clerks for both legal inns and other London properties in the areas of Holborn and The Strand between 1450 and 1417. However, the maps also show that a royal ordinance of 1417 forbidding chancery clerks to live with lawyers, law students, and other non-chancery personnel had an immediate effect, and properties in that area of London leased by chancery clerks simply stop after 1417. The long-term importance of the patterns shown in the maps is that while the presence of chancery clerks in the legal inns likely created a more coherent education system, their removal forced the legal profession, suddenly without a hostelry managerial class, to professionalize the inns and legal education themselves. Given the number and social status of members of the legal inns, the effect on English education was to free legal education from the limits of chancery clerk education (the clerks were not practicing common lawyers) and to enable it to become broader in theory and practice, in fact, a kind of 'finishing school' for the governing (if not noble) class.Keywords: GIS, law, London, education
Procedia PDF Downloads 1804522 Design of Transformerless Electric Energy Router in Smart Home
Authors: Weidong Fu, Qingsong Wang, Wei Hua, Ming Cheng, Giuseppe Buja
Abstract:
A single-phase transformerless electric energy router (TL-EER) is proposed for renewable energy management and power quality improvement in smart homes. The proposed TL-EER only contains four semiconductor switching devices, which reduces costs greatly compared to traditional electric energy routers. TL-EER functions as intelligent systems that optimize the flow and distribution of energy within a grid, enabling seamless interaction between generation, storage, and consumption. In addition, TL-EER operates in multiple modes and could be converted to diverse topologies by changing the states of relays. As for power quality, voltage and current compensating methods are adapted. Thus, high-quality electrical energy could be transferred to the load, and the grid-side power factor could be improved. Finally, laboratory prototypes are established to validate the effectiveness of the system.Keywords: transformerless, electric energy router (EER), power flow, power quality, power factor
Procedia PDF Downloads 54521 Innovation Knowledge Management for Public Sector in the Thailand
Authors: Supattra Kanchanopast
Abstract:
This article presents the process of change for innovation in the Thai public sector in order to create higher client satisfaction. Change management should concern the potentiality of the change agent or leader, the long-term vision or policy (political side) of the organization, the communication within the organization, suitable organizational culture and structure, preparedness of the personnel, and the fitness of the reward system. Sustaining innovation creation is not sophisticated, as traditionally believed. A basic management principle of identifying clarified and motivating goals needs to be followed by creating support systems after implementation and by ensuring the stakeholders’ benefit, derived from the innovation projects. Finally, creating an amiable atmosphere among the practitioners, including effective evaluation and reward schemes, will support the innovation. However, none of these will ever take place unless support is gained from the leaders of those organizations, and from the staff and clients involved also as well.Keywords: change management, client satisfaction, innovation management, Thai public sector
Procedia PDF Downloads 2594520 A Comparison between Russian and Western Approach for Deep Foundation Design
Authors: Saeed Delara, Kendra MacKay
Abstract:
Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.Keywords: pile capacity, pile settlement, Russian approach, western approach
Procedia PDF Downloads 1714519 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices
Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese
Abstract:
Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis
Procedia PDF Downloads 1824518 Learning Academic Skills through Movement: A Case Study in Evaluation
Authors: Y. Salfati, D. Sharef Bussel, J. Zamir
Abstract:
In this paper, we present an Evaluation Case Study implementing the eight principles of Collaborative Approaches to Evaluation (CAE) as designed by Brad Cousins in the past decade. The focus of this paper is sharing a rich experience in which we achieved two main goals. The first was the development of a valuable and meaningful new teacher training program, and the second was a successful implementation of the CAE principles. The innovative teacher training program is based on the idea of including physical movement during the process of teaching and learning academic themes. The program is called Learning through Movement. This program is a response to a call from the Ministry of Education, claiming that today children sit in front of screens and do not exercise any physical activity. In order to contribute to children’s health, physical, and cognitive development, the Ministry of Education promotes learning through physical activities. Research supports the idea that sports and physical exercise improve academic achievements. The Learning through Movement program is operated by Kaye Academic College. Students in the Elementary School Training Program, together with students in the Physical Education Training Program, implement the program in collaboration with two mentors from the College. The program combines academic learning with physical activity. The evaluation began at the beginning of the program. During the evaluation process, data was collected by means of qualitative tools, including interviews with mentors, observations during the students’ collaborative planning, class observations at school and focus groups with students, as well as the collection of documentation related to the teamwork and to the program itself. The data was analyzed using content analysis and triangulation. The preliminary results show outcomes relating to the Teacher Training Programs, the student teachers, the pupils in class, the role of Physical Education teachers, and the evaluation. The Teacher Training Programs developed a collaborative approach to lesson planning. The students' teachers demonstrated a change in their basic attitudes towards the idea of integrating physical activities during the lessons. The pupils indicated higher motivation through full participation in classes. These three outcomes are indicators of the success of the program. An additional significant outcome of the program relates to the status and role of the physical education teachers, changing their role from marginal to central in the school. Concerning evaluation, a deep sense of trust and confidence was achieved, between the evaluator and the whole team. The paper includes the perspectives and challenges of the heads and mentors of the two programs as well as the evaluator’s conclusions. The evaluation unveils challenges in conducting a CAE evaluation in such a complex setting.Keywords: collaborative evaluation, training teachers, learning through movement
Procedia PDF Downloads 1494517 Fostering Students’ Cultural Intelligence: A Social Media Experiential Project
Authors: Lorena Blasco-Arcas, Francesca Pucciarelli
Abstract:
Business contexts have become globalised and digitalised, which requires that managers develop a strong sense of cross-cultural intelligence while working in geographically distant teams by means of digital technologies. How to better equip future managers on these kinds of skills has been put forward as a critical issue in Business Schools. In pursuing these goals, higher education is shifting from a passive lecture approach, to more active and experiential learning approaches that are more suitable to learn skills. For example, through the use of case studies, proposing plausible business problem to be solved by students (or teams of students), these institutions have focused for long in fostering learning by doing. Though, case studies are no longer enough as a tool to promote active teamwork and experiential learning. Moreover, digital advancements applied to educational settings have enabled augmented classrooms, expanding the learning experience beyond the class, which increase students’ engagement and experiential learning. Different authors have highlighted the benefits of digital engagement in order to achieve a deeper and longer-lasting learning and comprehension of core marketing concepts. Clickers, computer-based simulations and business games have become fairly popular between instructors, but still are limited by the fact that are fictional experiences. Further exploration of real digital platforms to implement real, live projects in the classroom seem relevant for marketing and business education. Building on this, this paper describes the development of an experiential learning activity in class, in which students developed a communication campaign in teams using the BuzzFeed platform, and subsequently implementing the campaign by using other social media platforms (e.g. Facebook, Instagram, Twitter…). The article details the procedure of using the project for a marketing module in a Bachelor program with students located in France, Italy and Spain campuses working on multi-campus groups. Further, this paper describes the project outcomes in terms of students’ engagement and analytics (i.e. visits achieved). the project included a survey in order to analyze and identify main aspects related to how the learning experience is influenced by the cultural competence developed through working in geographically distant and culturally diverse teamwork. Finally, some recommendations to use project-based social media tools while working with virtual teamwork in the classroom are provided.Keywords: cultural competences, experiential learning, social media, teamwork, virtual group work
Procedia PDF Downloads 1844516 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study
Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle
Abstract:
The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area
Procedia PDF Downloads 1244515 Affective Approach to Selected Ingmar Bergman Films
Authors: Grzegorz Zinkiewicz
Abstract:
The paper explores affective potential implicit in Bergman’s movies. This is done by the use of affect theory and the concept of affect in terms of paradigmatic and syntagmatic relations, from both diachronic and synchronic perspective. Since its inception in the early 2000s, affect theory has been applied to a number of academic fields. In Film Studies, it offers new avenues for discovering deeper, hidden layers of a given film. The aim is to show that the form and content of the films by Ingmar Bergman are determined by their inner affects that function independently of the viewer and, to an extent, are autonomous entities that can be analysed in separation from the auteur and actual characters. The paper discovers layers in Ingmar Bergman films and focuses on aspects that are often marginalised or studied from other viewpoints such as the connection between the content and visual side. As a result, a revaluation of Bergman films is possible that is more consistent with his original interpretations and comments included in his lectures, interviews and autobiography.Keywords: affect theory, experimental cinema, Ingmar Bergman, viewer response
Procedia PDF Downloads 1064514 Mechanisms for Strategic Adoption of Innovation Procurement
Authors: Carolina B. A. Morais, Antonio Bob Santos
Abstract:
In order to determine how innovation procurement can strengthen public efficiency and foster the modernization of public services, while at the same time promoting the opening of new private markets, this paper aims to present the two key instruments for the practice of innovation procurement at a European, national, and regional level – Pre-Commercial Procurement (PCP), and Public Procurement of Innovative Solutions (PPI). Thus, it starts with a theoretical framework on the emergence of this topic in the European Innovation Policy (Section 2), then continues with the identification and systematization of the main mechanisms for its effective adoption, both on the demand and supply side of the market (Section 3), as well as to expose and describe methods and tools for positioning innovation at the heart of public entities. The innovative projects best distinguished by the European Commission for their good practices in innovation procurement are identified, and the main methodology for the development and management of innovation procurement – Forward Commitment Procurement (FCP) – is applied to them in a pioneering way (Section 4). The relevance of innovation in public procurement is systematized and reflected upon in Section 5.Keywords: innovation procurement, innovation policy, innovation, pubic procurement
Procedia PDF Downloads 1254513 Hong Kong Artists Public Communication of Mental Health Disorders and Coping Techniques - Analysis
Authors: Patricia Portugal Marques de Carvalho Lourenco
Abstract:
Money, status, beauty, popularity, widespread public adulation, glitz and glamour portray a perfumed stress-free existence yet not every rock that glitters is a gold nugget and mental disorders are not an exclusivity of middle/low societal classes. Mental illnesses do not discriminate, and behind the superficial visual wealth of the upper-class, there are human beings who experience the ups and downs of life like any other person, except that publicly rather than privately and with an array of fingers pointing at them instead of a mere few. Sammi Cheung, Carina Lau, Fiona Sit, Kara Hui and Louis Cheung are a number of Hong Kong artists that have battled mental disorders, overcame them and used the process to openly discuss the still existing taboo.Keywords: mental disorders, mental health, public communication, depression, hong kong artists
Procedia PDF Downloads 2234512 Improving Security by Using Secure Servers Communicating via Internet with Standalone Secure Software
Authors: Carlos Gonzalez
Abstract:
This paper describes the use of the Internet as a feature to enhance the security of our software that is going to be distributed/sold to users potentially all over the world. By placing in a secure server some of the features of the secure software, we increase the security of such software. The communication between the protected software and the secure server is done by a double lock algorithm. This paper also includes an analysis of intruders and describes possible responses to detect threats.Keywords: internet, secure software, threats, cryptography process
Procedia PDF Downloads 3374511 Correction of Skeletal Deformity by Surgical Approach – A Case Report
Authors: Davender Kumar, Virender Singh, Rekha Sharma
Abstract:
Correction of skeletal deformities in adult patients with orthodontics is limited. In adult severe cases, the combined approach, orthodontic and orthognathic surgery, is always the treatment of choice, and the results obtained usually ensure a better esthetic, functional, and stable results Orthognathic surgery is the best option for cases when camouflage treatment is questionable and growth modulation is not possible. This case report illustrates the benefit of the team approach in correcting mandible retrusion along with class II skeletal deformity with 100% deep bite. Correction was achieved by anterior repositioning of mandible osteotomy along with orthodontic treatment. The patient's facial appearance was markedly improved along with functional and stable occlusion.Keywords: camouflage, skeletal, orthognathic, dental
Procedia PDF Downloads 4304510 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator
Authors: Di Yao, Gunther Prokop, Kay Buttner
Abstract:
Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory
Procedia PDF Downloads 2704509 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2924508 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks
Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions
Procedia PDF Downloads 864507 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 3674506 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach
Authors: Niyongabo Elyse
Abstract:
Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling
Procedia PDF Downloads 554505 Multi-Level Meta-Modeling for Enabling Dynamic Subtyping for Industrial Automation
Authors: Zoltan Theisz, Gergely Mezei
Abstract:
Modern industrial automation relies on service oriented concepts of Internet of Things (IoT) device modeling in order to provide a flexible and extendable environment for service meta-repository. However, state-of-the-art meta-modeling techniques prefer design-time modeling, which results in a heavy usage of class sometimes unnecessary static subtyping. Although this approach benefits from clear-cut object-oriented design principles, it also seals the model repository for further dynamic extensions. In this paper, a dynamic multi-level modeling approach is introduced that enables dynamic subtyping through a more relaxed partial instantiation mechanism. The approach is demonstrated on a simple sensor network example.Keywords: meta-modeling, dynamic subtyping, DMLA, industrial automation, arrowhead
Procedia PDF Downloads 3654504 Blockchain-Based Decentralized Architecture for Secure Medical Records Management
Authors: Saeed M. Alshahrani
Abstract:
This research integrated blockchain technology to reform medical records management in healthcare informatics. It was aimed at resolving the limitations of centralized systems by establishing a secure, decentralized, and user-centric platform. The system was architected with a sophisticated three-tiered structure, integrating advanced cryptographic methodologies, consensus algorithms, and the Fast Healthcare Interoperability Resources (HL7 FHIR) standard to ensure data security, transaction validity, and semantic interoperability. The research has profound implications for healthcare delivery, patient care, legal compliance, operational efficiency, and academic advancements in blockchain technology and healthcare IT sectors. The methodology adapted in this research comprises of Preliminary Feasibility Study, Literature Review, Design and Development, Cryptographic Algorithm Integration, Modeling the data and testing the system. The research employed a permissioned blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm and Ethereum-based smart contracts. It integrated advanced cryptographic algorithms, role-based access control, multi-factor authentication, and RESTful APIs to ensure security, regulate access, authenticate user identities, and facilitate seamless data exchange between the blockchain and legacy healthcare systems. The research contributed to the development of a secure, interoperable, and decentralized system for managing medical records, addressing the limitations of the centralized systems that were in place. Future work will delve into optimizing the system further, exploring additional blockchain use cases in healthcare, and expanding the adoption of the system globally, contributing to the evolution of global healthcare practices and policies.Keywords: healthcare informatics, blockchain, medical records management, decentralized architecture, data security, cryptographic algorithms
Procedia PDF Downloads 584503 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems
Authors: Emily Kambalame
Abstract:
Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluationKeywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems
Procedia PDF Downloads 684502 The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell
Authors: Ahmed Khalaf Reyad Raslan
Abstract:
Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells.Keywords: hydrogel, alginate, reduced graphene oxide, collagen
Procedia PDF Downloads 1514501 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC
Procedia PDF Downloads 2484500 Complicated Sinusitis with Sphenopalatine Artery Thrombosis in a Covid-19 Patient
Authors: Sara Mahmood, Omar Ahmed, Youssef Aladham, Moustafa Abdelnaby
Abstract:
The varied complications of COVID-19 present an ongoing challenge to healthcare professionals. A rare presentation of complicated sinusitis with pre-septal cellulitis and hard palatal necrosis in a COVID-19 patient, was reported. A 52-year-old male was admitted to the hospital with typical COVID manifestations where he had two successive COVID-19 positive swabs. During his admission, he developed symptoms of right orbital complications of sinusitis along with both clinical and radiological evidence of ipsilateral hard palatal necrosis. Imaging confirmed a diagnosis of right pan-sinusitis complicated with right pre-septal infection and hard palatal bony defect on the same side. Intra-operatively, the sphenopalatine artery was found to be thrombosed. This case focuses on the possible association between these manifestations and the known thromboembolic complications of COVID-19. Ongoing management of such complicated rare cases should be through a multidisciplinary team.Keywords: COVID-19, sinusitis, sphenopalatine artery, thrombosis
Procedia PDF Downloads 183