Search results for: lateral-directional stability
208 Rethinking Modernization Strategy of Muslim Society: The Need for Value-Based Approach
Authors: Louay Safi
Abstract:
The notion of secular society that evolved over the last two centuries was initially intended to free the public sphere from religious imposition, before it assumed the form a comprehensive ideology whose aim is to prevent any overt religious expression from the public space. The negative view of religious expression, and the desire by political elites to purge the public space from all forms of religious expressions were first experienced in the Middle East in the last decades of the twentieth century in relation to Islam, before it manifests itself in the twentieth century Europe. Arab regimes were encouraged by European democracies to marginalize all forms of religious expressions in the public as part of the secularization process that was deemed necessary for modernization and progress. The prohibition of Islamic symbols and outlawing the headscarf was first undertaken to Middle Eastern republics, such as Turkey in 1930s and Syria in 1970s, before it is implemented recently in France. Secularization has been perceived by European powers as the central aspect of social and political liberalization, and was given priority over democratization and human rights, so much so that European elites were willing to entrust the task of nurturing liberal democracy to Arab autocrats and dictators. Not only did the strategy of empowering autocratic regimes to effect liberal democratic culture failed, but it contributed to the rise of Islamist extremism and produced failed states in Syria and Iraq that undermine both national and global peace and stability. The paper adopts the distinction made by John Rawls between political and comprehensive liberalism to argue that the modernization via secularization in Muslim societies is counterproductive and has subverted early successful efforts at democratization and reform in the Middle East. Using case studies that illustrate the role of the secularization strategy in Syria, Iran, and Egypt in undermining democratic and reformist movements in those countries, the paper calls for adopting a different approach rooted in liberal and democratic values rather than cultural practices and lifestyle. The paper shows that Islamic values as articulated by reform movements support a democratic and pluralist political order, and emphasizes the need to legitimize and support social forces that advocate democracy and human rights. Such an alternative strategy allows for internal competition among social groups for popular support, and therefore enhances the chances that those with inclusive and forward-looking political principles and policies would create a democratic and pluralist political order more conducive to meaningful national and global cooperation, and respectful of human dignity.Keywords: democracy, Islamic values, political liberalism, secularization
Procedia PDF Downloads 170207 Coastal Modelling Studies for Jumeirah First Beach Stabilization
Authors: Zongyan Yang, Gagan K. Jena, Sankar B. Karanam, Noora M. A. Hokal
Abstract:
Jumeirah First beach, a segment of coastline of length 1.5 km, is one of the popular public beaches in Dubai, UAE. The stability of the beach has been affected by several coastal developmental projects, including The World, Island 2 and La Mer. A comprehensive stabilization scheme comprising of two composite groynes (of lengths 90 m and 125m), modification to the northern breakwater of Jumeirah Fishing Harbour and beach re-nourishment was implemented by Dubai Municipality in 2012. However, the performance of the implemented stabilization scheme has been compromised by La Mer project (built in 2016), which modified the wave climate at the Jumeirah First beach. The objective of the coastal modelling studies is to establish design basis for further beach stabilization scheme(s). Comprehensive coastal modelling studies had been conducted to establish the nearshore wave climate, equilibrium beach orientations and stable beach plan forms. Based on the outcomes of the modeling studies, recommendation had been made to extend the composite groynes to stabilize the Jumeirah First beach. Wave transformation was performed following an interpolation approach with wave transformation matrixes derived from simulations of a possible range of wave conditions in the region. The Dubai coastal wave model is developed with MIKE21 SW. The offshore wave conditions were determined from PERGOS wave data at 4 offshore locations with consideration of the spatial variation. The lateral boundary conditions corresponding to the offshore conditions, at Dubai/Abu Dhabi and Dubai Sharjah borders, were derived with application of LitDrift 1D wave transformation module. The Dubai coastal wave model was calibrated with wave records at monitoring stations operated by Dubai Municipality. The wave transformation matrix approach was validated with nearshore wave measurement at a Dubai Municipality monitoring station in the vicinity of the Jumeirah First beach. One typical year wave time series was transformed to 7 locations in front of the beach to count for the variation of wave conditions which are affected by adjacent and offshore developments. Equilibrium beach orientations were estimated with application of LitDrift by finding the beach orientations with null annual littoral transport at the 7 selected locations. The littoral transport calculation results were compared with beach erosion/accretion quantities estimated from the beach monitoring program (twice a year including bathymetric and topographical surveys). An innovative integral method was developed to outline the stable beach plan forms from the estimated equilibrium beach orientations, with predetermined minimum beach width. The optimal lengths for the composite groyne extensions were recommended based on the stable beach plan forms.Keywords: composite groyne, equilibrium beach orientation, stable beach plan form, wave transformation matrix
Procedia PDF Downloads 264206 Intensive Care Nursing Experience of a Lung Cancer Patient Receiving Palliative
Authors: Huang Wei-Yi
Abstract:
Objective: This article explores the intensive care nursing experience of a terminal lung cancer patient who received palliative care after tracheal intubation. The patient was nearing death, and the family experienced sadness and grief as they faced the patient’s deteriorating condition and impending death. Methods: The patient was diagnosed with lung cancer in 2018 and received chemotherapy and radiation therapy with regular outpatient follow-ups. Due to brain metastasis and recent poor pain control and treatment outcomes, the patient was admitted to the intensive care unit (ICU), where the tracheal tube was removed, and palliative care was initiated. During the care period, a holistic assessment was conducted, addressing the physical, psychological, social, and spiritual aspects of care. Medical records were reviewed, interviews and family meetings were held, and a comprehensive assessment was carried out by the critical care team in collaboration with the palliative care team. The primary nursing issues identified included pain, ineffective breathing patterns, fear of death, and altered tissue perfusion. Results: Throughout the care process, the palliative care nurse, along with the family, utilized listening, caring, companionship, pain management, essential oil massage, distraction, and comfortable positioning to alleviate the patient’s pain and breathing difficulties. The use of Morphine 6mg in 0.9% N/S 50ml IV drip q6h reduced the FLACC pain score from 6 to 3. The patient’s respiratory rate improved from 28 breaths/min to 18-22 breaths/min, and sleep duration increased from 4 to 7 uninterrupted hours. The holistic palliative care approach, coupled with the involvement of the palliative care team, facilitated expressions of gratitude, apologies, and love between the patient and family. Visiting hours were extended, and with the nurse’s assistance, these moments were recorded and shared with the patient’s consent, providing cherished memories for the family. The patient’s end-of-life experience was thus improved, and the family was able to find peace. This case also served to promote the concept of palliative care, ensuring that more patients and families receive high-quality nursing care. Conclusion: When caring for terminal patients, collaboration with the palliative care team, including social workers, clergy, psychologists, and nutritionists, is essential. Involving the family in decision-making and providing opportunities for closeness and expressions of gratitude improve personalized care and enhance the patient's quality of life. Upon transferring to the ward, the patient’s hemodynamic stability was maintained, including SBP 110-130 mmHg, respiratory rate 20-22 breaths/min, and pain score <3. The patient was later discharged and transitioned to home hospice care for ongoing support.Keywords: intensive care, lung cancer, palliative care, ICU
Procedia PDF Downloads 28205 Exploration Tools for Tantalum-Bearing Pegmatites along Kibara Belt, Central and Southwestern Uganda
Authors: Sadat Sembatya
Abstract:
Tantalum metal is used in addressing capacitance challenge in the 21st-century technology growth. Tantalum is rarely found in its elemental form. Hence it’s often found with niobium and the radioactive elements of thorium and uranium. Industrial processes are required to extract pure tantalum. Its deposits are mainly oxide associated and exist in Ta-Nb oxides such as tapiolite, wodginite, ixiolite, rutile and pyrochlore-supergroup minerals are of minor importance. The stability and chemical inertness of tantalum makes it a valuable substance for laboratory equipment and a substitute for platinum. Each period of Tantalum ore formation is characterized by specific mineralogical and geochemical features. Compositions of Columbite-Group Minerals (CGM) are variable: Fe-rich types predominate in the Man Shield (Sierra Leone), the Congo Craton (DR Congo), the Kamativi Belt (Zimbabwe) and the Jos Plateau (Nigeria). Mn-rich columbite-tantalite is typical of the Alto Ligonha Province (Mozambique), the Arabian-Nubian Shield (Egypt, Ethiopia) and the Tantalite Valley pegmatites (southern Namibia). There are large compositional variations through Fe-Mn fractionation, followed by Nb-Ta fractionation. These are typical for pegmatites usually associated with very coarse quartz-feldspar-mica granites. They are young granitic systems of the Kibara Belt of Central Africa and the Older Granites of Nigeria. Unlike ‘simple’ Be-pegmatites, most Ta-Nb rich pegmatites have the most complex zoning. Hence we need systematic exploration tools to find and rapidly assess the potential of different pegmatites. The pegmatites exist as known deposits (e.g., abandoned mines) and the exposed or buried pegmatites. We investigate rocks and minerals to trace for the possibility of the effect of hydrothermal alteration mainly for exposed pegmatites, do mineralogical study to prove evidence of gradual replacement and geochemistry to report the availability of trace elements which are good indicators of mineralisation. Pegmatites are not good geophysical responders resulting to the exclusion of the geophysics option. As for more advanced prospecting, we bulk samples from different zones first to establish their grades and characteristics, then make a pilot test plant because of big samples to aid in the quantitative characterization of zones, and then drill to reveal distribution and extent of different zones but not necessarily grade due to nugget effect. Rapid assessment tools are needed to assess grade and degree of fractionation in order to ‘rule in’ or ‘rule out’ a given pegmatite for future work. Pegmatite exploration is also unique, high risk and expensive hence right traceability system and certification for 3Ts are highly needed.Keywords: exploration, mineralogy, pegmatites, tantalum
Procedia PDF Downloads 152204 Synthesis and Characterization of pH-Sensitive Graphene Quantum Dot-Loaded Metal-Organic Frameworks for Targeted Drug Delivery and Fluorescent Imaging
Authors: Sayed Maeen Badshah, Kuen-Song Lin, Abrar Hussain, Jamshid Hussain
Abstract:
Liver cancer is a significant global health issue, ranking fifth in incidence and second in mortality. Effective therapeutic strategies are urgently needed to combat this disease, particularly in regions with high prevalence. This study focuses on developing and characterizing fluorescent organometallic frameworks as distinct drug delivery carriers with potential applications in both the treatment and biological imaging of liver cancer. This work introduces two distinct organometallic frameworks: the cake-shaped GQD@NH₂-MIL-125 and the cross-shaped M8U6/FM8U6. The GQD@NH₂-MIL-125 framework is particularly noteworthy for its high fluorescence, making it an effective tool for biological imaging. X-ray diffraction (XRD) analysis revealed specific diffraction peaks at 6.81ᵒ (011), 9.76ᵒ (002), and 11.69ᵒ (121), with an additional significant peak at 26ᵒ (2θ), corresponding to the carbon material. Morphological analysis using Field Emission Scanning Electron Microscopy (FE-SEM), and Transmission Electron Microscopy (TEM) demonstrated that the framework has a front particle size of 680 nm and a side particle size of 55±5 nm. High-resolution TEM (HR-TEM) images confirmed the successful attachment of graphene quantum dots (GQDs) onto the NH2-MIL-125 framework. Fourier-Transform Infrared (FT-IR) spectroscopy identified crucial functional groups within the GQD@NH₂-MIL-125 structure, including O-Ti-O metal bonds within the 500 to 700 cm⁻¹ range, and N-H and C-N bonds at 1,646 cm⁻¹ and 1,164 cm⁻¹, respectively. BET isotherm analysis further revealed a specific surface area of 338.1 m²/g and an average pore size of 46.86 nm. This framework also demonstrated UV-active properties, as identified by UV-visible light spectra, and its photoluminescence (PL) spectra showed an emission peak around 430 nm when excited at 350 nm, indicating its potential as a fluorescent drug delivery carrier. In parallel, the cross-shaped M8U6/FM8U6 frameworks were synthesized and characterized using X-ray diffraction, which identified distinct peaks at 2θ = 7.4 (111), 8.5 (200), 9.2 (002), 10.8 (002), 12.1 (220), 16.7 (103), and 17.1 (400). FE-SEM, HR-TEM, and TEM analyses revealed particle sizes of 350±50 nm for M8U6 and 200±50 nm for FM8U6. These frameworks, synthesized from terephthalic acid (H₂BDC), displayed notable vibrational bonds, such as C=O at 1,650 cm⁻¹, Fe-O in MIL-88 at 520 cm⁻¹, and Zr-O in UIO-66 at 482 cm⁻¹. BET analysis showed specific surface areas of 740.1 m²/g with a pore size of 22.92 nm for M8U6 and 493.9 m²/g with a pore size of 35.44 nm for FM8U6. Extended X-ray Absorption Fine Structure (EXAFS) spectra confirmed the stability of Ti-O bonds in the frameworks, with bond lengths of 2.026 Å for MIL-125, 1.962 Å for NH₂-MIL-125, and 1.817 Å for GQD@NH₂-MIL-125. These findings highlight the potential of these organometallic frameworks for enhanced liver cancer therapy through precise drug delivery and imaging, representing a significant advancement in nanomaterial applications in biomedical science.Keywords: liver cancer cells, metal organic frameworks, Doxorubicin (DOX), drug release.
Procedia PDF Downloads 15203 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique
Authors: Malory Jonata
Abstract:
Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp
Procedia PDF Downloads 83202 Marketing in the Fashion Industry and Its Critical Success Factors: The Case of Fashion Dealers in Ghana
Authors: Kumalbeo Paul Kamani
Abstract:
Marketing plays a very important role in the success of any firm since it represents the means through which a firm can reach its customers and also promotes its products and services. In fact, marketing aids the firm in identifying customers who the business can competitively serve, and tailoring product offerings, prices, distribution, promotional efforts, and services towards those customers. Unfortunately, in many firms, marketing has been reduced to merely advertisement. For effective marketing, firms must go beyond this often-limited function of advertisement. In the fashion industry in particular, marketing faces challenges due to its peculiar characteristics. Previous research for instance affirms the idiosyncrasy and peculiarities that differentiate the fashion industry from other industrial areas. It has been documented that the fashion industry is characterized seasonal intensity, short product life cycles, the difficulty of competitive differentiation, and long time for companies to reach financial stability. These factors are noted to pose obstacles to the fashion entrepreneur’s endeavours and can be the reasons that explain their low survival rates. In recent times, the fashion industry has been described as a market that is accessible market, has low entry barriers, both in terms of needed capital and skills which have all accounted for the burgeoning nature of startups. Yet as already stated, marketing is particularly challenging in the industry. In particular, areas such as marketing, branding, growth, project planning, financial and relationship management might represent challenges for the fashion entrepreneur but that have not been properly addressed by previous research. It is therefore important to assess marketing strategies of fashion firms and the factors influencing their success. This study generally sought to examine marketing strategies of fashion dealers in Ghana and their critical success factors. The study employed the quantitative survey research approach. A total of 120 fashion dealers were sampled. Questionnaires were used as instrument of data collection. Data collected was analysed using quantitative techniques including descriptive statistics and Relative Importance Index. The study revealed that the marketing strategies used by fashion apparels are text messages using mobile phones, referrals, social media marketing, and direct marketing. Results again show that the factors influencing fashion marketing effectiveness are strategic management, marketing mix (product, price, promotion etc), branding and business development. Policy implications are finally outlined. The study recommends among others that there is a need for the top management executive to craft and adopt marketing strategies that enable that are compatible with the fashion trends and the needs of the customers. This will improve customer satisfaction and hence boost market penetration. The study further recommends that the fashion industry in Ghana should seek to ensure that fashion apparels accommodate the diversity and the cultural setting of different customers to meet their unique needs.Keywords: marketing, fashion, industry, success factors
Procedia PDF Downloads 45201 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study
Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming
Abstract:
Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.Keywords: binary outcomes, statistical methods, clinical trials, simulation study
Procedia PDF Downloads 115200 The Importance of SEEQ in Teaching Evaluation of Undergraduate Engineering Education in India
Authors: Aabha Chaubey, Bani Bhattacharya
Abstract:
Evaluation of the quality of teaching in engineering education in India needs to be conducted on a continuous basis to achieve the best teaching quality in technical education. Quality teaching is an influential factor in technical education which impacts largely on learning outcomes of the students. Present study is not exclusively theory-driven, but it draws on various specific concepts and constructs in the domain of technical education. These include teaching and learning in higher education, teacher effectiveness, and teacher evaluation and performance management in higher education. Student Evaluation of Education Quality (SEEQ) was proposed as one of the evaluation instruments of the quality teaching in engineering education. SEEQ is one of the popular and standard instrument widely utilized all over the world and bears the validity and reliability in educational world. The present study was designed to evaluate the teaching quality through SEEQ in the context of technical education in India, including its validity and reliability based on the collected data. The multiple dimensionality of SEEQ that is present in every teaching and learning process made it quite suitable to collect the feedback of students regarding the quality of instructions and instructor. The SEEQ comprises of 9 original constructs i.e.; learning value, teacher enthusiasm, organization, group interaction, and individual rapport, breadth of coverage, assessment, assignments and overall rating of particular course and instructor with total of 33 items. In the present study, a total of 350 samples comprising first year undergraduate students from Indian Institute of Technology, Kharagpur (IIT, Kharagpur, India) were included for the evaluation of the importance of SEEQ. They belonged to four different courses of different streams of engineering studies. The above studies depicted the validity and reliability of SEEQ was based upon the collected data. This further needs Confirmatory Factor Analysis (CFA) and Analysis of Moment structure (AMOS) for various scaled instrument like SEEQ Cronbach’s alpha which are associated with SPSS for the examination of the internal consistency. The evaluation of the effectiveness of SEEQ in CFA is implemented on the basis of fit indices such as CMIN/df, CFI, GFI, AGFI and RMSEA readings. The major findings of this study showed the fitness indices such as ChiSq = 993.664,df = 390,ChiSq/df = 2.548,GFI = 0.782,AGFI = 0.736,CFI = 0.848,RMSEA = 0.062,TLI = 0.945,RMR = 0.029,PCLOSE = 0.006. The final analysis of the fit indices presented positive construct validity and stability, on the other hand a higher reliability was also depicted which indicated towards internal consistency. Thus, the study suggests the effectivity of SEEQ as the indicator of the quality evaluation instrument in teaching-learning process in engineering education in India. Therefore, it is expected that with the continuation of this research in engineering education there remains a possibility towards the betterment of the quality of the technical education in India. It is also expected that this study will provide an empirical and theoretical logic towards locating a construct or factor related to teaching, which has the greatest impact on teaching and learning process in a particular course or stream in engineering education.Keywords: confirmatory factor analysis, engineering education, SEEQ, teaching and learning process
Procedia PDF Downloads 423199 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors
Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy
Abstract:
The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.Keywords: hyperkalemia, drift, AACVD, organosilicon
Procedia PDF Downloads 124198 Preventing Discharge to No Fixed Address-Youth (NFA-Y)
Authors: Cheryl Forchuk, Sandra Fisman, Steve Cordes, Dan Catunto, Katherine Krakowski, Melissa Jeffrey, John D’Oria
Abstract:
The discharge of youth aged 16-25 from hospital into homelessness is a prevalent issue despite research indicating social, safety, health and economic detriments on both the individual and community. Lack of stable housing for youth discharged into homelessness results in long-term consequences, including exacerbation of health problems and costly health care service use and hospital readmission. People experiencing homelessness are four times more likely to be readmitted within one month of discharge and hospitals must spend $2,559 more per client. Finding safe housing for these individuals is imperative to their recovery and transition back to the community. People discharged from hospital to homelessness experience challenges, including poor health outcomes and increased hospital readmissions. Youth are the fastest-growing subgroup of people experiencing homelessness in Canada. The needs of youth are unique and include supports related to education, employment opportunities, and age-related service barriers. This study aims to identify the needs of youth at risk of homelessness by evaluating the efficacy of the “Preventing Discharge to No Fixed Address – Youth” (NFA-Y) program, which aims to prevent youth from being discharged from hospital into homelessness. The program connects youth aged 16-25 who are inpatients at London Health Sciences Centre and St. Joseph’s Health Care London to housing and financial support. Supports are offered through collaboration with community partners: Youth Opportunities Unlimited, Canadian Mental Health Association Elgin Middlesex, City of London Coordinated Access, Ontario Works, and Salvation Army’s Housing Stability Bank. This study was reviewed and approved by Western University’s Research Ethics Board. A series of interviews are being conducted with approximately ninety-three youth participants at three time points: baseline (pre-discharge), six, and twelve months post-discharge. Focus groups with participants, health care providers, and community partners are being conducted at three-time points. In addition, administrative data from service providers will be collected and analyzed. Since homelessness has a detrimental effect on recovery, client and community safety, and healthcare expenditure, locating safe housing for psychiatric patients has had a positive impact on treatment, rehabilitation, and the system as a whole. If successful, the findings of this project will offer safe policy alternatives for the prevention of homelessness for at-risk youth, help set them up for success in their future years, and mitigate the rise of the homeless youth population in Canada.Keywords: youth homelessness, no-fixed address, mental health, homelessness prevention, hospital discharge
Procedia PDF Downloads 105197 Challenges of Carbon Trading Schemes in Africa
Authors: Bengan Simbarashe Manwere
Abstract:
The entire African continent, comprising 55 countries, holds a 2% share of the global carbon market. The World Bank attributes the continent’s insignificant share and participation in the carbon market to the limited access to electricity. Approximately 800 million people spread across 47 African countries generate as much power as Spain, with a population of 45million. Only South Africa and North Africa have carbon-reduction investment opportunities on the continent and dominate the 2% market share of the global carbon market. On the back of the 2015 Paris Agreement, South Africa signed into law the Carbon Tax Act 15 of 2019 and the Customs and Excise Amendment Act 13 of 2019 (Gazette No. 4280) on 1 June 2019. By these laws, South Africa was ushered into the league of active global carbon market players. By increasing the cost of production by the rate of R120/tCO2e, the tax intentionally compels the internalization of pollution as a cost of production and, relatedly, stimulate investment in clean technologies. The first phase covered the 1 June 2019 – 31 December 2022 period during which the tax was meant to escalate at CPI + 2% for Scope 1 emitters. However, in the second phase, which stretches from 2023 to 2030, the tax will escalate at the inflation rate only as measured by the consumer price index (CPI). The Carbon Tax Act provides for carbon allowances as mitigation strategies to limit agents’ carbon tax liability by up to 95% for fugitive and process emissions. Although the June 2019 Carbon Tax Act explicitly makes provision for a carbon trading scheme (CTS), the carbon trading regulations thereof were only finalised in December 2020. This points to a delay in the establishment of a carbon trading scheme (CTS). Relatedly, emitters in South Africa are not able to benefit from the 95% reduction in effective carbon tax rate from R120/tCO2e to R6/tCO2e as the Johannesburg Stock Exchange (JSE) has not yet finalized the establishment of the market for trading carbon credits. Whereas most carbon trading schemes have been designed and constructed from the beginning as new tailor-made systems in countries the likes of France, Australia, Romania which treat carbon as a financial product, South Africa intends, on the contrary, to leverage existing trading infrastructure of the Johannesburg Stock Exchange (JSE) and the Clearing and Settlement platforms of Strate, among others, in the interest of the Paris Agreement timelines. Therefore the carbon trading scheme will not be constructed from scratch. At the same time, carbon will be treated as a commodity in order to align with the existing institutional and infrastructural capacity. This explains why the Carbon Tax Act is silent about the involvement of the Financial Sector Conduct Authority (FSCA).For South Africa, there is need to establish they equilibrium stability of the CTS. This is important as South Africa is an innovator in carbon trading and the successful trading of carbon credits on the JSE will lead to imitation by early adopters first, followed by the middle majority thereafter.Keywords: carbon trading scheme (CTS), Johannesburg stock exchange (JSE), carbon tax act 15 of 2019, South Africa
Procedia PDF Downloads 72196 Poultry Manure and Its Derived Biochar as a Soil Amendment for Newly Reclaimed Sandy Soils under Arid and Semi-Arid Conditions
Authors: W. S. Mohamed, A. A. Hammam
Abstract:
Sandy soils under arid and semi-arid conditions are characterized by poor physical and biochemical properties such as low water retention, rapid organic matter decomposition, low nutrients use efficiency, and limited crop productivity. Addition of organic amendments is crucial to develop soil properties and consequently enhance nutrients use efficiency and lessen organic carbon decomposition. Two years field experiments were developed to investigate the feasibility of using poultry manure and its derived biochar integrated with different levels of N fertilizer as a soil amendment for newly reclaimed sandy soils in Western Desert of El-Minia Governorate, Egypt. Results of this research revealed that poultry manure and its derived biochar addition induced pronounced effects on soil moisture content at saturation point, field capacity (FC) and consequently available water. Data showed that application of poultry manure (PM) or PM-derived biochar (PMB) in combination with inorganic N levels had caused significant changes on a range of the investigated sandy soil biochemical properties including pH, EC, mineral N, dissolved organic carbon (DOC), dissolved organic N (DON) and quotient DOC/DON. Overall, the impact of PMB on soil physical properties was detected to be superior than the impact of PM, regardless the inorganic N levels. In addition, the obtained results showed that PM and PM application had the capacity to stimulate vigorous growth, nutritional status, production levels of wheat and sorghum, and to increase soil organic matter content and N uptake and recovery compared to control. By contrast, comparing between PM and PMB at different levels of inorganic N, the obtained results showed higher relative increases in both grain and straw yields of wheat in plots treated with PM than in those treated with PMB. The interesting feature of this research is that the biochar derived from PM increased treated sandy soil organic carbon (SOC) 1.75 times more than soil treated with PM itself at the end of cropping seasons albeit double-applied amount of PM. This was attributed to the higher carbon stability of biochar treated sandy soils increasing soil persistence for carbon decomposition in comparison with PM labile carbon. It could be concluded that organic manures applied to sandy soils under arid and semi-arid conditions are subjected to high decomposition and mineralization rates through crop seasons. Biochar derived from organic wastes considers as a source of stable carbon and could be very hopeful choice for substituting easily decomposable organic manures under arid conditions. Therefore, sustainable agriculture and productivity in newly reclaimed sandy soils desire one high rate addition of biochar derived from organic manures instead of frequent addition of such organic amendments.Keywords: biochar, dissolved organic carbon, N-uptake, poultry, sandy soil
Procedia PDF Downloads 147195 Preparation and Characterization of Poly(L-Lactic Acid)/Oligo(D-Lactic Acid) Grafted Cellulose Composites
Authors: Md. Hafezur Rahaman, Mohd. Maniruzzaman, Md. Shadiqul Islam, Md. Masud Rana
Abstract:
With the growth of environmental awareness, enormous researches are running to develop the next generation materials based on sustainability, eco-competence, and green chemistry to preserve and protect the environment. Due to biodegradability and biocompatibility, poly (L-lactic acid) (PLLA) has a great interest in ecological and medical applications. Also, cellulose is one of the most abundant biodegradable, renewable polymers found in nature. It has several advantages such as low cost, high mechanical strength, biodegradability and so on. Recently, an immense deal of attention has been paid for the scientific and technological development of α-cellulose based composite material. PLLA could be used for grafting of cellulose to improve the compatibility prior to the composite preparation. Here it is quite difficult to form a bond between lower hydrophilic molecules like PLLA and α-cellulose. Dimmers and oligomers can easily be grafted onto the surface of the cellulose by ring opening or polycondensation method due to their low molecular weight. In this research, α-cellulose extracted from jute fiber is grafted with oligo(D-lactic acid) (ODLA) via graft polycondensation reaction in presence of para-toluene sulphonic acid and potassium persulphate in toluene at 130°C for 9 hours under 380 mmHg. Here ODLA is synthesized by ring opening polymerization of D-lactides in the presence of stannous octoate (0.03 wt% of lactide) and D-lactic acids at 140°C for 10 hours. Composites of PLLA with ODLA grafted α-cellulose are prepared by solution mixing and film casting method. Confirmation of grafting was carried out through FTIR spectroscopy and SEM analysis. A strongest carbonyl peak of FTIR spectroscopy at 1728 cm⁻¹ of ODLA grafted α-cellulose confirms the grafting of ODLA onto α-cellulose which is absent in α-cellulose. It is also observed from SEM photographs that there are some white areas (spot) on ODLA grafted α-cellulose as compared to α-cellulose may indicate the grafting of ODLA and consistent with FTIR results. Analysis of the composites is carried out by FTIR, SEM, WAXD and thermal gravimetric analyzer. Most of the FTIR characteristic absorption peak of the composites shifted to higher wave number with increasing peak area may provide a confirmation that PLLA and grafted cellulose have better compatibility in composites via intermolecular hydrogen bonding and this supports previously published results. Grafted α-cellulose distributions in composites are uniform which is observed by SEM analysis. WAXD studied show that only homo-crystalline structures of PLLA present in the composites. Thermal stability of the composites is enhanced with increasing the percentages of ODLA grafted α-cellulose in composites. As a consequence, the resultant composites have a resistance toward the thermal degradation. The effects of length of the grafted chain and biodegradability of the composites will be studied in further research.Keywords: α-cellulose, composite, graft polycondensation, oligo(D-lactic acid), poly(L-lactic acid)
Procedia PDF Downloads 120194 Molecular Dynamics Simulation Study of the Influence of Potassium Salts on the Adsorption and Surface Hydration Inhibition Performance of Hexane, 1,6 - Diamine Clay Mineral Inhibitor onto Sodium Montmorillonite
Authors: Justine Kiiza, Xu Jiafang
Abstract:
The world’s demand for energy is increasing rapidly due to population growth and a reduction in shallow conventional oil and gas reservoirs, resorting to deeper and mostly unconventional reserves like shale oil and gas. Most shale formations contain a large amount of expansive sodium montmorillonite (Na-Mnt), due to high water adsorption, hydration, and when the drilling fluid filtrate enters the formation with high Mnt content, the wellbore wall can be unstable due to hydration and swelling, resulting to shrinkage, sticking, balling, time wasting etc., and well collapse in extreme cases causing complex downhole accidents and high well costs. Recently, polyamines like 1, 6 – hexane diamine (HEDA) have been used as typical drilling fluid shale inhibitors to minimize and/or cab clay mineral swelling and maintain the wellbore stability. However, their application is limited to shallow drilling due to their sensitivity to elevated temperature and pressure. Inorganic potassium salts i.e., KCl, have long been applied for restriction of shale formation hydration expansion in deep wells, but their use is limited due to toxicity. Understanding the adsorption behaviour of HEDA on Na-Mnt surfaces in present of organo-salts, organic K-salts e.g., HCO₂K - main component of organo-salt drilling fluid, is of great significance in explaining the inhibitory performance of polyamine inhibitors. Molecular dynamic simulations (MD) were applied to investigate the influence of HCO₂K and KCl on the adsorption mechanism of HEDA on the Na-Mnt surface. Simulation results showed that adsorption configurations of HEDA are mainly by terminal amine groups with a flat-lying alkyl hydrophobic chain. Its interaction with the clay surface decreased the H-bond number between H₂O-clay and neutralized the negative charge of the Mnt surface, thus weakening the surface hydration ability of Na-Mnt. The introduction of HCO₂K greatly improved inhibition ability, coordination of interlayer ions with H₂O as they were replaced by K+, and H₂O-HCOO- coordination reduced H₂O-Mnt interactions, mobility and transport capability of H₂O molecules were more decreased. While KCl showed little ability and also caused more hydration with time, HCO₂K can be used as an alternative for offshore drilling instead of toxic KCl, with a maximum concentration noted in this study as 1.65 wt%. This study provides a theoretical elucidation for the inhibition mechanism and adsorption characteristics of HEDA inhibitor on Na-Mnt surfaces in the presence of K+-salts and may provide more insight into the evaluation, selection, and molecular design of new clay-swelling high-performance WBDF systems used in oil and gas complex offshore drilling well sections.Keywords: shale, hydration, inhibition, polyamines, organo-salts, simulation
Procedia PDF Downloads 50193 Liquid Illumination: Fabricating Images of Fashion and Architecture
Authors: Sue Hershberger Yoder, Jon Yoder
Abstract:
“The appearance does not hide the essence, it reveals it; it is the essence.”—Jean-Paul Sartre, Being and Nothingness Three decades ago, transarchitect Marcos Novak developed an early form of algorithmic animation he called “liquid architecture.” In that project, digitally floating forms morphed seamlessly in cyberspace without claiming to evolve or improve. Change itself was seen as inevitable. And although some imagistic moments certainly stood out, none was hierarchically privileged over another. That project challenged longstanding assumptions about creativity and artistic genius by posing infinite parametric possibilities as inviting alternatives to traditional notions of stability, originality, and evolution. Through ephemeral processes of printing, milling, and projecting, the exhibition “Liquid Illumination” destabilizes the solid foundations of fashion and architecture. The installation is neither worn nor built in the conventional sense, but—like the sensual art forms of fashion and architecture—it is still radically embodied through the logics and techniques of design. Appearances are everything. Surface pattern and color are no longer understood as minor afterthoughts or vapid carriers of dubious content. Here, they become essential but ever-changing aspects of precisely fabricated images. Fourteen silk “colorways” (a term from the fashion industry) are framed selections from ongoing experiments with intricate pattern and complex color configurations. Whether these images are printed on fabric, milled in foam, or illuminated through projection, they explore and celebrate the untapped potentials of the surficial and superficial. Some components of individual prints appear to float in front of others through stereoscopic superimpositions; some figures appear to melt into others due to subtle changes in hue without corresponding changes in value; and some layers appear to vibrate via moiré effects that emerge from unexpected pattern and color combinations. The liturgical atmosphere of Liquid Illumination is intended to acknowledge that, like the simultaneously sacred and superficial qualities of rose windows and illuminated manuscripts, artistic and religious ideologies are also always malleable. The intellectual provocation of this paper pushes the boundaries of current thinking concerning viable applications for fashion print designs and architectural images—challenging traditional boundaries between fine art and design. The opportunistic installation of digital printing, CNC milling, and video projection mapping in a gallery that is normally reserved for fine art exhibitions raises important questions about cultural/commercial display, mass customization, digital reproduction, and the increasing prominence of surface effects (color, texture, pattern, reflection, saturation, etc.) across a range of artistic practices and design disciplines.Keywords: fashion, print design, architecture, projection mapping, image, fabrication
Procedia PDF Downloads 88192 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 124191 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation
Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son
Abstract:
Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl
Procedia PDF Downloads 380190 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures
Authors: Haytam Kasem
Abstract:
The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model
Procedia PDF Downloads 239189 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks
Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska
Abstract:
Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell
Procedia PDF Downloads 163188 Unscrupulous Intermediaries in International Labour Migration of Nepal
Authors: Anurag Devkota
Abstract:
Foreign employment serves to be the strongest pillar in engendering employment options for a large number of the young Nepali population. Nepali workers are forced to leave the comfort of their homes and are exposed to precarious conditions while on a journey to earn enough money to live better their lives. The exponential rise in foreign labour migration has produced a snowball effect on the economy of the nation. The dramatic variation in the economic development of the state has proved to establish the fact that migration is increasingly significant for livelihood, economic development, political stability, academic discourse and policy planning in Nepal. The foreign employment practice in Nepal largely incorporates the role of individual agents in the entire process of migration. With the fraudulent acts and false promises of these agents, the problems associated with every Nepali migrant worker starts at home. The workers encounter tremendous pre-departure malpractice and exploitation at home by different individual agents during different stages of processing. Although these epidemic and repetitive ill activities of intermediaries are dominant and deeply rooted, the agents have been allowed to walk free in the absence of proper laws to curb their wrongdoings and misconduct. It has been found that the existing regulatory mechanisms have not been utilised to their full efficacy and often fall short in addressing the actual concerns of the workers because of the complex legal and judicial procedures. Structural changes in the judicial setting will help bring perpetrators under the law and victims towards access to justice. Thus, a qualitative improvement of the overall situation of Nepali migrant workers calls for a proper 'regulatory' arrangement vis-à-vis these brokers. Hence, the author aims to carry out a doctrinal study using reports and scholarly articles as a major source of data collection. Various reports published by different non-governmental and governmental organizations working in the field of labour migration will be examined and the research will focus on the inductive and deductive data analysis. Hence, the real challenge of establishing a pro-migrant worker regime in recent times is to bring the agents under the jurisdiction of the court in Nepal. The Gulf Visit Study Report, 2017 prepared and launched by the International Relation and Labour Committee of Legislature-Parliament of Nepal finds that solving the problems at home solves 80 percent of the problems concerning migrant workers in Nepal. Against this backdrop, this research study is intended to determine the ways and measures to curb the role of agents in the foreign employment and labour migration process of Nepal. It will further dig deeper into the regulatory mechanisms of Nepal and map out essential determinant behind the impunity of agents.Keywords: foreign employment, labour migration, human rights, migrant workers
Procedia PDF Downloads 116187 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry
Authors: C. A. Barros, Ana P. Barroso
Abstract:
Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis
Procedia PDF Downloads 214186 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil
Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda
Abstract:
Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification
Procedia PDF Downloads 279185 Gas Metal Arc Welding of Clad Plates API 5L X-60/316L Applying External Magnetic Fields during Welding
Authors: Blanca A. Pichardo, Victor H. Lopez, Melchor Salazar, Rafael Garcia, Alberto Ruiz
Abstract:
Clad pipes in comparison to plain carbon steel pipes offer the oil and gas industry high corrosion resistance, reduction in economic losses due to pipeline failures and maintenance, lower labor risk, prevent pollution and environmental damage due to hydrocarbons spills caused by deteriorated pipelines. In this context, it is paramount to establish reliable welding procedures to join bimetallic plates or pipes. Thus, the aim of this work is to study the microstructure and mechanical behavior of clad plates welded by the gas metal arc welding (GMAW) process. A clad of 316L stainless steel was deposited onto API 5L X-60 plates by overlay welding with the GMAW process. Welding parameters were, 22.5 V, 271 A, heat input 1,25 kJ/mm, shielding gas 98% Ar + 2% O₂, reverse polarity, torch displacement speed 3.6 mm/s, feed rate 120 mm/s, electrode diameter 1.2 mm and application of an electromagnetic field of 3.5 mT. The overlay welds were subjected to macro-structural and microstructural characterization. After manufacturing the clad plates, a single V groove joint was machined with a 60° bevel and 1 mm root face. GMA welding of the bimetallic plates was performed in four passes with ER316L-Si filler for the root pass and an ER70s-6 electrode for the subsequent welding passes. For joining the clad plates, an electromagnetic field was applied with 2 purposes; to improve the microstructural characteristics and to assist the stability of the electric arc during welding in order to avoid magnetic arc blow. The welds were macro and microstructurally characterized and the mechanical properties were also evaluated. Vickers microhardness (100 g load for 10 s) measurements were made across the welded joints at three levels. The first profile, at the 316L stainless steel cladding, was quite even with a value of approximately 230 HV. The second microhardness profile showed high values in the weld metal, ~400 HV, this was due to the formation of a martensitic microstructure by dilution of the first welding pass with the second. The third profile crossed the third and fourth welding passes and an average value of 240 HV was measured. In the tensile tests, yield strength was between 400 to 450 MPa with a tensile strength of ~512 MPa. In the Charpy impact tests, the results were 86 and 96 J for specimens with the notch in the face and in the root of the weld bead, respectively. The results of the mechanical properties were in the range of the API 5L X-60 base material. The overlap welding process used for cladding is not suitable for large components, however, it guarantees a metallurgical bond, unlike the most commonly used processes such as thermal expansion. For welding bimetallic plates, control of the temperature gradients is key to avoid distortions. Besides, the dissimilar nature of the bimetallic plates gives rise to the formation of a martensitic microstructure during welding.Keywords: clad pipe, dissimilar welding, gas metal arc welding, magnetic fields
Procedia PDF Downloads 152184 Assessing Mycotoxin Exposure from Processed Cereal-Based Foods for Children
Authors: Soraia V. M. de Sá, Miguel A. Faria, José O. Fernandes, Sara C. Cunha
Abstract:
Cereals play a vital role in fulfilling the nutritional needs of children, supplying essential nutrients crucial for their growth and development. However, concerns arise due to children's heightened vulnerability due to their unique physiology, specific dietary requirements, and relatively higher intake in relation to their body weight. This vulnerability exposes them to harmful food contaminants, particularly mycotoxins, prevalent in cereals. Because of the thermal stability of mycotoxins, conventional industrial food processing often falls short of eliminating them. Children, especially those aged 4 months to 12 years, frequently encounter mycotoxins through the consumption of specialized food products, such as instant foods, breakfast cereals, bars, cookie snacks, fruit puree, and various dairy items. A close monitoring of this demographic group's exposure to mycotoxins is essential, as toxins ingestion may weaken children’s immune systems, reduce their resistance to infectious diseases, and potentially lead to cognitive impairments. The severe toxicity of mycotoxins, some of which are classified as carcinogenic, has spurred the establishment and ongoing revision of legislative limits on mycotoxin levels in food and feed globally. While EU Commission Regulation 1881/2006 addresses well-known mycotoxins in processed cereal-based foods and infant foods, the absence of regulations specifically addressing emerging mycotoxins underscores a glaring gap in the regulatory framework, necessitating immediate attention. Emerging mycotoxins have gained mounting scrutiny in recent years due to their pervasive presence in various foodstuffs, notably cereals and cereal-based products. Alarmingly, exposure to multiple mycotoxins is hypothesized to exhibit higher toxicity than isolated effects, raising particular concerns for products primarily aimed at children. This study scrutinizes the presence of 22 mycotoxins of the diverse range of chemical classes in 148 processed cereal-based foods, including 39 breakfast cereals, 25 infant formulas, 27 snacks, 25 cereal bars, and 32 cookies commercially available in Portugal. The analytical approach employed a modified QuEChERS procedure followed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Given the paucity of information on the risk assessment of children to multiple mycotoxins in cereal and cereal-based products consumed by children of Portugal pioneers the evaluation of this critical aspect. Overall, aflatoxin B1 (AFB1) and aflatoxin G2 (AFG2) emerged as the most prevalent regulated mycotoxins, while enniatin B (ENNB) and sterigmatocystin (STG) were the most frequently detected emerging mycotoxins.Keywords: cereal-based products, children´s nutrition, food safety, UPLC-MS/MS analysis
Procedia PDF Downloads 72183 A Reusable Foundation Solution for Onshore Windmills
Authors: Wael Mohamed, Per-Erik Austrell, Ola Dahlblom
Abstract:
Wind farms repowering is a significant topic nowadays. Wind farms repowering means the complete dismantling of the existing turbine, tower and foundation at an existing site and replacing these units with taller and larger units. Modern wind turbines are designed to withstand approximately for 20~25 years. However, a very long design life of 100 years or more can be expected for high-quality concrete foundations. Based on that there are significant economic and environmental benefits of replacing the out-of-date wind turbine with a new turbine of better power generation capacity and reuse the foundation. The big difference in lifetime shows a potential for new foundation solution to allow wind farms to be updated with taller and larger units in order to increase the energy production. This also means a significant change in the design loads on the foundations. Therefore, the new foundation solution should be able to handle the additional overturning loads. A raft surrounded by an active stabilisation system is proposed in this study. The concept of an active stabilisation system is a novel idea using a movable load to stabilise against the overturning moment. The active stabilisation system consists of a water tank being divided into eight compartments. The system uses the water as a movable load by pumping it into two compartments to stabilise against the overturning moment. The position of the water will rely on the wind direction and a water movement system depending on a number of electric motors and pipes with electric valves is used. One of the advantages of this active foundation solution is that some cost-efficient adjustment could be done to make this foundation able to support larger and taller units. After the end of the first turbine lifetime, an option is presented here to reuse this foundation and make it able to support taller and larger units. This option is considered using extra water volume to fill four compartments instead of two compartments. This extra water volume will increase the stability moment by 41% compared to using water in two compartments. The geotechnical performance of the new foundation solution is investigated using two existing weak soil profiles in Egypt and Sweden. A comparative study of the new solution and a piled raft with long friction piles is performed using finite element simulations. The results show that using a raft surrounded by an active stabilisation system decreases the tilting compared to a piled raft with friction piles. Moreover, it is found that using a raft surrounded by an active stabilisation system decreases the foundation costs compared to a piled raft with friction piles. In term of the environmental impact, it is found that the new foundation has a beneficial impact on the CO2 emissions. It saves roughly from 296.1 tonnes-CO2 to 518.21 tonnes-CO2 from the manufacture of concrete if the new foundation solution is used for another turbine-lifetime.Keywords: active stabilisation system, CO2 emissions, FE analysis, reusable, weak soils
Procedia PDF Downloads 217182 Development and Modelling of Cellulose Nano-Crystal from Agricultural Wastes for Adsorptive Removal of Pharmaceuticals in Wastewater
Authors: Abubakar Muhammad Hammari, Usman Dadum Hamza, Maryam Ibrahim, Kabir Garba, Idris Muhammad Misau, .
Abstract:
Pharmaceuticals are increasingly present in water systems, posing threats to ecosystems and human health. The effective treatment of pharmaceutical wastewater presents a significant challenge due to the complex and diverse organic and inorganic contaminants it contains. Conventional treatment methods often struggle to completely remove these pollutants due to their stability and water solubility, leading to environmental concerns and potential health risks. This research proposes the use of cellulose nanocrystals (CNCs) derived from agricultural waste as efficient and sustainable adsorbents for pharmaceutical wastewater treatment. CNCs offer high surface area, biodegradability, and low cost compared to existing options. This study evaluates the production, characterization, adsorption properties, and reusability of cellulose nanocrystals (CNCs) derived from waste paper (CNC-WP), rice husk (CNC-RH), and groundnut shell (CNC-GS). The percentage yield of CNCs was highest from wastepaper at 50.67%, followed by groundnut shell at 33.40% and rice husk at 26.46%. X-ray diffraction (XRD) confirmed the cellulose crystalline structure across all samples while scanning electron microscopy (SEM) revealed a needle-like morphology with size distribution variations. Energy-dispersive X-ray spectroscopy (EDX) identified carbon and oxygen as the primary elements, with minor residual inorganic materials varying by source. BET analysis indicated high surface areas for all CNCs, with CNC-RH exhibiting the highest value (464.592 m²/g), suggesting a more porous structure. The pore sizes of all samples fell within the meso-pore range (2.108 nm to 2.153 nm). Adsorption studies focused on metronidazole (MNZ) removal using CNC-WP. Isotherm models, including Langmuir and Sips, described the equilibrium between MNZ concentration and adsorption onto CNC-WP, showing the best fit with R² values exceeding 0.95. The adsorption process was favourable, with monolayer coverage and potential binding energy heterogeneity. Kinetic modelling identified the pseudo-second-order model as the best fit (R² = 1, SSE = 5.00 x 10-₇), indicating chemisorption as the predominant mechanism. Thermodynamic analysis revealed negative ΔG values at all temperatures, indicating spontaneous adsorption, with more favourable adsorption at higher temperatures. The adsorption process was exothermic, as indicated by negative ΔH values. Reusability studies demonstrated that CNC-WP retained high MNZ removal efficiency, with a modest decrease from 99.59% to 89.11% over ten regeneration cycles. This study highlights the efficiency of wastepaper as a raw material for CNC production and its potential for effective and reusable MNZ adsorption.Keywords: cellulose nanocrystals (CNCs), adsorption efficiency, metronidazole removal, reusability
Procedia PDF Downloads 5181 Polish Adversarial Trial: Analysing the Fairness of New Model of Appeal Proceedings in the Context of Delivered Research
Authors: Cezary Kulesza, Katarzyna Lapinska
Abstract:
Regarding the nature of the notion of fair trial, one must see the source of the fair trial principle in the following acts of international law: art. 6 of the ECHR of 1950 and art.14 the International Covenant on Civil and Political Rights of 1966, as well as in art. 45 of the Polish Constitution. However, the problem is that the above-mentioned acts essentially apply the principle of a fair trial to the main hearing and not to appeal proceedings. Therefore, the main thesis of the work is to answer the question whether the Polish model of appeal proceedings is fair. The paper presents the problem of fair appeal proceedings in Poland in comparative perspective. Thus, the authors discuss the basic features of English, German and Russian appeal systems. The matter is also analysed in the context of the last reforms of Polish criminal procedure, because since 2013 Polish parliament has significantly changed criminal procedure almost three times: by the Act of 27th September, 2013, the Act of 20th February, 2015 which came into effect on 1st July, 2015 and the Act of 11th March, 2016. The most astonishing is that these three amendments have been varying from each other – changing Polish criminal procedure to more adversarial one and then rejecting all measures just involved in previous acts. Additional intent of the Polish legislator was amending the forms of plea bargaining: conviction of the defendant without trial or voluntary submission to a penalty, which were supposed to become tools allowing accelerating the criminal process and, at the same time, implementing the principle of speedy procedure. The next part of the paper will discuss the matter, how the changes of plea bargaining and the main trial influenced the appellate procedure in Poland. The authors deal with the right to appeal against judgments issued in negotiated case-ending settlements in the light of Art. 2 of Protocol No. 7 to the ECHR and the Polish Constitution. The last part of the presentation will focus on the basic changes in the appeals against judgments issued after the main trial. This part of the paper also presents the results of examination of court files held in the Polish Appeal Courts in Białystok, Łódź and Warsaw. From these considerations it is concluded that the Polish CCP of 1997 in ordinary proceedings basically meets both standards: the standard adopted in Protocol No. 7 of the Convention and the Polish constitutional standard. But the examination of case files shows in particular the following phenomena: low effectiveness of appeals and growing stability of the challenged judgments of district courts, extensive duration of appeal proceedings and narrow scope of evidence proceedings before the appellate courts. On the other hand, limitations of the right to appeal against the judgments issued in consensual modes of criminal proceedings justify the fear that such final judgments may violate the principle of criminal accurate response or the principle of material truth.Keywords: adversarial trial, appeal, ECHR, England, evidence, fair trial, Germany, Polish criminal procedure, reform, Russia
Procedia PDF Downloads 147180 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin
Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec
Abstract:
Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles
Procedia PDF Downloads 125179 Comparison of a Capacitive Sensor Functionalized with Natural or Synthetic Receptors Selective towards Benzo(a)Pyrene
Authors: Natalia V. Beloglazova, Pieterjan Lenain, Martin Hedstrom, Dietmar Knopp, Sarah De Saeger
Abstract:
In recent years polycyclic aromatic hydrocarbons (PAHs), which represent a hazard to humans and entire ecosystem, have been receiving an increased interest due to their mutagenic, carcinogenic and endocrine disrupting properties. They are formed in all incomplete combustion processes of organic matter and, as a consequence, ubiquitous in the environment. Benzo(a)pyrene (BaP) is on the priority list published by the Environmental Agency (US EPA) as the first PAH to be identified as a carcinogen and has often been used as a marker for PAHs contamination in general. It can be found in different types of water samples, therefore, the European Commission set up a limit value of 10 ng L–1 (10 ppt) for BAP in water intended for human consumption. Generally, different chromatographic techniques are used for PAHs determination, but these assays require pre-concentration of analyte, create large amounts of solvent waste, and are relatively time consuming and difficult to perform on-site. An alternative robust, stand-alone, and preferably cheap solution is needed. For example, a sensing unit which can be submerged in a river to monitor and continuously sample BaP. An affinity sensor based on capacitive transduction was developed. Natural antibodies or their synthetic analogues can be used as ligands. Ideally the sensor should operate independently over a longer period of time, e.g. several weeks or months, therefore the use of molecularly imprinted polymers (MIPs) was discussed. MIPs are synthetic antibodies which are selective for a chosen target molecule. Their robustness allows application in environments for which biological recognition elements are unsuitable or denature. They can be reused multiple times, which is essential to meet the stand-alone requirement. BaP is a highly lipophilic compound and does not contain any functional groups in its structure, thus excluding non-covalent imprinting methods based on ionic interactions. Instead, the MIPs syntheses were based on non-covalent hydrophobic and π-π interactions. Different polymerization strategies were compared and the best results were demonstrated by the MIPs produced using electropolymerization. 4-vinylpyridin (VP) and divinylbenzene (DVB) were used as monomer and cross-linker in the polymerization reaction. The selectivity and recovery of the MIP were compared to a non-imprinted polymer (NIP). Electrodes were functionalized with natural receptor (monoclonal anti-BaP antibody) and with MIPs selective towards BaP. Different sets of electrodes were evaluated and their properties such as sensitivity, selectivity and linear range were determined and compared. It was found that both receptor can reach the cut-off level comparable to the established ML, and despite the fact that the antibody showed the better cross-reactivity and affinity, MIPs were more convenient receptor due to their ability to regenerate and stability in river till 7 days.Keywords: antibody, benzo(a)pyrene, capacitive sensor, MIPs, river water
Procedia PDF Downloads 304