Search results for: wood plastic composite foam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3534

Search results for: wood plastic composite foam

384 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine

Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau

Abstract:

A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.

Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux

Procedia PDF Downloads 303
383 Organic Fertilizers Mitigate Microplastics Toxicity in Agricultural Soil

Authors: Ghulam Abbas Shah, Maqsood Sadiq, Ahsan Yasin

Abstract:

Massive global plastic production, combined with poor degradation and recycling, leads to significant environmental pollution from microplastics, whose effects on plants in the soil remain understudied. Besides, effective mitigation strategies and their impact on ammonia (NH₃) emissions under varying fertilizer management practices remains sketchy. Therefore, the objectives of the study were (i) to determine the impact of organic fertilizers on the toxicity of microplastics in sorghum and physicochemical characteristics of microplastics-contaminated soil and (ii) to assess the impacts of these fertilizers on NH₃ emissions from this soil. A field experiment was conducted using sorghum as a test crop. Treatments were: (i) Control (C), (ii) Microplastics (MP), (iii) Inorganic fertilizer (IF), (iv) MPIF, (v) Farmyard manure (FM), (vi) MPFM, (vii) Biochar (BC), and (viii) MPBC, arranged in a randomized complete block design (RCBD) with three replicates. Microplastics of polyvinyl chloride (PVC) were applied at a rate of 1.5 tons ha-¹, and all fertilizers were applied at the recommended dose of 90 kg N ha-¹. Soil sampling was done before sowing and after harvesting the sorghum, with samples analyzed for chemical properties and microbial biomass. Crop growth and yield attributes were measured. In a parallel pot experiment, NH₃ emissions were measured using passive flux samplers over 72 hours following the application of treatments similar to those used in the field experiment. Application of MPFM, MPBC and MPIF reduced soil mineral nitrogen by 8, 20 and 38% compared to their sole treatments, respectively. Microbial biomass carbon (MBC) was reduced by 19, 25 and 59% in MPIF, MPBC and MPFM as compared to their sole application, respectively. Similarly, the respective reduction in microbial biomass nitrogen (MBN) was 10, 27 and 66%. The toxicity of microplastics was mitigated by MPFM and MPBC, each with only a 5% reduction in grain yield of sorghum relative to their sole treatments. The differences in nitrogen uptake between BC vs. MPBC, FM vs. MPFM, and IF vs. MPIF were 8, 10, and 12 kg N ha-¹, respectively, indicating that organic fertilizers mitigate microplastic toxicity in the soil. NH₃ emission was reduced by 5, 11 and 20% after application of MPFM, MPBC and MPIF than their sole treatments, respectively. The study concludes that organic fertilizers such as FM and BC can effectively mitigate the toxicity of microplastics in soil, leading to improved crop growth and yield.

Keywords: microplastics, soil characteristics, crop n uptake, biochar, NH₃ emissions

Procedia PDF Downloads 16
382 Nanoindentation Studies of Metallic Cu-CuZr Composites Synthesized by Accumulative Roll Bonding

Authors: Ehsan Alishahi, Chuang Deng

Abstract:

Materials with microstructural heterogeneity have recently attracted dramatic attention in the materials science community. Although most of the metals are identified as crystalline, the new class of amorphous alloys, sometimes are known as metallic glasses (MGs), exhibited remarkable properties, particularly high mechanical strength and elastic limit. The unique properties of MGs led to the wide range of studies in developing and characterizing of new alloys or composites which met the commercial desires. In spite of applicable properties of MGs, commercializing of metallic glasses was limited due to a major drawback, the lack of ductility and sudden brittle failure mode. Hence, crystalline-amorphous (C-A) composites were introduced almost in 2000s as a toughening strategy to improve the ductility of MGs. Despite the considerable progress reported in previous studies, there are still challenges in both synthesis and characterization of metallic C-A composites. In this study, accumulative roll bonding (ARB) was used to synthesize bulk crystalline-amorphous composites starting from crystalline Cu-Zr multilayers. Due to the severe plastic deformation state, new CuZr phases were formed during the rolling process which was reflected in SEM-EDS analysis. EDS elemental analysis showed the variation in the composition of CuZr phases such as 38-62, 50-50 to 68-32 at Cu-Zr % respectively. Moreover, TEM with electron diffraction analysis indicated the presence of both crystalline and amorphous structures for the new formed CuZr phases. In addition to the microstructural analysis, the mechanical properties of the synthesized composites were studied using the nanoindentation technique. Hysitron Nanoindentation instrument was used to conduct nanoindentation tests with cube corner tip. The maximum load of 5000 µN was applied in load control mode to measure the elastic modulus and hardness of different phases. The trend of results indicated three distinct regimes of hardness and elastic modulus including pure Cu, pure Zr, and new formed CuZr phases. More specifically, pure Cu regions showed the lowest values for both nanoindentation hardness and elastic modulus while the CuZr phases take the highest values. Consequently, pure Zr was placed in the intermediate range which is harder than pure Cu but softer than CuZr phases. In overall, it was found that CuZr phases with higher hardness were nucleated during ARB process as a result of mechanical alloying phenomenon.

Keywords: ARB, crystalline-amorphous composites, mechanical alloying, nanoindentation hardness

Procedia PDF Downloads 534
381 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications

Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage

Abstract:

Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.

Keywords: thermoplastic elastomer, natural rubber, high density polyethylene, roofing material

Procedia PDF Downloads 116
380 Qusai-Solid-State Electrochromic Device Based on PolyMethyl Methacrylate (PMMA)/Succinonitrile Gel Polymer Electrolyte

Authors: Jen-Yuan Wang, Min-Chuan Wang, Der-Jun Jan

Abstract:

Polymer electrolytes can be classified into four major categories, solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), polyelectrolytes and composite polymer electrolytes. SPEs suffer from low ionic conductivity at room temperature. The main problems for GPEs are the poor thermal stability and mechanical properties. In this study, a GPE containing PMMA and succinonitrile is prepared to solve the problems mentioned above, and applied to the assembly of a quasi-solid-state electrochromic device (ECD). In the polymer electrolyte, poly(methyl methacrylate) (PMMA) is the polymer matrix and propylene carbonate (PC) is used as the plasticizer. To enhance the mechanical properties of this GPE, succinonitrile (SN) is introduced as the additive. For the electrochromic materials, tungsten oxide (WO3) is used as the cathodic coloring film, which is fabricated by pulsed dc magnetron reactive sputtering. For the anodic coloring material, Prussian blue nanoparticles (PBNPs) are synthesized and coated on the transparent Sn-doped indium oxide (ITO) glass. The thickness of ITO, WO3 and PB film is 110, 170 and 200 nm, respectively. The size of the ECD is 5×5 cm2. The effect of the introduction of SN into the GPEs is discussed by observing the electrochromic behaviors of the WO3-PB ECD. Besides, the composition ratio of PC to SN is also investigated by measuring the ionic conductivity. The optimized ratio of PC to SN is 4:1, and the ionic conductivity under this condition is 6.34x10-5 S∙cm-1, which is higher than that of PMMA/PC (1.35x10-6 S∙cm-1) and PMMA/EC/PC (4.52x10-6 S∙cm-1). This quasi-solid-state ECD fabricated with the PMMA/SN based GPE shows an optical contrast of ca. 53% at 690 nm. The optical transmittance of the ECD can be reversibly modulated from 72% (bleached) to 19% (darkened), by applying potentials of 1.5 and -2.2 V, respectively. During the durability test, the optical contrast of this ECD remains 44.5% after 2400 cycles, which is 83% of the original one.

Keywords: electrochromism, tungsten oxide, prussian blue, poly(methyl methacrylate), succinonitrile

Procedia PDF Downloads 279
379 Empirical Investigation of Barriers to Industrial Energy Conservation Measures in the Manufacturing Small and Medium Enterprises (SME's) of Pakistan

Authors: Muhammad Tahir Hassan, Stas Burek, Muhammad Asif, Mohamed Emad

Abstract:

Industrial sector in Pakistan accounts for 25% of total energy consumption in the country. The performance of this sector has been severely affected due to the adverse effect of current energy crises in the country. Energy conservation potentials of Pakistan’s industrial sectors through energy management can save wasted energy which would ultimately leads to economic and environmental benefits. However due to lack of financial incentives of energy efficiency and absence of energy benchmarking within same industrial sectors are some of the main challenges in the implementation of energy management. In Pakistan, this area has not been adequately explored, and there is a lack of focus on the need for industrial energy efficiency and proper management. The main objective of this research is to evaluate the current energy management performance of Pakistani industrial sector and empirical investigation of the existence of various barriers to industrial energy efficiency. Data was collected from the respondents of 192 small and medium-sized enterprises (SME’s) of Pakistan i.e. foundries, textile, plastic industries, light engineering, auto and spare parts and ceramic manufacturers and analysed using Statistical Package for the Social Sciences (SPSS) software. Current energy management performance of manufacturing SME’s in Pakistan has been evaluated by employing two significant indicators, ‘Energy Management Matrix’ and ‘pay-off criteria’, with modified approach. Using the energy management matrix, energy management profiles of overall industry and the individual sectors have been drawn to assess the energy management performance and identify the weak and strong areas as well. Results reveal that, energy management practices in overall surveyed industries are at very low level. Energy management profiles drawn against each sector suggest that performance of textile sector is better among all the surveyed manufacturing SME’s. The empirical barriers to industrial energy efficiency have also been ranked according to the overall responses. The results further reveal that there is a significant relationship exists among the industrial size, sector type and nature of barriers to industrial energy efficiency for the manufacturing SME’s in Pakistan. The findings of this study may help the industries and policy makers in Pakistan to formulate a sustainable energy policy to support industrial energy efficiency keeping in view the actual existing energy efficiency scenario in the industrial sector.

Keywords: barriers, energy conservation, energy management profile, environment, manufacturing SME's of Pakistan

Procedia PDF Downloads 276
378 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 134
377 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions

Authors: Ebru Dural, M. Zulfu Asık

Abstract:

Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.

Keywords: laminated glass, mathematical model, nonlinear behavior, PVB

Procedia PDF Downloads 304
376 Investigating the Relationship Between the Auditor’s Personality Type and the Quality of Financial Reporting in Companies Listed on the Tehran Stock Exchange

Authors: Seyedmohsen Mortazavi

Abstract:

The purpose of this research is to investigate the personality types of internal auditors on the quality of financial reporting in companies admitted to the Tehran Stock Exchange. Personality type is one of the issues that emphasizes the field of auditors' behavior, and this field has attracted the attention of shareholders and stock companies today, because the auditors' personality can affect the type of financial reporting and its quality. The research is applied in terms of purpose and descriptive and correlational in terms of method, and a researcher-made questionnaire was used to check the research hypotheses. The statistical population of the research is all the auditors, accountants and financial managers of the companies admitted to the Tehran Stock Exchange, and due to their large number and the uncertainty of their exact number, 384 people have been considered as a statistical sample using Morgan's table. The researcher-made questionnaire was approved by experts in the field, and then its validity and reliability were obtained using software. For the validity of the questionnaire, confirmatory factor analysis was first examined, and then using divergent and convergent validity; Fornell-Larker and cross-sectional load test of the validity of the questionnaire were confirmed; Then, the reliability of the questionnaire was examined using Cronbach's alpha and composite reliability, and the results of these two tests showed the appropriate reliability of the questionnaire. After checking the validity and reliability of the research hypotheses, PLS software was used to check the hypotheses. The results of the research showed that the personalities of internal auditors can affect the quality of financial reporting; The personalities investigated in this research include neuroticism, extroversion, flexibility, agreeableness and conscientiousness, all of these personality types can affect the quality of financial reporting.

Keywords: flexibility, quality of financial reporting, agreeableness, conscientiousness

Procedia PDF Downloads 83
375 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, E. Kate

Abstract:

Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.

Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying

Procedia PDF Downloads 299
374 Estimation of Biomedical Waste Generated in a Tertiary Care Hospital in New Delhi

Authors: Priyanka Sharma, Manoj Jais, Poonam Gupta, Suraiya K. Ansari, Ravinder Kaur

Abstract:

Introduction: As much as the Health Care is necessary for the population, so is the management of the Biomedical waste produced. Biomedical waste is a wide terminology used for the waste material produced during the diagnosis, treatment or immunization of human beings and animals, in research or in the production or testing of biological products. Biomedical waste management is a chain of processes from the point of generation of Biomedical waste to its final disposal in the correct and proper way, assigned for that particular type of waste. Any deviation from the said processes leads to improper disposal of Biomedical waste which itself is a major health hazard. Proper segregation of Biomedical waste is the key for Biomedical Waste management. Improper disposal of BMW can cause sharp injuries which may lead to HIV, Hepatitis-B virus, Hepatitis-C virus infections. Therefore, proper disposal of BMW is of upmost importance. Health care establishments segregate the Biomedical waste and dispose it as per the Biomedical waste management rules in India. Objectives: This study was done to observe the current trends of Biomedical waste generated in a tertiary care Hospital in Delhi. Methodology: Biomedical waste management rounds were conducted in the hospital wards. Relevant details were collected and analysed and sites with maximum Biomedical waste generation were identified. All the data was cross checked with the commons collection site. Results: The total amount of waste generated in the hospital during January 2014 till December 2014 was 6,39,547 kg, of which 70.5% was General (non-hazardous) waste and the rest 29.5% was BMW which consisted highly infectious waste (12.2%), disposable plastic waste (16.3%) and sharps (1%). The maximum quantity of Biomedical waste producing sites were Obstetrics and Gynaecology wards with a total Biomedical waste production of 45.8%, followed by Paediatrics, Surgery and Medicine wards with 21.2 %, 4.6% and 4.3% respectively. The maximum average Biomedical waste generated was by Obstetrics and Gynaecology ward with 0.7 kg/bed/day, followed by Paediatrics, Surgery and Medicine wards with 0.29, 0.28 and 0.18 kg/bed/day respectively. Conclusions: Hospitals should pay attention to the sites which produce a large amount of BMW to avoid improper segregation of Biomedical waste. Also, induction and refresher training Program of Biomedical waste management should be conducted to avoid improper management of Biomedical waste. Healthcare workers should be made aware of risks of poor Biomedical waste management.

Keywords: biomedical waste, biomedical waste management, hospital-tertiary care, New Delhi

Procedia PDF Downloads 228
373 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review

Authors: Anastasia Tsakiridi

Abstract:

Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.

Keywords: supply chain management, logistics, systematic literature review, GIS

Procedia PDF Downloads 121
372 The Mouth and Gastrointestinal Tract of the African Lung Fish Protopterus annectens in River Niger at Agenebode, Nigeria

Authors: Marian Agbugui

Abstract:

The West African Lung fishes are fishes rich in protein and serve as an important source of food supply for man. The kind of food ingested by this group of fishes is dependent on the alimentary canal as well as the fish’s digestive processes which provide suitable modifications for maximum utilization of food taken. A study of the alimentary canal of P. annectens will expose the best information on the anatomy and histology of the fish. Samples of P. annectens were dissected to reveal the liver, pancreas and entire gut wall. Digital pictures of the mouth, jaws and the Gastrointestinal Tract (GIT) were taken. The entire gut was identified, sectioned and micro graphed. P. annectens was observed to possess a terminal mouth that opens up to 10% of its total body length, an adaptive feature to enable the fish to swallow the whole of its pry. Its dentition is made up of incisors- scissor-like teeth which also help to firmly grip, seize and tear through the skin of prey before swallowing. A short, straight and longitudinal GIT was observed in P. annectens which is known to be common feature in lungfishes, though it is thought to be a primitive characteristic similar to the lamprey. The oesophagus is short and distensible similar to other predatory and carnivorous species. Food is temporarily stored in the stomach before it is passed down into the intestine. A pyloric aperture is seen at the end of the double folded pyloric valve which leads into an intestine that makes up 75% of the whole GIT. The intestine begins at the posterior end of the pyloric aperture and winds down in six coils through the whole length intestine and ends at the cloaca. From this study it is concluded that P. annectens possess a composite GIT with organs similar to other lung fishes; it is a detritor with carnivorous abilities.

Keywords: gastrointestinal tract, incisors scissor-like teeth, intestine, mucus, Protopterus annectens, serosa

Procedia PDF Downloads 129
371 Impact of Heat Moisture Treatment on the Yield of Resistant Starch and Evaluation of Functional Properties of Modified Mung Bean (Vigna radiate) Starch

Authors: Sreejani Barua, P. P. Srivastav

Abstract:

Formulation of new functional food products for diabetes patients and obsessed people is a challenge for food industries till date. Starch is a certainly happening, ecological, reasonable and profusely obtainable polysaccharide in plant material. In the present scenario, there is a great interest in modifying starch functional properties without destroying its granular structure using different modification techniques. Resistant starch (RS) contains almost zero calories and can control blood glucose level to prevent diabetes. The current study focused on modification of mung bean starch which is a good source of legumes carbohydrate for the production of functional food. Heat moisture treatment (HMT) of mung starch was conducted at moisture content of 10-30%, temperature of 80-120 °C and time of 8-24 h.The content of resistant starch after modification was significantly increased from native starches containing RS 7.6%. The design combinations of HMT had been completed through Central Composite Rotatable Design (CCRD). The effects of HMT process variables on the yield of resistant starch was studied through Rapid Surface Methodology (RSM). The highest increase of resistant starch was found up to 34.39% when treated the native starch with 30% m.c at 120 °C temperature for 24 h.The functional properties of both native and modified mung bean starches showed that there was a reduction in the swelling power and swelling volume of HMT starches. However, the solubility of the HMT starches was higher than that of untreated native starch and also observed change in structural (scanning electron microscopy), X-Ray diffraction (XRD) pattern, blue value and thermal (differential scanning calorimetry) properties. Therefore, replacing native mung bean starch with heat-moisture treated mung bean starch leads to the development of new products with higher resistant starch levels and functional properties.

Keywords: Mung bean starch, heat moisture treatment, functional properties, resistant starch

Procedia PDF Downloads 187
370 The Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Exposed for Different Environment Conditions

Authors: Rajai Al-Rousan

Abstract:

The repair and strengthening of concrete structures is a big challenge for the concrete industry for both engineers and contractors. Due to increasing economical constraints, the current trend is to repair/upgrade deteriorated and functionally obsolete structures rather than replacing them with new structures. CFRP has been used previously by air space industries regardless of the high costs. The decrease in the costs of the composite materials, as results of the technology improvement, has made CFRP an alternative to conventional materials for many applications. The primary objective of this research is to investigate the flexural behavior of reinforced concrete (RC) beams externally strengthened with CFRP composites exposed for three years for the following conditions: (a) room temperature, (b) cyclic ponding in 15% salt-water solution, (c) hot-water of 65oC, and (d) rapid freeze/thaw cycles. Results indicated that the after three years of various environmental conditions, the bond strength between the concrete beams and CFRP sheets was not affected. No signs of separation or debonding of CFRP sheets were observed before testing. Also, externally strengthening RC beams with CFRP sheets leads to a substantial increase in the ductility of concrete structures. This is a result of forcing the concrete to undergo inelastic deformation, resulting in compression failure of the structure after yielding of steel reinforcement. In addition, exposure to heat water tank for three years reduces the ultimate load by about 11%. This 11% reduction in the ultimate load equates to about 53%, 46% and 68% loss of the gain of the strength attributed to the CFRP of 2/3 Layer, 1 Layers and 2 Layers CFRP Sheets respectively. This mean that with decreasing of number of layers the environmental exposure had an efficient effect on concrete by protection concrete from environmental effect and adverse effect on the bond performance.

Keywords: flexural, behavior, CFRP, composites, environment, conditions

Procedia PDF Downloads 292
369 Mechanisms of Metals Stabilization in the Soil by Biochar Material as Affected by the Low Molecular Weight Organic Acids

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Immobilizing trace elements by reducing their mobility and bioavailability through amendment application, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to immobilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study examined the impact of BC derived from rice husk, tartaric acid (TA), and oxalic acid (OA), and the combination of BC and TA/OA on the changes of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the attacks of TA and OA were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The TA and OA each at 2, 5, 10, and 20 mM kg-1 (w/v) were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC, TA, and OA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. The BC, low level of TA (2 mM kg-1 soil), and BC plus the low concentration of TA (BC-TA2) addition considerably declined the acid-soluble Cd, Pb, and Zn in which BC-TA2 was found to be the most effective treatment. The trends were reversed concerning the high levels of TA (>5-20 mM kg-1 soil), all levels of OA (2-20 mM kg-1 soil), and the BC plus high levels of TA/OA treatments. BC-TA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual fractions with time. The most increased electronegative charges of BC-TA2 indicate its (BC-TA2) highest metals' immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite concerning Cd, Pb, and Zn immobilization, respectively. The findings demonstrated that the low level of TA increased metals immobilization, while the high levels of TA and all levels of OA enhanced their mobilization. The BC-TA2 was the best treatment in stabilizing metals in soil.

Keywords: biochar, immobilization, low molecular weight organic acids, trace elements contaminated soil

Procedia PDF Downloads 61
368 Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix

Authors: Kotchamon Yodkhum, Thawatchai Phaechamud

Abstract:

Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique.

Keywords: chitosan, aluminum monostearate, dispersion, controlled-release

Procedia PDF Downloads 372
367 Synthesis of Low-Cost Porous Silicon Carbide Foams from Renewable Sources

Authors: M. A. Bayona, E. M. Cordoba, V. R. Guiza

Abstract:

Highly porous carbon-based foams are used in a wide range of industrial applications, which include absorption, catalyst supports, thermal insulation, and biomaterials, among others. Particularly, silicon carbide (SiC) based foams have shown exceptional potential for catalyst support applications, due to their chemical inertness, large frontal area, low resistance to flow, low-pressure drop, as well as high resistance to temperature and corrosion. These properties allow the use of SiC foams in harsh environments with high durability. Commonly, SiC foams are fabricated from polysiloxane, SiC powders and phenolic resins, which can be costly or highly toxic to the environment. In this work, we propose a low-cost method for the fabrication of highly porous, three-dimensional SiC foams via template replica, using recycled polymeric sponges as sacrificial templates. A sucrose-based resin combined with a Si-containing pre-ceramic polymer was used as the precursor. Polymeric templates were impregnated with the precursor solution, followed by thermal treatment at 1500 °C under an inert atmosphere. Several synthesis parameters, such as viscosity and composition of the precursor solution (Si: Sucrose molar ratio), and the porosity of the template, were evaluated in terms of their effect on the morphology, composition and mechanical resistance of the resulting SiC foams. The synthesized composite foams exhibited a highly porous (50-90%) and interconnected structure, containing 30-90% SiC with a mechanical compressive strength between 0.01-0.1 MPa. The methodology employed here allowed the fabrication of foams with a varied concentration of SiC and with morphological and mechanical properties that contribute to the development of materials of high relevance in the industry, while using low-cost, renewable sources such as table sugar, and providing a recycling alternative for polymeric sponges.

Keywords: catalyst support, polymer replica technique, reticulated porous ceramics, silicon carbide

Procedia PDF Downloads 109
366 Beyond the White Cube: A Study on the Site Specific Curatorial Practice of Kochi Muziris Biennale

Authors: Girish Chandran, Milu Tigi

Abstract:

Brian O'Doherty's seminal essay, Inside the white Cube theorized and named the dominant mode of display and exhibition of Modern Art museums. Ever since the advent of Biennales and other site-specific public art projects we have seen a departure from the white cube mode of exhibition. The physicality, materiality and context within which an artwork is framed has a role in the production of meaning of public art. Equally, artworks contribute to the meaning and identity of a place. This to and fro relationship between the site and artwork and its influence on the sense of place and production of meaning is being explored in this paper in the context of Kochi Muziris Biennale (KMB). Known as the Peoples biennale with over 5 lakh visitors, it is India's first Biennale and its largest art exhibition of contemporary art. The paper employs place theory and contemporary curatorial theories to present the case. The KMB has an interesting mix of exhibition spaces which includes existing galleries and halls, site-specific projects in public spaces, infill developments and adaptive reuse of heritage and other unused architecture. The biennale was envisioned as an event connecting to the history, socio-political peculiarities of the cultural landscape of Kerala and more specifically Kochi. The paper explains the role of spatial elements in forming a curatorial narrative connected to the above mentioned ambitions.The site-specific nature of exhibition and its use of unused architecture helps in the formation of exhibition spaces unique in type and materiality. The paper argues how this helps in the creation of an 'archeology of the place'. The research elucidates how a composite nature of experience helps connect with the thematic ambitions of the Biennale and how it brings about an aesthetics distinct to KMB.

Keywords: public art, curatorial practice, architecture, place, contemporary art, site specificity

Procedia PDF Downloads 139
365 The Quality of Economic Growth Regency and Cities in West Java Province: Inclusive Economic Growth

Authors: Fryanto Anugrah Rhamdhani Rhamdhani, Hana Riana Permatasari

Abstract:

The aim of this study analyzes the inclusive of economic growth and analyzes the inclusive of economic growth determinant in regency and city (West Java Province). The background this study Economic Growth can do not afford to reduce poverty, Disparity and expand The Workforce. Referring Central Bureau Of Statistic West Java Province report in 2015 recorded only 5 regions able reduce poverty, 3 regions able reduce Gini Ratio and 7 regions able Workforce Absorption, meanwhile, 11 regions was improved Economic Growth. The Inclusive of Economic Growth definition based on various literature means the quality Economic Growth able reduce Poverty, Gini Ratio, and Workforce absorption. This study adopted the measurement Inclusive Economic of Growth Klassen and analyzes factor in Term Reducing Poverty, Gini Ratio, and the workforce Absorption. Data used panels data composite time series and cross-section including 25 regency and cities regions from Central Bureau Of Statistic West Java Province during 2014-2015. As a result, the measurement inclusive economic of growth Klassen 2014-2015 from 25 regency and cities shows all region does not inclusive reducing Poverty, only 2 regions able reduce Gini Ratio and 3 regions able increase Workforce absorption. Different from the result the measurement Inclusive Economic of Growth for workforce absorption, several regions shows a negative coefficient indicates Economic Growth decline Workforce absorption. The outcome of this study analyzes factor of Inclusive economic of Growth, so that give recommendations for government achieve inclusive economic of growth toward Sustainable Economic. Can be Concluded above low-quality Economic Growth, that due to all region does not inclusive Economic of Growth.

Keywords: inclusive economic growth, Gini ratio, poverty, workforce

Procedia PDF Downloads 246
364 Biomass and Carbon Stock Estimates of Woodlands in the Southeastern Escarpment of Ethiopian Rift Valley: An Implication for Climate Change Mitigation

Authors: Sultan Haji Shube

Abstract:

Woodland ecosystems of semiarid rift valley of Ethiopia play a significant role in climate change mitigation by sequestering and storing more carbon. This study was conducted in Gidabo river sub-basins southeastern rift-valley escarpment of Ethiopian. It aims to estimate biomass and carbon stocks of woodlands and its implications for climate change mitigation. A total of 44 sampling plots (900m²each) were systematically laid in the woodland for vegetation and environmental data collection. A composite soil sample was taken from five locations main plot. Both disturbed and undisturbed soil samples were taken at two depths using soil auger and core-ring sampler, respectively. Allometric equation was used to estimate aboveground biomass while root-to-shoot ratio method and Walkley-Black method were used for belowground biomass and SOC, respectively. Result revealed that the totals of the study site was 17.05t/ha, of which 14.21t/ha was belonging for AGB and 2.84t/ha was for BGB. Moreover, 2224.7t/ha total carbon stocks was accumulated with an equivalent carbon dioxide of 8164.65t/ha. This study also revealed that more carbon was accumulated in the soil than the biomass. Both aboveground and belowground carbon stocks were decreased with increase in altitude while SOC stocks were increased. The AGC and BGC stocks were higher in the lower slope classes. SOC stocks were higher in the higher slope classes than in the lower slopes. Higher carbon stock was obtained from woody plants that had a DBH measure of >16cm and situated at plots facing northwest. Overall, study results will add up information about carbon stock potential of the woodland that will serve as a base line scenario for further research, policy makers and land managers.

Keywords: allometric equation, climate change mitigation, soil organic carbon, woodland

Procedia PDF Downloads 64
363 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology

Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen

Abstract:

Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.

Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient

Procedia PDF Downloads 184
362 Iranian Processed Cheese under Effect of Emulsifier Salts and Cooking Time in Process

Authors: M. Dezyani, R. Ezzati bbelvirdi, M. Shakerian, H. Mirzaei

Abstract:

Sodium Hexametaphosphate (SHMP) is commonly used as an Emulsifying Salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of SHMP concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, Casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of SHMP (0.25-2.75%) and holding time (0-20 min) on the textural and Rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of SHMP. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of SHMP increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of SHMP. The insoluble Ca and total and insoluble P contents increased as concentration of SHMP increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) SHMP formed soluble salts. The results of this study suggest that SHMP chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of SHMP helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.

Keywords: Iranian processed cheese, emulsifying salt, rheology, texture

Procedia PDF Downloads 415
361 Outcome of Comparison between Partial Thickness Skin Graft Harvesting from Scalp and Lower Limb for Scalp Defect: A Clinical Trial Study

Authors: Mahdi Eskandarlou, Mehrdad Taghipour

Abstract:

Background: Partial-thickness skin graft is the cornerstone for scalp defect repair. Routine donor sites include abdomen, thighs, and buttocks. Given the potential side effects following harvesting from these sites and the potential advantages of harvesting from scalp (broad surface, rapid healing, and better cosmetics results), this study is trying to compare the outcomes of graft harvesting from scalp and lower limb. Methods: This clinical trial is conducted among a sample number of 40 partial thickness graft candidates (20 case and 20 control group) with scalp defect presenting to plastic surgery clinic at Besat Hospital during the time period between 2018 and 2019. Sampling was done by simple randomization using random digit table. Data gathering was performed using a designated checklist. The donor site in case group and control group was scalp and lower limb, respectively. The resultant data were analyzed using chi-squared and t-test and SPPS version 21 (SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp). Results: Of the total 40 patients participating in this study, 28 patients (70%) were male, and 12 (30%) were female with and mean age of 63.62 ± 09.73 years. Hypertension and diabetes mellitus were the most common comorbidities among patients with basal cell carcinoma (BCC) and trauma being the most common etiology for the defects. There was a statistically meaningful relationship between two groups regarding the etiology of defect (P=0.02). The most common anatomic location of defect for case and control groups was temporal and parietal, respectively. Most of the defects were deep to galea zone. The mean diameter of defect was 24.28 ± 45.37 mm for all of the patients. The difference between diameter of defect in both groups was statistically meaningful, while no such difference between graft diameter was seen. The graft 'Take' was completely successful in both groups according to evaluations. The level of postoperative pain was lower in the case group compared to the control according to VAS scale, and the satisfaction was higher in them per Likert scale. Conclusion: Scalp can safely be used as donor site for skin graft to be used for scalp defects, which is associated with better results and lower complication rates compared to other donor sites.

Keywords: donor site, leg, partial-thickness graft, scalp

Procedia PDF Downloads 133
360 Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets Combined with Magnetic Nanoparticles: Remove Metal Ions and Catalytic Application

Authors: Laroussi Chaabane, Amel El Ghali, Emmanuel Beyou, Mohamed Hassen V. Baouab

Abstract:

In this research, the functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished and followed by the grafting of bis(2-pyridylmethyl) amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) and then combined with magnetic nanoparticles (Fe₃O₄NPs) to produce a magnetic graphene-based composite [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. The physicochemical properties of [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] composites were investigated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA). Additionally, the catalysts can be easily recycled within ten seconds by using an external magnetic field. Moreover, [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] was used for removing Cu(II) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature on the metal ions adsorption were investigated, however weakly dependent on ionic strength. The maximum adsorption capacity values of Cu(II) on the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] at the pH of 6 is 3.46 mmol.g⁻¹. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the Cu (II) adsorption by [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossens adsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED], their reusability (more than 6 cycles) and durability in the aqueous solutions open the path to removal of Cu(II) from water solution. Based on the results obtained, we report the activity of Cu(II) supported on [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] as a catalyst for the cross-coupling of symmetric alkynes.

Keywords: graphene, magnetic nanoparticles, adsorption kinetics/isotherms, cross coupling

Procedia PDF Downloads 120
359 Reduction of Cooling Demands in a Subtropical Humid Climate Zone: A Study on Roofs of Existing Residential Building Using Passive

Authors: Megha Jain, K. K. Pathak

Abstract:

In sub-tropical humid climates, it is estimated most of the urban peak load of energy consumption is used to satisfy air-conditioning or air-coolers cooling demand in summer time. As the urbanization rate in developing nation – like the case in India is rising rapidly, the pressure placed on energy resources to satisfy inhabitants’ indoor comfort requirements is consequently increasing too. This paper introduces passive cooling through roof as a means of reducing energy cooling loads for satisfying human comfort requirements in a sub-tropical climate. Experiments were performed by applying different insulators which are locally available solar reflective materials to insulate the roofs of five rooms of 4 case buildings; three rooms having RCC (Reinforced Cement Concrete) roof and two having Asbestos sheet roof of existing buildings. The results are verified by computer simulation using Computational Fluid Dynamics tools with FLUENT software. The result of using solar reflective paint with high albedo coating shows a fall of 4.8⁰C in peak hours and saves 303 kWh considering energy load with air conditioner during the summer season in comparison to non insulated flat roof energy load of residential buildings in Bhopal. An optimum solution of insulator for both types of roofs is presented. It is recommended that the selected cool roof solution be combined with insulation on other elements of envelope, to increase the indoor thermal comfort. The application is intended for low cost residential buildings in composite and warm climate like Bhopal.

Keywords: cool roof, computational fluid dynamics, energy loads, insulators, passive cooling, subtropical climate, thermal performance

Procedia PDF Downloads 154
358 X-Ray Diffraction and Crosslink Density Analysis of Starch/Natural Rubber Polymer Composites Prepared by Latex Compounding Method

Authors: Raymond Dominic Uzoh

Abstract:

Starch fillers were extracted from three plant sources namely amora tuber (a wild variety of Irish potato), sweet potato and yam starch and their particle size, pH, amylose, and amylopectin percentage decomposition determined accordingly by high performance liquid chromatography (HPLC). The starch was introduced into natural rubber in liquid phase (through gelatinization) by the latex compounding method and compounded according to standard method. The prepared starch/natural rubber composites was characterized by Instron Universal testing machine (UTM) for tensile mechanical properties. The composites was further characterized by x-ray diffraction and crosslink density analysis. The particle size determination showed that amora starch granules have the highest particle size (156 × 47 μm) followed by yam starch (155× 40 μm) and then the sweet potato starch (153 × 46 μm). The pH test also revealed that amora starch has a near neutral pH of 6.9, yam 6.8, and sweet potato 5.2 respectively. Amylose and amylopectin determination showed that yam starch has a higher percentage of amylose (29.68), followed by potato (22.34) and then amora starch with the lowest value (14.86) respectively. The tensile mechanical properties testing revealed that yam starch produced the best tensile mechanical properties followed by amora starch and then sweet potato starch. The structure, crystallinity/amorphous nature of the product composite was confirmed by x-ray diffraction, while the nature of crosslinking was confirmed by swelling test in toluene solvent using the Flory-Rehner approach. This research study has rendered a workable strategy for enhancing interfacial interaction between a hydrophilic filler (starch) and hydrophobic polymeric matrix (natural rubber) yielding moderately good tensile mechanical properties for further exploitation development and application in the rubber processing industry.

Keywords: natural rubber, fillers, starch, amylose, amylopectin, crosslink density

Procedia PDF Downloads 150
357 Development of a New Margarine Added Date Seed Oil: Characteristics and Chemical Composition of Date Seed Oil

Authors: Hamitri-Guerfi Fatiha, Madani Khodir, Hadjal Samir, Kati Djamel, Youyou Ahcene

Abstract:

Date palm (Phoenix dactylifera) is a principal fruit that is grown in many regions of the world, resulting in a surplus production of dates. Algeria is considered to be one of the date producing countries. Date seeds (pits) have been a problem to the date industry as a waste stream. However, finding a way to make a profit on the pits would benefit date farmers substantially. This work concentrated on the valorization of date seed oils. A preliminary study was carried out on three varieties (soft, half soft, and dry) and we selected the dry variety. This work concerns the valorization of the date seed oil of the dry variety: ‘Mech Degla’ by its incorporation in a food formulation: margarine of table. Lipid extraction was carried out by hot extraction with the soxhlet; the extracts obtained are rich in fat contents, the results gave outputs of 13.21±0.21 %. The antioxidant activity of extracted oils was studied by the test of DPPH, the content polyphenols as well as the anti-radicalaire activity. The analysis of fatty acids was made by CPG. Thus, it comes out from our results that the recovered fat contents are interesting and considerable. A formulation of the margarine ‘BIO’ was elaborated on the scale industrialist by the addition of the extracts of date seeds ‘Mech-Degla’ oil in order to substitute a synthetic additive. The physicochemical characteristics of the elaborate margarines prove to be in conformity with the standards set by the Algerian companies. The texture of the elaborate margarine has an acceptable color, an aspect brilliant and homogeneous, it is plastic and easy to paste having an index of required SFC and the margarine melts easily in the mouth. Moreover, the evaluation of oxidative stability is carried out by the test of Rancimat. The result obtained reported that the margarine enriched with date seed oil, proved more resistant to oxidation, than the margarine without extract, which is improved much during incorporation of the extracts simultaneously. By conclusion, considering the content of polyphénols noted in the two extracts (aqueous and oily), we can exhort the scientific community to become aware of the treasures of our country especially the wonders of the south which are the dates and theirs under products (pits).

Keywords: antioxydant activity, date seed oil, quality characteristics, margarine

Procedia PDF Downloads 399
356 Cracking Mode and Path in Duplex Stainless Steels Failure

Authors: Faraj A. E. Alhegagi, Bassam F. A. Alhajaji

Abstract:

Ductile and brittle fractures are the two main modes for the failure of engineering components. Fractures are classified with respect to several characteristics, such as strain to fracture, ductile or brittle crystallographic mode, shear or cleavage, and the appearance of fracture, granular or transgranular. Cleavage is a brittle fracture involves transcrystalline fracture along specific crystallographic planes and in certain directions. Fracture of duplex stainless steels takes place transgranularly by cleavage of the ferrite phase. On the other hand, ductile fracture occurs after considerable plastic deformation prior to failure and takes place by void nucleation, growth, and coalescence to provide an easy fracture path. Twinning causes depassivation more readily than slip and appears at stress lower than the theoretical yield stress. Consequently, damage due to twinning can occur well before that due to slip. Stainless steels are clean materials with the low efficiency of second particles phases on the fracture mechanism. The ferrite cleavage and austenite tear off are the main mode by which duplex stainless steels fails. In this study, the cracking mode and path of specimens of duplex stainless steels were investigated. Zeron 100 specimens were heat treated to different times cooled down and pulled to failure. The fracture surface was investigated by scanning electron microscopy (SEM) concentrating on the cracking mechanism, path, and origin. Cracking mechanisms were studied for those grains either as ferrite or austenite grains identified according to fracture surface features. Cracks propagated through the ferrite and the austenite two phases were investigated. Cracks arrested at the grain boundary were studied as well. For specimens aged for 100h, the ferrite phase was noted to crack by cleavage along well-defined planes while austenite ridges were clearly observed within the ferrite grains. Some grains were observed to fail with topographic features that were not clearly identifiable as ferrite cleavage or austenite tearing. Transgranular cracking was observed taking place in the ferrite phase on well-defined planes. No intergranular cracks were observed for the tested material. The austenite phase was observed to serve as a crack bridge and crack arrester.

Keywords: austenite ductile tear off, cracking mode, ferrite cleavage, stainless steels failure

Procedia PDF Downloads 127
355 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments

Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem

Abstract:

The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.

Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength

Procedia PDF Downloads 116