Search results for: neural progentor cells
1749 Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions
Authors: Senda Trabelsi, Sébastien Poncet, Michel Poirier
Abstract:
Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model.Keywords: ice slurry, propylene-glycol, ethylene-glycol, rheology
Procedia PDF Downloads 2631748 Generating Insights from Data Using a Hybrid Approach
Authors: Allmin Susaiyah, Aki Härmä, Milan Petković
Abstract:
Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.Keywords: data mining, insight mining, natural language generation, pre-trained language models
Procedia PDF Downloads 1201747 Involvement of Multi-Drug Resistance Protein (Mrp) 3 in Resveratrol Protection against Methotrexate-Induced Testicular Damage
Authors: Mohamed A. Morsy, Azza A. K. El-Sheikh, Abdulla Y. Al-Taher
Abstract:
The aim of the present study is to investigate the effect of resveratrol (RES) on methotrexate (MTX)-induced testicular damage. RES (10 mg/kg/day) was given for 8 days orally and MTX (20 mg/kg i.p.) was given at day 4 of experiment, with or without RES in rats. MTX decreased serum testosterone, induced histopathological testicular damage, increased testicular tumor necrosis factor-α level and expression of nuclear factor-κB and cyclooxygenase-2. In MTX/RES group, significant reversal of these parameters was noticed, compared to MTX group. Testicular expression of multidrug resistance protein (Mrp) 3 was three- and five-folds higher in RES- and MTX/RES-treated groups, respectively. In vitro, using prostate cancer cells, each of MTX and RES alone induced cytotoxicity with IC50 0.18 ± 0.08 and 20.5 ± 3.6 µM, respectively. RES also significantly enhanced cytotoxicity of MTX. In conclusion, RES appears to have dual beneficial effect, as it promotes MTX tumor cytotoxicity, while protecting the testes, probably via up-regulation of testicular Mrp3 as a novel mechanism.Keywords: resveratrol, methotrexate, multidrug resistance protein 3, tumor necrosis factor-α, nuclear factor-κB, cyclooxygenase-2
Procedia PDF Downloads 4541746 Theoretical Study on the Nonlinear Optical Responses of Peptide Bonds Created between Alanine and Some Unnatural Amino Acids
Authors: S. N. Derrar, M. Sekkal-Rahal
Abstract:
The Nonlinear optics (NLO) technique is widely used in the field of biological imaging. In fact, grafting biological entities with a high NLO response on tissues and cells enhances the NLO responses of these latter, and ameliorates, consequently, their biological imaging quality. In this optics, we carried out a theoretical study, in the aim of analyzing the peptide bonds created between alanine amino acid and both unnatural amino acids: L-Dopa and Azatryptophan, respectively. Ramachandran plots have been performed for these systems, and their structural parameters have been analyzed. The NLO responses of these peptides have been reported by calculating the first hyperpolarizability values of all the minima found on the plots. The use of such unnatural amino acids as endogenous probing molecules has been investigated through this study. The Density Functional Theory (DFT) has been used for structural properties, while the Second-order Møller-Plesset Perturbation Theory (MP2) has been employed for the NLO calculations.Keywords: biological imaging, hyperpolarizability, nonlinear optics, probing molecule
Procedia PDF Downloads 3791745 Application of Support Vector Machines in Forecasting Non-Residential
Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut
Abstract:
This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.Keywords: forecasting, non-residential, construction, support vector machines
Procedia PDF Downloads 4341744 Crystallography Trials of Escherichia coli Nitrate Transporter, NarU
Authors: Naureen Akhtar
Abstract:
The stability of the protein in detergent-containing solution is the key for its successful crystallisation. Fluorescence-detection size-exclusion chromatography (FSEC) is a potential approach for screening monodispersity as well as the stability of protein in a detergent-containing-solution. In this present study, covalently linked Green Fluorescent Protein (GFP) to bacterial nitrate transporter, NarU from Escherichia coli was studied for pre-crystallisation trials by FSEC. Immobilised metal ion affinity chromatography (IMAC) and gel filtration were employed for their purification. The main objectives of this study were over-expression, detergent screening and crystallisation of nitrate transporter proteins. This study could not produce enough proteins that could realistically be taken forward to achieve the objectives set for this particular research. In future work, different combinations of variables like vectors, tags, creation of mutant proteins, host cells, position of GFP (N- or C-terminal) and/or membrane proteins would be tried to determine the best combination as the principle of technique is still promising.Keywords: transporters, detergents, over-expression, crystallography
Procedia PDF Downloads 4771743 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 1741742 Barrier Lowering in Contacts between Graphene and Semiconductor Materials
Authors: Zhipeng Dong, Jing Guo
Abstract:
Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided.Keywords: graphene, semiconductor materials, schottky barrier, image charge, contacts
Procedia PDF Downloads 3031741 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network
Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu
Abstract:
The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG
Procedia PDF Downloads 2911740 Difference in the Expression of CIRBP, RBM3 and HSP70 in the Myocardium and Cerebellum after Death by Hypothermi a and Carbon Monoxide Poisoning
Authors: Satoshi Furukawa, Satomu Morita, Lisa Wingenfeld, Katsuji Nishi, Masahito Hitosugi
Abstract:
We studied the expression of hypoxia-related antigens (e.g., cold-inducible antigens and apoptotic antigens) in the myocardium and the cerebellumthat were obtained from individuals after death by carbon monoxide or hypothermia. The immunohistochemistry results revealed that expression of cold-inducible RNA binding protein (CIRBP) and RNA-binding protein 3 (RBM3) may be associated with hpyothermic and the hypoxic conditions. The expression of CIRBP and RBM3 in the myocardium was different from their expression in the cerebellum, especially in the Purkinje cells. The results indicate that agonal duration influences antigen expression. In the hypothermic condition, the myocardium uses more ATP since the force of the excitation-contraction coupling of the myocardium increases by more than 400% when the experimental temperature is reduced from 35°C to 25°C. The results obtained in this study indicate that physicians should pay attention to the myocardium when cooling the patient’s body to protect the brain.Keywords: carbon monoxide death, cerebellum, CIRBP, hypothermic death, myocardium, RBM3
Procedia PDF Downloads 3631739 Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions
Authors: M. Abdel-Hamid, P. Saporito, R. V. Mateiu, A. Osman, E. Romeih, H. Jenssen
Abstract:
Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa.Keywords: camel milk, whey proteins, antibacterial peptide, anti-biofilm
Procedia PDF Downloads 2201738 Effect of Endurance Training on Serum Chemerin Levels and Lipid Profile of Plasma in Obese Women
Authors: A. Moghadasein, M. Ghasemi, S. Fazelifar
Abstract:
Aim: Chemerin is a novel adipokine that play an important role in regulating lipid metabolism and abiogenesis. Chemerin is dependent on autocrine and paracrine signals for the differentiation and maturation of fat cells; it also regulates glucose uptake in fat cells and stimulates lipolysis. It has been reported that in adipocytes, chemerin enhances the insulin-stimulated glucose and causes the phosphorylation of tyrosine in Insulin receptor substrate. According to the studies, Chemerin may increase insulin sensitivity in adipose tissue and is largely associated with Body mass index, triglycerides, and blood pressure in those with normal glucose tolerance. There is limited information available regarding the effect of exercise training on serum chemerin concentrations. The purpose of this study was to investigate the effect of endurance training on serum chemerin levels and lipids of plasma in overweight women. Methodology: This study was a quasi-experimental research with a pre-post test design. After required examination and verification of high pressure by the physician, 22 obese subjects (age: 35.64±5.55 yr, weight: 75.62±9.30 kg, body mass index: 32.4±1.6 kg/m2) were randomly assigned to aerobic training (n= 12) and control (n= 12) groups. Participants completed a questionnaire indicating the lack of sports history during the past six months, the lack of anti-hypertension drugs use, hormone therapy, cardiovascular problems, and complete stoppage of menstrual cycle. Aerobic training was performed 3 times weekly for 8 weeks. Resting levels of chemerin plasma, metabolic parameters were measured prior to and after the intervention. The control group did not participate in any training program. In this study, ethical considerations included the complete description of the objectives to the study participants, ensuring the confidentiality of their information. Kolmogorov-Smirnov and Levin test were used for determining the normal distribution of data and homogeneity of variances, respectively. Analyze of variance with repeated measure were used to investigate the changes in the intra-group and the differences in inter-group of variables. Statistical operations were performed using SPSS 16 and the significance level of the tests was considered at P < 0.05. Results: After an 8 week aerobic training, levels of chemerin plasma were significantly decreased in aerobic trained group when compared with their control groups (p < 0.05).Concurrently, levels of HDL-c were significantly decreased (p < 0.05) whereas, levels of cholesterol, TG and LDL-c, showed no significant changes (p > 0.05). No significant correlations between chemerin levels and weight loss were observed in subjects with overweight women. Conclusion: The present study demonstrated, 8 weeks aerobic training, reduced serum chemerin concentrations in overweight women. Whereas, aerobic training exercise programmers affected the lipid profile response of obese subjects differently. However further research is warranted in order to unravel the molecular mechanism for the range of responses and the role of serum chemerin.Keywords: chemerin, aerobic training, lipid profile, obese women
Procedia PDF Downloads 4891737 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach
Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak
Abstract:
Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity
Procedia PDF Downloads 1611736 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 971735 Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density
Authors: S. Lahijanian, M. Mobli, B. Baninasab, N. Etemadi
Abstract:
Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures.Keywords: chlorophyll fluorescence, cold stress, ionic leakage, proline, stomatal density
Procedia PDF Downloads 2651734 Effect of Methylammonium Lead Iodide Layer Thickness on Performance of Perovskite Solar Cell
Authors: Chadel Meriem, Bensmaine Souhila, Chadel Asma, Bouchikhi Chaima
Abstract:
The Methylammonium Lead Iodide CH3NH3PbI3 is used in solar cell as an absorber layer since 2009. The efficiencies of these technologies have increased from 3.8% in 2009 to 29.15% in 2019. So, these technologies Methylammonium Lead Iodide is promising for the development of high-performance photovoltaic applications. Due to the high cost of the experimental of the solar cells, researchers have turned to other methods like numerical simulation. In this work, we evaluate and simulate the performance of a CH₃NH₃PbI₃ lead-based perovskite solar cell when the amount of materials of absorber layer is reduced. We show that the reducing of thickness the absorber layer influent on performance of the solar cell. For this study, the one-dimensional simulation program, SCAPS-1D, is used to investigate and analyze the performance of the perovskite solar cell. After optimization, maximum conversion efficiency was achieved with 300 nm in absorber layer.Keywords: methylammonium lead Iodide, perovskite solar cell, caracteristic J-V, effeciency
Procedia PDF Downloads 701733 Cell Response on the Ti-15Mo Alloy Surface after Nanotubes Growth
Authors: Ana Paula Rosifini Alves Claro, André Luiz Reis Rangel, Nathan Trujillo, Ketul C. Popat
Abstract:
In the present work, in vitro cytotoxicity was evaluated after nanotubes growth on Ti15Mo alloy surface. TiO2 nanotubes were obtained by anodizing technique at room temperature in an electrolyte with 0.25 %NH4F and glycerol at a constant anodic potential of 20 V for 24 hours. The morphology of nanotubes was observed by field emission scanning electron microscopy (FE-SEM; XL 30 FEG, Philips). Crystal structure was analyzed by wide-angle X-ray diffraction. A cell culture model using human fibroblast-like cells was used to study the effect of TiO2 nanotubes growth on the cytotoxicity of the Ti15Mo alloy for 1, 4 and 7 days culture period. The MTT assay was used to evaluate cell viability and cell adhesion was evaluated by scanning electron microscopy. Results show that Ti15Mo alloy with TiO2 nanotubes on surface is nontoxic and exhibit good interaction with surface.Keywords: titanium alloys, TiO2 nanotubes, cell growth, Ti-15Mo alloy
Procedia PDF Downloads 4911732 Triggering Apoptosis to Uproot Breast Cancer: HPLC-MS/MS Profiling, in-vitro and in-silico Fascinating Results of Polyphenolics in Pomegranate Rind Extract
Authors: Alaa M. Badr Eldin, Mayar M. Shahen, Mohammed S. Sedeek, Marwa I. Ezzat, Sawsan M. ElSonbaty, Muhammed A. Saad, Manal S. Afifi, Omar M. Sabry
Abstract:
Using HPLC-MS/MS technique, 133 polyphenolic compounds were identified in the methanol extract of pomegranate rind (Punica granatum L.). In-vitro cytotoxic activity against breast cancer cell line MCF-7 was investigated, with an IC50 of 54 ug/ml. In-silico molecular docking using ellagic acid, gallagic acid, and Punicalagin as model compounds identified in pomegranate rind extract confirmed the intriguing anti-estrogenic action of the key polyphenolic components in pomegranate rind extract. Surprisingly, taxol showed low activity compared to pomegranate compounds as ERα antagonist and ERβ agonist. Pomegranate rind extract enhanced apoptosis of breast cancer cells through upregulation of the caspase-3 expression and downregulation of NF-κB transcription factor.Keywords: HPLC-MS/MS, pomegranate rind, cytotoxicity, MCF-7, ER, caspase-3, NF-kB
Procedia PDF Downloads 1161731 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides
Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney
Abstract:
Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis
Procedia PDF Downloads 3261730 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm
Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu
Abstract:
Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model
Procedia PDF Downloads 2021729 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 731728 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 5021727 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents
Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera
Abstract:
The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast
Procedia PDF Downloads 2561726 Biocompatible Hydrogel Materials Containing Cytostatics for Cancer Treatment
Authors: S. Kudlacik-Kramarczyk, M. Kedzierska, B. Tyliszczak
Abstract:
Recently, the continuous development of medicine and related sciences has been observed. Particular emphasis is directed on the development of biomaterials, i.e., non-toxic, biocompatible and biodegradable materials that may improve the effectiveness of treatment as well as the comfort of patients. This is particularly important in the case of cancer treatment. Currently, there are many methods of cancer treatment based primarily on chemotherapy and the surgical removal of the tumor, but it is worth noting that these therapies also cause many side effects. Among women, the most common cancer is breast cancer. It may be completely cured, but the consequence of treatment is partial or complete breast mastectomy and radiation therapy, which results in severe skin burns. The skin of the patient after radiation therapy is very burned, and therefore requires intensive care and high frequency of dressing changes. The traditional dressing adheres to the burn wounds and does not absorb adequate amount of exudate from injuries and the patient is forced to change the dressing every 2 hours. Therefore, the main purpose was to develop an innovative combination of dressing material with drug carriers that may be used in anti-cancer therapy. The innovation of this solution is the combination of these two products into one system, i.e., a transdermal system with the possibility of a controlled release of the drug- cytostatic. Besides, the possibility of modifying the hydrogel matrix with aloe vera juice provides this material with new features favorable from the point of view of healing processes of burn wounds resulting from the radiation therapy. In this study, hydrogel materials containing protein spheres with the active substance have been obtained as a result of photopolymerization process. The reaction mixture consisting of the protein (albumin) spheres incorporated with cytostatic, chitosan, adequate crosslinking agent and photoinitiator has been subjected to the UV radiation for 2 minutes. Prepared materials have been subjected to the numerous studies including the analysis of cytotoxicity using murine fibroblasts L929. Analysis was conducted based on the mitochondrial activity test (MTT reduction assay) which involves the determining the number of cells characterized by proper metabolism. Hydrogel materials obtained using different amount of crosslinking agents have been subjected to the cytotoxicity analysis. According to the standards, tested material is defined as cytotoxic when the viability of cells after 24 h incubation with this material is lower than 70%. In the research, hydrogel polymer materials containing protein spheres incorporated with the active substance, i.e. a cytostatic, have been developed. Such a dressing may support the treatment of cancer due to the content of the anti-cancer drug - cytostatic, and may also provide a soothing effect on the healing of the burn wounds resulted from the radiation therapy due to the content of aloe vera juice in the hydrogel matrix. Based on the conducted cytotoxicity studies, it may be concluded that the obtained materials do not adversely affect the tested cell lines, therefore they can be subjected to more advanced analyzes.Keywords: hydrogel polymers, cytostatics, drug carriers, cytotoxicity
Procedia PDF Downloads 1321725 Sublethal Effects of Industrial Effluents on Fish Fingerlings (Clarias gariepinus) from Ologe Lagoon Environs, Lagos, Nigeria
Authors: Akintade O. Adeboyejo, Edwin O. Clarke, Oluwatoyin Aderinola
Abstract:
The present study is on the sub-lethal toxicity of industrial effluents (IE) from the environment of Ologe Lagoon, Lagos, Nigeria on the African catfish fingerlings Clarias gariepinus. The fish were cultured in varying concentrations of industrial effluents: 0% (control), 5%, 15%, 25%, and 35%. Trials were carried out in triplicates for twelve (12) weeks. The culture system was a static renewable bioassay and was carried out in the fisheries laboratory of the Lagos State University, Ojo-Lagos. Weekly physico-chemical parameters: Temperature (0C), pH, Conductivity (ppm) and Dissolved Oxygen (DO in mg/l) were measured in each treatment tank. Length (cm) and weight (g) data were obtained weekly and used to calculate various growth parameters: mean weight gain (MWG), percentage weight gain (PWG), daily weight gain (DWG), specific growth rate (SGR) and survival. Haematological (Packed Cell Volume (PCV), Red blood cells (RBC), White Blood Cell (WBC), Neutrophil and Lymphocytes etc) and histological alterations were measured after 12 weeks. The physico-chemical parameters showed that the pH ranged from 7.82±0.25–8.07±0.02. DO range from 1.92±0.66-4.43±1.24 mg/l. The conductivity values increased with increase in concentration of I.E. While the temperature remained stable with mean value range between 26.08±2.14–26.38±2.28. The DO showed significant differences at P<0.05. There was progressive increase in length and weight of fish during the culture period. The fish placed in the control had highest increase in both weight and length while fish in 35% had the least. MWG ranged from 16.59–35.96, DWG is from 0.3–0.48, SGR varied from 1.0–1.86 and survival was 100%. Haematological results showed that C. gariepinus had PCV ranging from 13.0±1.7-27.7±0.6, RBC ranged from 4.7±0.6–9.1±0.1, and Neutrophil ranged from 26.7±4.6–61.0±1.0 amongst others. The highest values of these parameters were obtained in the control and lowest at 35%. While the reverse effects were observed for WBC and lymphocytes. This study has shown that effluents may affect the health status of the test organism and impair vital processes if exposure continues for a long period of time. The histological examination revealed several lesions as expressed by the gills and livers. The histopathology of the gills in the control tanks had normal tissues with no visible lesion, but at higher concentrations, there were: lifting of epithelium, swollen lamellae and gill arch infiltration, necrosis and gill arch destruction. While in the liver: control (0%) show normal liver cells, at higher toxic level, there were: vacoulation, destruction of the hepatic parenchyma, tissue becoming eosinophilic (i.e. tending towards Carcinogenicity) and severe disruption of the hepatic cord architecture. The study has shown that industrial effluents from the study area may affect fish health status and impair vital processes if exposure continues for a long period of time even at lower concentrations (Sublethal).Keywords: sublethal toxicity, industrial effluents, clarias gariepinus, ologe lagoon
Procedia PDF Downloads 6101724 How OXA GENE Expression is Implicated in the Treatment Resistance and Poor Prognosis in Glioblastoma
Authors: Naomi Seidu, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan
Abstract:
The current poor prognosis of glioblastoma has called for the need for an improvement in treatment methods in order to improve its survival rate. Despite the different interventions currently available for this tumor, the average survival is still only a few months. (12-15). The aim is to create a more favorable prognosis and have a reduction in the resistance to treatment currently being experienced, even with surgical interventions and chemotherapy. From the available literature, there is a relationship between the presence of HOX genes (Homeobox genes) and glioblastoma, which could be attributable to the increasing treatment resistance. Hence silencing these genes can be a key to improving survival rates of glioblastoma. A series of studies have highlighted the role that HOX genes play in glioblastoma prognosis. Promotion of human glioblastoma initiation, aggressiveness, and resistance to Temozolomide has been associated with HOXA9. The role of HOX gene expression in cancer stem cells should be studied as it could provide a means of designing CSC-targeted therapies, as CSCs play a part in the initiation and progression of solid tumors.Keywords: GBM- glioblastoma, HOXA gene- homeobox genes cluster, signaling pathways, temozolomide
Procedia PDF Downloads 1051723 Feasibility Study of Air Conditioners Operated by Solar Energy in Saudi Arabia
Authors: Eman Simbawa, Budur Alasmri, Hanan Munahir, Hanin Munahir
Abstract:
Solar energy has become currently the subject of attention around the world and is undergoing many researches and studies. Using solar energy, which is a renewable energy, is aligned with the Saudi Vision 2030. People are more aware of it and are starting to use it more for environmental and economical reasons. A questionnaire was conducted in this paper to measure the awareness of people in Saudi Arabia regarding solar energy and their attitude towards it. Then, two kinds of air conditioners (one powered by electricity only and one powered by solar panels and electricity) are compared in terms of their cost over a period of 20 years. This will help the users to decide which kind of device to use depending on its cost. The result shows that as the electricity tariffs in Saudi Arabia increases, depending on the sector, the solar air conditioner is cheaper. In fact, if the tariff in the future increases to reach 50 Halalah/kWh, the solar air conditioner is more economical. This will influence users to buy more solar powered devices, and it will decrease the consumption of electricity. Therefore, the dependence on oil will decrease.Keywords: Airconditioner, solar energy, photovoltaic cells, present value
Procedia PDF Downloads 1621722 The Findings EEG-LORETA about Epilepsy
Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi
Abstract:
Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides a very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations، Intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review The findings EEG- LORETA about epilepsy.Keywords: epilepsy, EEG, EEG-LORETA
Procedia PDF Downloads 5451721 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys
Authors: Hexiong Liu
Abstract:
Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy
Procedia PDF Downloads 821720 Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency
Authors: Abdulrahman M. Homadi
Abstract:
As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 o. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels.Keywords: solar panels, elevation, wind direction, efficiency
Procedia PDF Downloads 298