Search results for: local interconnect network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9834

Search results for: local interconnect network

6654 Hui as Religious over Ethnic Identity: A Case Study of Muslim Ethnic Interaction in Central Northwest China

Authors: Hugh Battye

Abstract:

In recent years, Muslim identity in China has strengthened against the backdrop of a worldwide Islamic revival. One discussion arising from this has been focused around the Hui, an ethnicity created by the Communist government in the 1950s covering the Chinese speaking 'Sino-Muslims' as opposed to those with their own language. While the term Hui in Chinese has traditionally meant 'Muslim', the strengthening of Hui identity in recent decades has led to a debate among scholars as to whether this identity is primarily ethnically or religiously driven. This article looks at the case of a mixed ethnic community in rural Gansu Province, Central Northwest China, which not only contains the official Hui ethnicity but also members of the smaller Muslim Salar and Bonan minority groups. In analyzing the close interaction between these groups, the paper will argue that, despite government attempts to promote the Hui as an ethnicity within its modern ethnic paradigm, in rural Gansu and the general region, Hui is still essentially seen as a religious identity. Having provided an overview of the historical evolution of the Hui ethnonym in China and presented the views of some of the important scholars involved in the discussion, the paper will then offer its findings based on participant observation and survey work in Gansu. The results will show that, firstly, for the local Muslims, religious identity clearly dominates ethnic identity. On the ground, the term Hui continues to be used as a catch-all term for Muslims, whether they belong to the official 'Hui' nationality or not, and against this backdrop, the ethnic importance of being 'Hui', 'Bonan' or 'Salar' within the Muslim community itself is by contrast minimal. Secondly, however, this local Muslim solidarity is not at present pointing towards some kind of national pan-ethnic Islamic movement that could potentially set itself up in opposition to the Chinese government; rather it is better seen as part of an ongoing negotiation by local Muslims with the state in the context of its ascribed ethnic categories. The findings of this study in a region where many of the Muslims are more conservative in their beliefs is not necessarily replicated in other contexts, such as in urban areas and in eastern and southern China, and hence reification of the term Hui as one idea extending all across China should be avoided, whether in terms of a united religious 'ummah' or of a real or imagined 'ethnic group.' Rather, this localized case study seeks to demonstrate ways in which Muslims of rural Central Northwest China are 'being Hui,' as a contribution to the broader discussion on what it means to be Muslim and Chinese in the reform era.

Keywords: China, ethnicity, Hui, identity, Muslims

Procedia PDF Downloads 128
6653 Overcoming Barriers to Improve HIV Education and Public Health Outcomes in the Democratic Republic of Congo

Authors: Danielle A. Walker, Kyle L. Johnson, Tara B. Thomas, Sandor Dorgo, Jacen S. Moore

Abstract:

Approximately 37 million people worldwide are infected with the Human Immunodeficiency Virus (HIV), with the majority located in sub-Saharan Africa. The relationship existing between HIV incidence and socioeconomic inequity confirms the critical need for programs promoting HIV education, prevention and treatment access. This literature review analyzed 36 sources with a specific focus on the Democratic Republic of Congo, whose critically low socioeconomic status and education rate have resulted in a drastically high HIV rates. Relationships between HIV testing and treatment and barriers to care were explored. Cultural and religious considerations were found to be vital when creating and implementing HIV education and testing programs. Partnerships encouraging active support from community-based spiritual leaders to implement HIV educational programs were also key mechanisms to reach communities and individuals. Gender roles were highlighted as a key component for implementation of effective community trust-building and successful HIV education programs. The efficacy of added support by hospitals and clinics in rural areas to facilitate access to HIV testing and care for people living with HIV/AIDS (PLWHA) was discussed. This review highlighted the need for healthcare providers to provide a network of continued education for PLWHA in clinical settings during disclosure and throughout the course of treatment to increase retention in care and promote medication adherence for viral load suppression. Implementation of culturally sensitive models that rely on community familiarity with HIV educators such as ‘train-the-trainer’ were also proposed as efficacious tools for educating rural communities about HIV. Further research is needed to promote community partnerships for HIV education, understand the cultural context of gender roles as barriers to care, and empower local health care providers to be successful within the HIV Continuum of Care.

Keywords: cultural sensitivity, Democratic Republic of the Congo, education, HIV

Procedia PDF Downloads 275
6652 Multi Campus Universities: Exploring Structures and Administrative Relationships:; A Comparative Study of Eight Universities in UK and Five in Pakistan

Authors: Laila Akbarali

Abstract:

In the small scale study, an attempt is made to explore the structure and administrative relationships adopted by Multi Campus Universities [MCU] in UK and Pakistan and how these universities deal with some selected issues with respect to student related functions. For this study, literature on multi-site, divisionalized and other complex organizations related to business and Industry was consulted and an attempt was made to empirically test the normative models in the literature with respect to centralized , deconcentrated and decentralized structures. A questionnaire was used to gather data for this study. Purposive sampling was used. The findings of this study are somewhat different for UK and Pakistan. Contrary to a substantial body of organization theory, the results show that deconcentrated and decentralized universities in the UK are prone to delays in decision making and tend not to sensitive to local needs. In Pakistan on the other hand, deconcentrated and decentralized universities are more sensitive to local needs and there are less delays in decision making. The findings suggest that distance and reporting relationships could perhaps be responsible for the contradiction. The results also suggest that there is better coordination when the subsidiary campus sub-registrar reports to the registrar. The findings also highlight, that in both contexts, leadership at the campus level remains an issue. The results suggest that there may be factors other than structure that allow universities to keep their identity intact. The study highlights that MCU are inclined to use Information Technology and develop broad policies within which they allow their campuses to operate.

Keywords: administrative relationships, Multi-Campus, organization structure, registrar

Procedia PDF Downloads 327
6651 Improvements in Double Q-Learning for Anomalous Radiation Source Searching

Authors: Bo-Bin Xiaoa, Chia-Yi Liua

Abstract:

In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.

Keywords: double Q learning, dueling network, NoisyNet, source searching

Procedia PDF Downloads 115
6650 Mechanisms for the Art of Food: Tourism with Thainess and a Multi-Stakeholder Participation Approach

Authors: Jutamas Wisansing, Thanakarn Vongvisitsin, Udom Hongchatikul

Abstract:

Food could be used to open up a dialogue about local heritage. Contributing to the world sustainable consumption mission, this research aims to explore the linkages between agriculture, senses of place and performing arts. Thailand and its destination marketing ‘Discover Thainess’ was selected as a working principle, enabling a case example of how the three elements could be conceptualized. The model offered an integrated institutional arrangement where diverse entities could be formed to design how Thainess (local heritage) could be interpreted and embedded into an art of food. Using case study research approach, three areas (Chiangmai, Samutsongkram and Ban Rai Gong King) representing 3 different scales of tourism development were selected. Based on a theoretical analysis, a working model was formulated. An action research was then designed to experiment how the model could be materialized. Brainstorming elicitation and in-depth interview were employed to reflect on how each element could be integrated. The result of this study offered an innovation on how food tourism could be profoundly interpreted and how tourism development could enhance value creation for agricultural based community. The outcomes of the research present co-creative multi-stakeholder model and the value creation method through the whole supply chain of Thai gastronomy. The findings have been eventually incorporated into ‘gastro-diplomacy’ strategy for Thai tourism.

Keywords: community-based tourism, gastro-diplomacy, gastronomy tourism, sustainable tourism development

Procedia PDF Downloads 310
6649 A Comparative Analysis Of Da’wah Methodology Applied by the Two Variant Factions of Jama’atu Izalatil Bid’ah Wa-Iqamatis Sunnah in Nigeria

Authors: Aminu Alhaji Bala

Abstract:

The Jama’atu Izalatil Bid’ah Wa-Iqamatis Sunnah is a Da’wah organization and reform movement launched in Jos - Nigeria in 1978 as a purely reform movement under the leadership of late Shaykh Ismai’la Idris. The organization started a full fledge preaching sessions at National, State and Local Government levels immediately after its formation. The contributions of this organization to da'wah activities in Nigeria are paramount. The organization conducted its preaching under the council of preaching with the help of the executives, elders and patrons of the movement. Teaching and preaching have been recognized as the major programs of the society. Its preaching activities are conducted from ward, local, state and national levels throughout the states of Nigeria and beyond. It also engaged itself in establishing Mosques, schools and offers sermons during Friday congregation and Eid days throughout its mosques where its sermon is translated into vernacular language, this attracted many Muslims who don’t understand Arabic to patronize the its activities. The organization however split into two faction due to different approaches to Da’wah methodology and some seemingly selfish interests among its leaders. It is upon this background that this research was conducted using analytical method to compare and contrast the da’wah methodology applied by the two factions of the organization. The research discussed about the formation, Da’wah activities of the organization. It also compared and contrast the Da’wah approach and methodology of the two factions. The research finding reveals that different approach and methods applied by these factions is one of the main reason of their split in addition to other selfish interest among its leaders.

Keywords: activities, Da’wah, methodology, organization

Procedia PDF Downloads 225
6648 Spatial Design Transformation of Mount Merapi's Dwellings Using Diachronic Approach

Authors: Catharina Dwi Astuti Depari, Gregorius Agung Setyonugroho

Abstract:

In concern for human safety, living in disaster-prone areas is twofold: it is profoundly cataclysmic yet perceptibly contributive. This paradox could be identified in Kalitengah Lor Sub-village community who inhabit Mount Merapi’s most hazardous area, putting them to the highest exposure to eruptions’ cataclysmic impacts. After the devastating incident in 2010, through the Action Plan for Rehabilitation and Reconstruction, the National Government with immediate aid from humanitarian agencies initiated a relocation program by establishing nearly 2,613 temporary shelters throughout the mountain’s region. The problem arose as some of the most affected communities including those in Kalitengah Lor Sub-village, persistently refused to relocate. The obnoxious experience of those living in temporary shelters resulted from the program’s failure to support a long-term living was assumed to instigate the rejection. From the psychological standpoint, this phenomenon reflects the emotional bond between the affected communities with their former dwellings. Regarding this, the paper aims to reveal the factors influencing the emotional attachment of Kalitengah Lor community to their former dwellings including the dwellings’ spatial design transformation prior and post the eruption in 2010. The research adopted Likert five scale-questionnaire comprising a wide range of responses from strongly agree to strongly disagree. The responses were then statistically measured, leading to consensus that provides bases for further interpretations toward the local’s characteristics. Using purposive unit sampling technique, 50 respondents from 217 local households were randomly selected. Questions in the questionnaire were developed with concerns on the aspects of place attachment concept: affection, cognitive, behavior, and perception. Combined with quantitative method, the research adopted diachronic method which was aimed to analyze the spatial design transformation of each dwelling in relation to the inhabitant’s daily activities and personal preferences. The research found that access to natural resources like sand mining, agricultural farms and wood forests, social relationship and physical proximity from house to personal asset like cattle shed, are the dominant factors encouraging the locals to emotionally attached to their former dwellings. Consequently, each dwelling’s spatial design is suffered from changes in which the current house is typically larger in dimension and the bathroom is replaced by public toilet located outside the house’s backyard. Relatively unchanged, the cattle shed is still located in front of the house, the continuous visual relationship, particularly between the living and family room, is maintained, as well as the main orientation of the house towards the local street.

Keywords: diachronic method, former dwellings, local’s characteristics, place attachment, spatial design transformation

Procedia PDF Downloads 168
6647 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 251
6646 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 189
6645 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: road safety, prediction, accident, model, Qatar

Procedia PDF Downloads 259
6644 Determinants of Extra Charges for Container Shipments: A Case Study of Nexus Zone Logistics

Authors: Zety Shakila Binti Mohd Yusof, Muhammad Adib Bin Ishak, Hajah Fatimah Binti Hussein

Abstract:

The international shipping business is related to numerous controls or regulations of export and import shipments. It is costly and time consuming, and when something goes wrong or when the buyer or seller fails to comply with the regulations, it can result in penalties, delays, and unexpected costs etc. For the focus of this study, the researchers have selected a local forwarder that provides forwarding and clearance services, Nexus Zone Logistics. It was identified that this company currently has many extra costs to be paid including local and detention charges, which negatively impacts the flow of income and reduces overall stability. Two variables have been identified as factors of extra charges; loaded containers entering the port by exceeded closing time and late delivery of empty containers to the container yard. This study is a qualitative in nature and the secondary data collected was analyzed using self-administered observation. The findings of this study were covered by one selected case for each export and import shipment between July and December 2014. The data were analyzed using frequency analysis based on tables and graphs. The researcher recommends Nexus Zone Logistics impose a 1% deposit payment per container for each shipment (export and import) to its customers.

Keywords: international shipping, export and import, detention charges, container shipment

Procedia PDF Downloads 385
6643 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 152
6642 Meat Products Demand in Oyo West Local Government: An Application of Almost Ideal Demand System (LA/AIDS)

Authors: B. A. Adeniyi, S. A. Daud, O. Amao

Abstract:

The study investigates consumer demand for meat products in Oyo West Local Government using linear approximate almost ideal demand system (LA/AIDS). Questions that were addressed by the study include: first, what is the type and quantity of meat products available to the household and their demand pattern? Second is the investigation of the factors that affect meat products demand pattern and proportion of income that is spent on them. For the above purpose cross-sectional data were collected from 156 households of the study area and analyzed to reveal the functional relationship between meat products consumption and some socio-economic variables of the household. Results indicated that per capita meat consumption increased as household income and education increased but decreased with age. It was also found that male tend to consume more meat products than their female counterparts and that increase in household size will first increased per caput meat consumption but later decreased it. Price also tends to greatly influence the demand pattern of meat products. The results of elasticity computed from the results of regression analysis revealed that own price elasticity for all meat products were negative which indicated that they were normal products while cross and expenditure elasticity were positive which further confirmed that meat products were normal and substitute products. This study therefore concludes that the relevance of these variables imposed a great challenge to the policy makers and the government, in the sense that more cost effective methods of meat production technology have to be devised in other to make consumption of meat products more affordable.

Keywords: meat products, consumption, animal production, technology

Procedia PDF Downloads 249
6641 Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt

Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer

Abstract:

Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.

Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening

Procedia PDF Downloads 59
6640 The Incidence of Postoperative Atrial Fibrillation after Coronary Artery Bypass Grafting in Patients with Local and Diffuse Coronary Artery Disease

Authors: Kamil Ganaev, Elina Vlasova, Andrei Shiryaev, Renat Akchurin

Abstract:

De novo atrial fibrillation (AF) after coronary artery bypass grafting (CABG) is a common complication. To date, there are no data on the possible effect of diffuse lesions of coronary arteries on the incidence of postoperative AF complications. Methods. Patients operated on-pump under hypothermic conditions during the calendar year (2020) were studied. Inclusion criteria - isolated CABG and achievement of complete myocardial revascularization. Patients with a history of AF moderate and severe valve dysfunction, hormonal thyroid pathology, initial CHF(Congestive heart failure), as well as patients with developed perioperative complications (IM, acute heart failure, massive blood loss) and deceased were excluded. Thus 227 patients were included; mean age 65±9 years; 69% were men. 89% of patients had a 3-vessel lesion of the coronary artery; the remainder had a 2-vessel lesion. Mean LV size: 3.9±0.3 cm, indexed LV volume: 29.4±5.3 mL/m2. Two groups were considered: D (n=98), patients with diffuse coronary heart disease, and L (n=129), patients with local coronary heart disease. Clinical and demographic characteristics in the groups were comparable. Rhythm assessment: continuous bedside ECG monitoring up to 5 days; ECG CT at 5-7 days after CABG; daily routine ECG registration. Follow-up period - postoperative hospital period. Results. The Median follow-up period was 9 (7;11) days. POFP (Postoperative atrial fibrillation) was detected in 61/227 (27%) patients: 34/98 (35%) in group D versus 27/129 (21%) in group L; p<0.05. Moreover, the values of revascularization index in groups D and L (3.9±0.7 and 3.8±0.5, respectively) were equal, and the mean time Cardiopulmonary bypass (CPB) (107±27 and 80±13min), as well as the mean ischemic time (67±17 and 55±11min) were significantly longer in group D (p<0.05). However, a separate analysis of these parameters in patients with and without developed AF did not reveal any significant differences in group D (CPB time 99±21.2 min, ischemic time 63±12.2 min), or in group L (CPB time 88±13.1 min, ischemic time 58.7±13.2 min). Conclusion. With the diffuse nature of coronary lesions, the incidence of AF in the hospital period after isolated CABG definitely increases. To better understand the role of severe coronary atherosclerosis in the development of POAF, it is necessary to distinguish the influence of organic features of atrial and ventricular myocardium (as a consequence of chronic coronary disease) from the features of surgical correction in diffuse coronary lesions.

Keywords: atrial fibrillation, diffuse coronary artery disease, coronary artery bypass grafting, local coronary artery disease

Procedia PDF Downloads 213
6639 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects

Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa

Abstract:

Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.

Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture

Procedia PDF Downloads 185
6638 A Complex Network Approach to Structural Inequality of Educational Deprivation

Authors: Harvey Sanchez-Restrepo, Jorge Louca

Abstract:

Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.

Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics

Procedia PDF Downloads 125
6637 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: cold-formed steel, composite wall, foamed concrete, axial behavior test

Procedia PDF Downloads 337
6636 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 101
6635 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 318
6634 Pathway to Sustainable Shipping: Electric Ships

Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang

Abstract:

Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.

Keywords: cost reduction, electric ship, environmental protection, sustainable shipping

Procedia PDF Downloads 79
6633 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 115
6632 AC Electro-Kinetics, Bipolar Current and Concentration-Polarization in a Microchannel-Nafion Membrane System

Authors: Sinwook Park, Gilad Yossifon

Abstract:

The presence of a floating electrode array located within the depletion layer formed due to concentration-polarization (CP) across a microchannel-membrane device, produces not only induced-charge electro-osmosis (ICEO) vortex and but also a bipolar current resulting from faradaic reactions. It has been shown that there exists an optimal SiO2 layer thickness of ~50nm which is sufficient to suppress bipolar currents (at least up to 5V applied voltage) but still enables ICEO vortices that stir the depletion layer, thereby affecting its I-V response. This effect is pronounced beyond the limiting current where the existence of the depletion layer results in increased local electric field due to decreased solution conductivity. This comprehensive study of the interaction of embedded electrodes with the induced CP in microchannel-perm selective medium systems, allows one to choose the thickness of the thin dielectric coating to either enhance the mixing as a means to control the diffuse layer, or suppress it, for example, in the case where electrodes are intended for local measurements of the solution conductivity with minimal invasion. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the CP length. In addition, the use of embedded heaters within the depletion layer generates electro-thermal vortices that in turn also control the CP length.

Keywords: AC electrokinetics, microchannel, concentration-polarization, bipolar current

Procedia PDF Downloads 498
6631 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant

Authors: John K. Avor, Choong-Koo Chang

Abstract:

The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.

Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability

Procedia PDF Downloads 173
6630 Resilience of Infrastructure Networks: Maintenance of Bridges in Mountainous Environments

Authors: Lorenza Abbracciavento, Valerio De Biagi

Abstract:

Infrastructures are key elements to ensure the operational functionality of the transport system. The collapse of a single bridge or, equivalently, a tunnel can leads an entire motorway to be considered completely inaccessible. As a consequence, the paralysis of the communications network determines several important drawbacks for the community. Recent chronicle events have demonstrated that ensuring the functional continuity of the strategic infrastructures during and after a catastrophic event makes a significant difference in terms of life and economical losses. Moreover, it has been observed that RC structures located in mountain environments show a worst state of conservation compared to the same typology and aging structures located in temperate climates. Because of its morphology, in fact, the mountain environment is particularly exposed to severe collapse and deterioration phenomena, generally: natural hazards, e.g. rock falls, and meteorological hazards, e.g. freeze-thaw cycles or heavy snows. For these reasons, deep investigation on the characteristics of these processes becomes of fundamental importance to provide smart and sustainable solutions and make the infrastructure system more resilient. In this paper, the design of a monitoring system in mountainous environments is presented and analyzed in its parts. The method not only takes into account the peculiar climatic conditions, but it is integrated and interacts with the environment surrounding.

Keywords: structural health monitoring, resilience of bridges, mountain infrastructures, infrastructural network, maintenance

Procedia PDF Downloads 78
6629 Translation Quality Assessment in Fansubbed English-Chinese Swearwords: A Corpus-Based Study of the Big Bang Theory

Authors: Qihang Jiang

Abstract:

Fansubbing, the combination of fan and subtitling, is one of the main branches of Audiovisual Translation (AVT) having kindled more and more interest of researchers into the AVT field in recent decades. In particular, the quality of so-called non-professional translation seems questionable due to the non-transparent qualification of subtitlers in a huge community network. This paper attempts to figure out how YYeTs aka 'ZiMuZu', the largest fansubbing group in China, translates swearwords from English to Chinese for its fans of the prevalent American sitcom The Big Bang Theory, taking cultural, social and political elements into account in the context of China. By building a bilingual corpus containing both the source and target texts, this paper found that most of the original swearwords were translated in a toned-down manner, probably due to Chinese audiences’ cultural and social network features as well as the strict censorship under the Chinese government. Additionally, House (2015)’s newly revised model of Translation Quality Assessment (TQA) was applied and examined. Results revealed that most of the subtitled swearwords achieved their pragmatic functions and exerted a communicative effect for audiences. In conclusion, this paper enriches the empirical research concerning House’s new TQA model, gives a full picture of the subtitling of swearwords in AVT field and provides a practical guide for the practitioners in their career of subtitling.

Keywords: corpus-based approach, fansubbing, pragmatic functions, swearwords, translation quality assessment

Procedia PDF Downloads 147
6628 Transnational Initiatives, Local Perspectives: The Potential of Australia-Asia BRIDGE School Partnerships Project to Support Teacher Professional Development in India

Authors: Atiya Khan

Abstract:

Recent research on the condition of school education in India has reaffirmed the importance of quality teacher professional development, especially in light of the rapid changes in teaching methods, learning theories, curriculum, and major shifts in information and technology that education systems are experiencing around the world. However, the quality of programs of teacher professional development in India is often uneven, in some cases non-existing. The educational authorities in India have long recognized this and have developed a range of programs to assist in-service teacher education. But, these programs have been mostly inadequate at improving the quality of teachers in India. Policy literature and reports indicate that the unevenness of these programs and more generally the lack of quality teacher professional development in India are due to factors such as a large number of teachers, budgetary constraints, top-down decision making, teacher overload, lack of infrastructure, and little or no follow-up. The disparity between the government stated goals for quality teacher professional development in India and its inability to meet the learning needs of teachers suggests that new interventions are needed. The realization that globalization has brought about an increase in the social, cultural, political and economic interconnectedness between countries has also given rise to transnational opportunities for education systems, such as India’s, aiming to build their capacity to support teacher professional development. Moreover, new developments in communication technologies seem to present a plausible means of achieving high-quality professional development for teachers through the creation of social learning spaces, such as transnational learning networks. This case study investigates the potential of one such transnational learning network to support the quality of teacher professional development in India, namely the Australia-Asia BRIDGE School Partnerships Project. It explores the participation of some fifteen teachers and their principals from BRIDGE participating schools in Delhi region of India; focusing on their professional development expectations from the BRIDGE program and account for their experiences in the program, in order to determine the program’s potential for the professional development of teachers in this study.

Keywords: case study, Australia-Asia BRIDGE Project, teacher professional development, transnational learning networks

Procedia PDF Downloads 267
6627 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor

Authors: Panupong Makvichian

Abstract:

Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.

Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor

Procedia PDF Downloads 200
6626 System-level Factors, Presidential Coattails and Mass Preferences: Dynamics of Party Nationalization in Contemporary Brazil (1990-2014)

Authors: Kazuma Mizukoshi

Abstract:

Are electoral politics in contemporary Brazil still local in organization and focus? The importance of this question lies in its paradoxical trajectories. First, often coupled with institutional and sociological ‘barriers’ (e.g. the selection and election of candidates relatively loyal to the local party leadership, the predominance of territorialized electoral campaigns, and the resilience of political clientelism), the regionalization of electoral politics has been a viable and practical solution especially for pragmatic politicians in some Latin American countries. On the other hand, some leftist parties that once served as minor opposition forces at the time of foundational or initial elections have certainly expanded vote shares. Some were eventually capable of holding most (if not a majority) legislative seats since the 1990s. Though not yet rigorously demonstrated, theoretically implicit in the rise of leftist parties in legislative elections is the gradual (if not complete) nationalization of electoral support—meaning the growing equality of a party’s vote share across electoral districts and its change over time. This study will develop four hypotheses to explain the dynamics of party nationalization in contemporary Brazil: district magnitude, ethnic and class fractionalization of each district, voting intentions in federal and state executive elections, and finally the left-right stances of electorates. The study will demonstrate these hypotheses by closely working with the Brazilian Electoral Study (2002-2014).

Keywords: party nationalization, presidential coattails, Left, Brazil

Procedia PDF Downloads 139
6625 Social Responsibility in Reducing Gap between High School and 1st Year University Maths: SMU Case, South Africa

Authors: Solly M. Seeletse, Joel L. Thabane

Abstract:

Students enrolling at the Sefako Makgatho Health Sciences University (SMU) come mostly from the previously disadvantaged communities of South Africa. Their backgrounds are deprived in resources and modern technologies of education. Most of those admitted in the basic sciences were rejected in medicine and health related study programmes in SMU. Mathematics (maths) is the main subject for admission into SMU study programmes. However, maths results are usually low. In an attempt to help to prepare the students in the neighbourhood schools of SMU, some Maths educators partnered with local schools to communicate the needs and investigate the causes of poor maths results. They embarked on an action research to determine the level of educators’ maths education. The general aim of the research was to investigate the causes of deficiencies in maths teaching and results in the local secondary schools, focusing on teachers and learners. Asking the teachers about their education and learners about maths concepts of most difficulty, these were identified. The researchers assisted in teaching the difficult concepts. The study highlighted the most difficult concepts and the teachers’ lack of training in some content. Intervention of the researchers showed to be effective only for the very poor performing schools. Those with descent pass rates of over 50% did not benefit from it. This was the sign of lack of optimality in the methods used. The research recommendations suggested that intervention methods should be improved to be effective in all schools, and extension of the endeavours to more schools.

Keywords: action research, intervention, social responsibility, support

Procedia PDF Downloads 270