Search results for: neural perception.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3795

Search results for: neural perception.

645 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 120
644 The Effects of Fearing Cancer in Women

Authors: E. Kotrotsiou, A. S. Topsioti, S. Mantzoukas, E. Dragioti, M. Gouva

Abstract:

Introduction: The literature has demonstrated that individual and psychological factors have a direct effect on the perceptions and attitudes of women with cancer. Objectives: To investigate the relationship between the fear of cancer and anxiety. Aim: To examine the impact of the fear of cancer in women with state and trait anxiety of women. Methods: A community sample of 286 women (mean age 39.6 years, SD = 9.5 ranged 20-60) participated in the current study. The women completed a) State - Trait Anxiety Inventory (STAI) and b) questionnaire concerning socio-demographic information and questions for fear of cancer. Results: The perception of fear in women with cancer is statistically independent from their age (t–test, p = 0.58), their family status (χ2, p = 0.519), their place of residency (χ2, p = 0.148), the manifestation of gynecological cancer (χ2, p = 0.979) or the manifestation of any type of cancer in the family (χ2, p = 0.277). In contrast, it was observed that there was a dependence in relation to a total of phobias (χ2, p = 0.003), the fear of illness (χ2, p< 0.001) and the fear of heights (χ2, p = 0.004). Furthermore, the participants that responded that they feared cancer displayed greater level of stress both as situation (t=-3.462; p=0.001) and as a trait of their personality (t=-4.377; p<0.001), and at the same time they displayed greater levels of depression in comparisons with the other participants. Furthermore, following multiple linear regression analysis it was observed that the participants that responded positively to the question if they feared cancer had 8, 3 units greater stress level as a personality trait in comparison to women that responded negatively to the question if they feared cancer (B=8.3; p=0.016; R2=0.506). Conclusion: Women’s fear of cancer is statistically independent from their age, family status, place of residency, the manifestation of gynaecological cancer and with the manifestation of cancer any type in the family. In contrast, there is a dependency with the total of phobias, fear of illness and fear of heights. Women that state that they have a fear of cancer manifest greater levels of stress from the rest of the participants both as situation and as a trait of their personality (p = 0.001 and p< 0.001 accordingly). In specific, the study demonstrated that the participants that positively to the question if they feared cancer had 8,3 units greater stress level as a personality trait in comparison to women that responded negatively.

Keywords: fear, women health, anxiety, psychology, cancer

Procedia PDF Downloads 262
643 Volunteers’ Preparedness for Natural Disasters and EVANDE Project

Authors: A. Kourou, A. Ioakeimidou, E. Bafa, C. Fassoulas, M. Panoutsopoulou

Abstract:

The role of volunteers in disaster management is of decisive importance and the need of their involvement is well recognized, both for prevention measures and for disaster management. During major catastrophes, whereas professional personnel are outsourced, the role of volunteers is crucial. In Greece experience has shown that various groups operating in the civil protection mechanism like local administration staff or volunteers, in many cases do not have the necessary knowledge and information on best practices to act against natural disasters. One of the major problems is the lack of volunteers’ education and training. In the above given framework, this paper presents the results of a survey aimed to identify the level of education and preparedness of civil protection volunteers in Greece. Furthermore, the implementation of earthquake protection measures at individual, family and working level, are explored. More specifically, the survey questionnaire investigates issues regarding pre-earthquake protection actions, appropriate attitudes and behaviors during an earthquake and existence of contingency plans in the workplace. The questionnaires were administered to citizens from different regions of the country and who attend the civil protection training program: “Protect Myself and Others”. A closed-form questionnaire was developed for the survey, which contained questions regarding the following: a) knowledge of self-protective actions; b) existence of emergency planning at home; c) existence of emergency planning at workplace (hazard mitigation actions, evacuation plan, and performance of drills); and, d) respondents` perception about their level of earthquake preparedness. The results revealed a serious lack of knowledge and preparedness among respondents. Taking into consideration the aforementioned gap and in order to raise awareness and improve preparedness and effective response of volunteers acting in civil protection, the EVANDE project was submitted and approved by the European Commission (EC). The aim of that project is to educate and train civil protection volunteers on the most serious natural disasters, such as forest fires, floods, and earthquakes, and thus, increase their performance.

Keywords: civil protection, earthquake, preparedness, volunteers

Procedia PDF Downloads 243
642 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 108
641 Yoga Offers Protection for Premenstrual Syndrome

Authors: Katalin Gocze, Vanda A Nemes, Charlotte Briest

Abstract:

Introduction: Premenstrual syndrome (PMS) is a psychoneuroendocrinological disorder adversely affecting life-quality for over 80% of hormonally active women. PMS has a negative impact on women’s daily life in terms of work, interpersonal relationships and leisure time activities. The aim of our study was to evaluate the effects of a yoga intervention focusing on the female pelvic area. Materials and methods: 34 women (ages 18-40) with PMS (Premenstrual Syndrome Screening Tool) and no previous experience in yoga were recruited and randomly assigned to either the yoga or the control group. The intervention consisted of 90’ yoga sessions twice a week and a daily 15’ self-practice module with carefully chosen yogic exercises addressing the reproductive organs by toning the pelvic floor and opening the hips as well as relieving stress and improving concentration. Severity of symptoms of PMS was assessed at the beginning and after the 8-week-long intervention. Pre- and post-program data collection included physical and psychological parameters and the evaluation of ACOQ PMS questionnaire and daily symptom diary. Results: Age and educational background were similar in the control and intervention group with an overall mean age of 29.11±4.78 years. PSST scores significantly improved in the yoga group (p=0.002), while difference in the control group’s pre and post-program values were non-significant (p=0.38). Perception and tolerance of anxiety and stress was significantly better after the intervention (p=0.008). As for changes in physical symptoms distinct improvement was registered for breast tenderness (p=0.028) and for meteorism (p=0.015). Discussion: Yoga’s success originates from the synergic positive effects of stress relief and regular physical activity. Benefits (both mental and physical) of strategically planned, focused yoga practice are apparent even after shorter time periods and can help women with PMS manage or eliminate symptoms in order to improve their life-quality.

Keywords: life-quality, physical symptoms, premenstrual syndrome, psychological impact, yoga

Procedia PDF Downloads 117
640 Report of a Realistic Simulation Training in Using Bougie Guide for Endotracheal Intubation

Authors: Cleto J. Sauer Jr., Rita C. Sauer, Chaider G. Andrade, Dóris F. Rabelo

Abstract:

Some patients with COVID-19 disease and difficult airway characteristics undergo to endotracheal intubation (ETI) procedure. The tracheal introducer, known as the bougie guide, can aid ETI in patients with difficult airway pattern. Realistic simulation (RS) is a methodology utilized for healthcare professionals training. To improve skills in using the bougie guide of physicians from Recôncavo da Bahia region in Brazil, during COVID-19 outbreak, RS training was carried out. Simulated scenario included the Nasco Lifeform realistic simulator for ETI and a bougie guide introducer. Training was a capacitation program organized by the Health Department of Bahia State. Objective: To report effects in participants´ self-confidence perception for using bougie guide after a RS based training. Methods: Descriptive study, secondary data extracted from questionnaires. Priority workplace and previous knowledge about bougie were reported on a preparticipation formulary. Participants also completed pre- and post-training qualitative self-assessment (10-point Likert scale) regarding to self-confidence in using bougie guide. Distribution analysis for qualitative data was performed with Wilcoxon Signed Rank Test, and self-confidence increase analysis in frequency contingency tables with Fisher's exact test. Results: From May to June 2020 a total of 36 physicians participated of training, 25 (69%) from primary care setting, 32 (89%) with no previous knowledge about the bougie guide utilization. For those who had previous knowledge about bougie pre-training self-confidence median was 6,5, and 2 for participants who had not. In overall there was an increase in self-confidence median for bougie utilization. Median (variation) before and after training was 2.5 (1-7) vs. 8 (4-10) (p <0.0001). Among those who had no previous knowledge about bougie (n = 32) an increase in self-confidence greater than 3 points for bougie utilization was reported by 31 vs. 1 participants (p = 0.71). Conclusions: Most of participants had no previous knowledge about using the bougie guide. RS training contributed to self-confidence increase for using bougie for ETI procedure. RS methodology can contribute for training in using the bougie guide for ETI procedure during COVID-19 outbreak.

Keywords: bougie, confidence, COVID-19, endotracheal intubation, realistic simulation

Procedia PDF Downloads 144
639 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 20
638 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks

Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.

Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions

Procedia PDF Downloads 82
637 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization

Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed

Abstract:

Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.

Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction

Procedia PDF Downloads 11
636 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders

Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi

Abstract:

Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.

Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers

Procedia PDF Downloads 66
635 Relationships between Motor Skills and Self-Perceived Athletic Competence in a Sample of Primary School Children

Authors: Cristina-Corina Bențea, Teodora-Mihaela Iconomescu, Laurențiu-Gabriel Talaghir, Claudiu Mereuță, Anamaria Berdilă

Abstract:

The study aims to examine the relationships between motor abilities, self-evaluation of athletic competence, and demographic characteristics in a sample of late-childhood participants. Defined as physical elements that enable the movements, motor skills are classified according to movement precision as gross and fine motor skills. Across their development, children enhance their ability to coordinate the limbs to produce different actions. In educational settings, they perform various instructional activities that involve the improvement of their athletic prowess and are taught how to strengthen their gross and fine motor abilities. Also, in relation to their activities, children tend to evaluate themselves differently across the various domains of their life. Starting from childhood, athletic competence is one of the area-specific evaluations of competence that refers to one’s ability to do well at sports, including outdoor games. Method: The sample consisted of fifty-eight primary school children, thirty girls, and twenty-eight boys, with ages between 8-10 years. The Bruininks-Oseretsky test of motor proficiency was used to assess both gross and fine motor skills in eight specific areas (fine motor precision, fine motor integration, manual dexterity, bilateral coordination, balance, running speed and agility, upper-limb coordination, strength). Athletic competence self-perceived was assessed with one of the six subscales of the Self-Perception Profile for Children. Results: Were examined both the relationships between each motor skills scale and subscales and between motor skills and general self-perceived athletic competence. Results indicated correlations between the athletic competence and four motor skills subscales depending on the gender and age of the children. The findings of the study were discussed related to the possibility to improve children's physical proficiency in educational settings according to the level of self-perceived athletic competence.

Keywords: gross motor skills, fine motor skills, athletic competence, self-evaluation, children, education

Procedia PDF Downloads 85
634 Perinatal Ethanol Exposure Modifies CART System in Rat Brain Anticipated for Development of Anxiety, Depression and Memory Deficits

Authors: M. P. Dandekar, A. P. Bharne, P. T. Borkar, D. M. Kokare, N. K. Subhedar

Abstract:

Ethanol ingestion by the mother ensue adverse consequences for her offspring. Herein, we examine the behavioral phenotype and neural substrate of the offspring of the mother on ethanol. Female rats were fed with ethanol-containing liquid diet from 8 days prior of conception and continued till 25 days post-parturition to coincide with weaning. Behavioral changes associated with anxiety, depression and learning and memory were assessed in the offspring, after they attained adulthood (day 85), using elevated plus maze (EPM), forced swim (FST) and novel object recognition tests (NORT), respectively. The offspring of the alcoholic mother, compared to those of the pair-fed mother, spent significantly more time in closed arms of EPM and showed more immobility time in FST. Offspring at the age of 25 and 85 days failed to discriminate between novel versus familiar object in NORT, thus reflecting anxiogenic, depressive and amnesic phenotypes. Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CART) is known to be involved in central effects of ethanol and hence selected for the current study. Twenty-five days old pups of the alcoholic mother showed significant augmentation in CART-immunoreactivity in the cells of Edinger-Westphal (EW) nucleus and lateral hypothalamus. However, a significant decrease in CART-immunoreactivity was seen in nucleus accumbens shell (AcbSh), lateral part of bed nucleus of the stria terminalis (BNSTl), locus coeruleus (LC), hippocampus (CA1, CA2 and CA3), and arcuate nucleus (ARC) of the pups and/or adults offspring. While no change in the CART-immunoreactive fibers of AcbSh and BNSTl, CA2 and CA3 was noticed in the 25 days old pups, the CART-immunoreactive cells in EW and paraventricular nucleus (PVN), and fibers in the central nucleus of amygdala of 85 days old offspring remained unaffected. We suggest that the endogenous CART system in these discrete areas, among other factors, may be a causal to the abnormalities in the next generation of an alcoholic mother.

Keywords: anxiety, depression, CART, ethanol, immunocytochemistry

Procedia PDF Downloads 395
633 Speech Identification Test for Individuals with High-Frequency Sloping Hearing Loss in Telugu

Authors: S. B. Rathna Kumar, Sandya K. Varudhini, Aparna Ravichandran

Abstract:

Telugu is a south central Dravidian language spoken in Andhra Pradesh, a southern state of India. The available speech identification tests in Telugu have been developed to determine the communication problems of individuals having a flat frequency hearing loss. These conventional speech audiometric tests would provide redundant information when used on individuals with high-frequency sloping hearing loss because of better hearing sensitivity in the low- and mid-frequency regions. Hence, conventional speech identification tests do not indicate the true nature of the communication problem of individuals with high-frequency sloping hearing loss. It is highly possible that a person with a high-frequency sloping hearing loss may get maximum scores if conventional speech identification tests are used. Hence, there is a need to develop speech identification test materials that are specifically designed to assess the speech identification performance of individuals with high-frequency sloping hearing loss. The present study aimed to develop speech identification test for individuals with high-frequency sloping hearing loss in Telugu. Individuals with high-frequency sloping hearing loss have difficulty in perception of voiceless consonants whose spectral energy is above 1000 Hz. Hence, the word lists constructed with phonemes having mid- and high-frequency spectral energy will estimate speech identification performance better for such individuals. The phonemes /k/, /g/, /c/, /ṭ/ /t/, /p/, /s/, /ś/, /ṣ/ and /h/are preferred for the construction of words as these phonemes have spectral energy distributed in the frequencies above 1000 KHz predominantly. The present study developed two word lists in Telugu (each word list contained 25 words) for evaluating speech identification performance of individuals with high-frequency sloping hearing loss. The performance of individuals with high-frequency sloping hearing loss was evaluated using both conventional and high-frequency word lists under recorded voice condition. The results revealed that the developed word lists were found to be more sensitive in identifying the true nature of the communication problem of individuals with high-frequency sloping hearing loss.

Keywords: speech identification test, high-frequency sloping hearing loss, recorded voice condition, Telugu

Procedia PDF Downloads 419
632 Stigma Associated with Living in a Care Home: Perspectives of Older Residents Living in Care Homes in Thailand

Authors: Suhathai Tosangwarn, Philip Clissett, Holly Blake

Abstract:

Background: High prevalence of depression has been reported among older adults living in care homes in Thailand, associated with physical impairment, low social support, low self-esteem and particularly stigma associated with living in a care home. However, little is understood about how such stigma is experienced among Thai care home residents. This study examines residents’ perceptions of stigma and their strategies for coping with stigma. Method/Design: Case study research was used to gain an in-depth view about the stigma of residents’ perspectives and experiences from two care homes in the northeast of Thailand by conducting an in-depth interview and non-participant observation. Qualitative interviews were conducted with 30 older residents (aged >60 years), purposively sampled from both care homes. Non-participant observation was conducted in various public spaces of the care homes, including the dining room, corridors, and activities areas for approximately one to two hours per day at different times; morning and afternoon including weekdays and weekend in both care homes for one month. Thematic analysis was used to analyse the data. Results: The study identified three major themes related to the causes of stigma, the reactions towards stigma and the mitigating factors. Negative beliefs about care homes, negative attitudes, and stereotypes toward the elderly and perceptions of unequal power relations between staff and residents were the main factors precipitating stigma. Consequently, residents exhibited negative emotions and behaviours, including depressive symptoms, while living in care homes. Residents reported the use of particular coping strategies, including accessing support from the public and staff and engaging in care home activities which these helped them to cope with their perception of stigma. Conclusion: Improved understanding of the underlying factors behind perceived stigma in care home residents may help to prevent depression and reduce perceptions of stigma associated with living in a care home, by informing strategy, supportive intervention and guidelines for appropriate care for older Thai residents.

Keywords: care home, depression, older adult, stigma, Thailand

Procedia PDF Downloads 454
631 Autonomy in Healthcare Organisations: A Comparative Case Study of Middle Managers in England and Iran

Authors: Maryam Zahmatkesh

Abstract:

Middle managers form a significant occupational category in organisations. They undertake a vital role, as they sit between the operational and strategic roles. Traditionally they were acting as diplomat administrators, and were only in power to meet the demands of professionals. Following the introduction of internal market, in line with the principles of New Public Management, middle managers have been considered as change agents. More recently, in the debates of middle managers, there is emphasis on entrepreneurialism and enacting strategic role. It was assumed that granting autonomy to the local organisations and the inception of semi-autonomous hospitals (Foundation Trusts in England and Board of Trustees in Iran) would give managers more autonomy to act proactively and innovatively. This thesis explores the hospital middle managers’ perception of and responses to public management reforms (in particular, hospital autonomy) in England and Iran. In order to meet the aims of the thesis, research was undertaken within the interpretative paradigm, in line with social constructivism. Data were collected from interviews with forty-five middle managers, observational fieldwork and documentary analysis across four teaching university hospitals in England and Iran. The findings show the different ways middle managers’ autonomy is constrained in the two countries. In England, middle managers have financial and human recourses, but their autonomy is constrained by government policy and targets. In Iran, middle managers are less constrained by government policy and targets, but they do not have financial and human resources to exercise autonomy. Unbalanced autonomy causes tension and frustration for middle managers. According to neo-institutional theory, organisations are deeply embedded within social, political, economic and normative settings that exert isomorphic and internal population-level pressures to conform to existing and established modes of operation. Health systems which are seeking to devolve autonomy to middle managers must appreciate the multidimensional nature of the autonomy, as well as the wider environment that organisations are embedded, if they are about to improve the performance of managers and their organisations.

Keywords: autonomy, healthcare organisations, middle managers, new public management

Procedia PDF Downloads 310
630 Magnitude and Factors of Risky Sexual Practice among Day Laborers in Ethiopia: A Systematic Review and Meta-Analysis, 2023

Authors: Kalkidan Worku, Eniyew Tegegne, Menichil Amsalu, Samuel Derbie Habtegiorgis

Abstract:

Introduction: Because of the seasonal nature of the work, day laborers are exposed to risky sexual practices. Since the majority of them are living far away from their birthplace and family, they engage in unplanned and multiple sexual practices. These unplanned and unprotected sexual experiences are a risk for different types of sexual-related health crises. This study aimed to assess the pooled prevalence of risky sexual practices and its determinants among day laborers in Ethiopia. Methods: Online databases, including PubMed, Google Scholar, Science Direct, African Journal of Online, Academia Edu, Semantic Scholar, and university repository sites, were searched from database inception until March 2023. PRISMA 2020 guideline was used to conduct the review. Among 851 extracted studies, ten articles were retained for the final quantitative analysis. To identify the source of heterogeneity, a sub-group analysis and I² test were performed. Publication bias was assessed by using a funnel plot and the Egger and Beg test. The pooled prevalence of risky sexual practices was calculated. Besides, the association between determinant factors and risky sexual practice was determined using a pooled odds ratio (OR) with a 95% confidence interval. Result: The pooled prevalence of risky sexual practices among day laborers was 46.00% (95% CI: 32.96, 59.03). Being single (OR: 2.49; 95% CI: 1.29 to 4.83), substance use (OR: 1.79; 95% CI: 1.40 to 2.29), alcohol intake (OR: 4.19; 95% CI: 2.19 to 8.04), watching pornographic (OR: 5.49; 95% CI: 2.99 to 10.09), discussion about SRH (OR: 4.21; 95% CI: 1.34 to 13.21), visiting night clubs (OR: 2.86 95% CI: 1.79 to 4.57) and risk perception (OR: 0.37 95% CI: 0.20 to 0.70) were the possible factors for risky sexual practice of day laborers in Ethiopia. Conclusions: A large proportion of day laborers engaged in risky sexual practices. Interventions targeting creating awareness of sexual and reproductive health for day laborers should be implemented. Continuous peer education on sexual health should be given to day laborers. Sexual and reproductive health services should be accessible in their workplaces to maximize condom utilization and to facilitate sexual health education for all day laborers.

Keywords: day laborers, sexual health, risky sexual practice, unsafe sex, multiple sexual partners

Procedia PDF Downloads 79
629 Entrepreneurship Education: A Panacea for Entrepreneurial Intention of University Undergraduates in Ogun State, Nigeria

Authors: Adedayo Racheal Agbonna

Abstract:

The rising level of graduate unemployment in Nigeria has brought about the introduction of entrepreneurship education as a career option for self–reliance and self-employment. Sequel to this, it is important to have an understanding of the determining factors of entrepreneurial intention. Therefore this research empirically investigated the influence of entrepreneurship education on entrepreneurial intention of undergraduate students of selected universities in Ogun State, Nigeria. The study is significant to researchers, university policy makers, and the government. Survey research design was adopted in the study. The population consisted of 17,659 final year undergraduate students universities in Ogun State. The study adopted stratified and random sampling technique. The table of sample size determination was used to determine the sample size for this study at 95% confidence level and 5% margin error to arrive at a sample size of 1877 respondents. The elements of population were 400 level students of the selected universities. A structured questionnaire titled 'Entrepreneurship Education and students’ Entrepreneurial intention' was administered. The result of the reliability test had the following values 0.716, 0.907 and 0.949 for infrastructure, perceived university support, and entrepreneurial intention respectively. In the same vein, from the construct validity test, the following values were obtained 0.711, 0.663 and 0.759 for infrastructure, perceived university support and entrepreneurial intention respectively. Findings of this study revealed that each of the entrepreneurship education variables significantly affected intention University infrastructure B= -1.200, R²=0.679, F (₁,₁₈₇₅) = 3958.345, P < 0.05) Perceived University Support B= -1.027, R²=0.502, F(₁,₁₈₇₅) = 1924.612, P < 0.05). The perception of respondents in public university and private university on entrepreneurship education have a statistically significant difference [F(₁,₁₈₇₅) = 134.614, p < 0.05) α F(₁,₁₈₇₅) = 363.439]. The study concluded that entrepreneurship education positively influenced entrepreneurial intention of undergraduate students in Ogun State, Nigeria. Also, university infrastructure and perceived university support have negative and significant effect on entrepreneurial intention. The study recommended that to promote entrepreneurial intention of university undergraduate students, infrastructures and the university support that can arouse entrepreneurial intention of students should be put in place.

Keywords: entrepreneurship education, entrepreneurial intention, perceived university support, university infrastructure

Procedia PDF Downloads 234
628 A Review of Hypnosis Uses for Anxiety and Phobias Treatment

Authors: Fleura Shkëmbi, Sevim Mustafa, Naim Fanaj

Abstract:

Hypnosis, often known as cognitive therapy, is a sort of mind-body psychotherapy. A professional and certified hypnotist or hypnotherapist guides the patient into this extreme level of focus and relaxation during the session by utilizing verbal cues, repetition, and imagery. In recent years, hypnotherapy has gained popularity in the treatment of a variety of disorders, including anxiety and particular phobias. The term "phobia" is commonly used to define fear of a certain trigger. When faced with potentially hazardous situations, the brain naturally experiences dread. While a little dread here and there may keep us safe, phobias can drastically reduce our quality of life. In summary, persons who suffer from anxiety are considered to see particular environmental situations as dangerous, but those who do not suffer from anxiety do not. Hypnosis is essential in the treatment of anxiety disorders. Hypnosis can help patients minimize their anxiety symptoms. This broad concept has aided in the development of models and therapies for anxiety disorders such as generalized anxiety disorder, panic attacks, hypochondria, and obsessional disorders. Hypnosis techniques are supposed to be attentive and mental pictures, which is conceivable; this is why they're associated with improved working memory and visuospatial abilities. In this sense, the purpose of this study is to determine how effectively specific therapeutic methods perform in treating persons with anxiety and phobias. In addition to cognitive-behavioral therapy and other therapies, the approaches emphasized the use of therapeutic hypnosis. This study looks at the use of hypnosis and related psychotherapy procedures in the treatment of anxiety disorders. Following a discussion of the evolution of hypnosis as a therapeutic tool, neurobiological research is used to demonstrate the influence of hypnosis on the change of perception in the brain. The use of hypnosis in the treatment of phobias, stressful situations, and posttraumatic stress disorder is examined, as well as similarities between the hypnotic state and dissociative reactions to trauma. Through an extensive literature evaluation, this study will introduce hypnotherapy procedures that result in more successful anxiety and phobia treatment.

Keywords: anxiety, hypnosis, hypnotherapy, phobia, technique, state

Procedia PDF Downloads 119
627 Brand Tips of Thai Halal Products

Authors: Pibool Waijittragum

Abstract:

The purpose of this research is to analyze the marketing strategies of Thai Halal products which related to the way of life for Thai Muslims. The expected benefit is the marketing strategy for brand building process for Halal products in Thailand. 4 elements of marketing strategies which necessary for the brand identity creation is the research framework: Consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, desserts and snacks 5) Hygienic daily products; such as soap, shampoo and body lotion. The results will explain some suitable representation in the marketing strategies of Thai Halal products as are: 1) Benefit; the characteristics of the product with its benefit. Consumers will purchase this product with the reason of; it is beneficial nutrients product, there are no toxic or chemical residues. Fresh and clean materials 2) Attribute; the exterior images that attract to consumer. Consumers will purchase this product with the reason of; there is a standard proof mark, food and drug secure proof mark and Halal products mark. Packaging and its materials should be draw attention. Use an attractive graphic. Use outstanding images of product, material or ingredients. 3) Value; the value of products that affect to consumers perception; it is healthy products. Accumulate quality of life. It is a product of expertise, manufacturing of research result. Consumers are important. It’s sincere, honest and reliable to all. 4) Personality; reflection of consumers thought. The personality feedback to them after they were consumes this product; they are health care persons. They are the rational person, moral person, justice person and thoughtful person like a progressive thinking.

Keywords: marketing strategies, product identity, branding, Thai Halal products

Procedia PDF Downloads 386
626 Psychological Stressors Caused by Urban Expansion in Algeria

Authors: Laid Fekih

Abstract:

Background: The purpose of this paper is to examine the psychological stressors caused by urbanization, a field study conducted on a sample range of youth who live in urban areas. Some of them reside in areas with green surroundings while others reside in lack of green areas, which saw the terrible expansion of urban. The study included the impact of urbanization on the mental health of youths; select the psychological problems most commonly caused by urbanization, and the impact of green spaces in alleviating stress. Method: The method used in this research is descriptive, as the data collected from a sample of 160 young men were analyzed. The tool used is the psychological distress test. We proceeded with some statistical techniques, which provided percentages, analysis of variance, and t-tests. Results: The findings of this research were: (i) The psychological stressors caused by urban expansion are mainly in the intensity of stress, incompetence, emotional, and psychosomatic problems. (ii) There was a statistically significant difference at the level of significance 0.02 among young people who live in places in green spaces and without green space in terms of psychological stressors, in favor of young people who live in places free of greenery. (iii) The quality of this primary variable effect of housing (rental or ownership) is statistically significant in favor of young people living in rented accommodation. Conclusion: The green spaces provided by Tlemcen city are inadequate and insufficient to fulfill the population's requirements for contact with nature, leading to such effects that may negatively affect mental health, which makes it a prominent process that should not be neglected. Incorporating green spaces into the design of buildings, homes, and communities to create shared spaces, which facilitate interaction and foster well-being, becomes the main purpose. We think this approach can support the reconstruction of the built environment with green spaces by facilitating the link between psychological stress perception studies and technologies.

Keywords: psychological stressors, urbanization, psychological problems, green spaces

Procedia PDF Downloads 82
625 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 222
624 Investigating the Impact of Factors Associated with Student Academic Achievement and Expectations through the Ecosystemic Perspective in the Greek Context: The Role of the Individual, Family, School and of the Community

Authors: Olga Giovani

Abstract:

In this research, Bronfenbrenner's theory will be used to investigate the individual, microsystemic, and exosystemic factors that may affect adolescents' academic achievement as well as their expectations in Greece. First, the topic of academic achievement in an adolescent developmental context will be set as the target of the proposed study while focusing on the aspects of community influences on adolescents. More specifically, the effect of available resources and the perceived sense of safety and support will be further investigated. Then the issue of family factors will be analyzed, as they are subjectively perceived by the adolescents, focusing on the perceived parental style, parental monitor, and involvement as a mesosystemic factor. In turn, the school will also be discussed with emphasis on the perceived school climate and support as well as the academic aspects of student achievement. Finally, the adolescent's individual perspective will be taken into consideration in developmental terms, examining their perceptions regarding their community/neighborhood, their family, their school, as well as their sense of self-concept and self-esteem as these are expressed through their academic performance and prosocial behavior. The aim of the proposed research is to study these associations through the prism of the systemic perspective, the relationship between aspects of educational achievement and socioeconomic background, with an emphasis on the role of the community, which has not been adequately researched in the Greek context. Community will be defined by the available community resources (recreational activities, public library, local orchestras, free entrance museums, etc.), adolescents' own perception of social support, safety, and support inside that community. These perceptions need to be investigated since they may serve as possible predictors of a child's current cognitive, developmental, and psycho-social outcomes, such as their perceived self-concept and self-esteem, as well as on their future expectations related to the entrance to university and job expectations.

Keywords: bioecological model, developmental psychology, ecosystemic approach, student achievement, microsystemic factors, mesosystemic factors, individual perceptions

Procedia PDF Downloads 136
623 Chilean Business Orientalism: The Role of Non-State Actors in the Frame of Asymmetric Bilateral Relations

Authors: Pablo Ampuero, Claudia Labarca

Abstract:

The current research paper assesses how the narrative of Chilean businesspeople about China shapes a new Orientalism Analyses on the role of non-state actors in foreign policy that have hitherto theorized about Orientalism as a narrative of hegemonic power. Hence, it has been instrumental to the efforts of imperialist powers to justify their mission civilisatrice. However, such conceptualization can seldom explain new complexities of international interactions at the height of globalization. Hence, we assessed the case of Chile, a small Latin American country, and its relationship with China, its largest trading partner. Through a discourse analysis of interviews with Chilean businesspeople engaged in the Chinese market, we could determine that Chile is building an Orientalist image of China. This new business Orientalism reinforces a relation of alterity based on commercial opportunities, traditional values, and natural dispositions. Hence, the perception of the Chinese Other amongst Chilean business people frames a new set of representations as part of the essentially commercial nature of current bilateral relations. It differs from previous frames, such as the racial bias frame of the early 20th century, or the anti-communist frame in reaction to Mao’s leadership. As in every narrative of alterity, there is not only a construction of the Other but also a definition of the Self. Consequently, this analysis constitutes a relevant case of the role of non-state actors in asymmetrical bilateral relations, where the non-state actors of the minor power build and act upon an Orientalist frame, which is not representative of its national status in the relation. This study emerges as a contribution on the relation amongst non-state actors in asymmetrical relations, where the smaller power’s business class acts on a negative prejudice of its interactions with its counterpart. The research builds upon the constructivist approach to international relations, linking the idea of Nation Branding with Orientalism in the case of Chile-China relations.

Keywords: new business Orientalism, small power, framing, Chile-China relations

Procedia PDF Downloads 328
622 Changes in the Demand of Waterway Passengers During COVID-19 Pandemic: Case Study of Belém-Marajó Island, in Brazil

Authors: Maisa Sales Gama Tobias, Humberto de Paiva Junior, Luciano Silva Brito, Rui António Rodrigues Ramos

Abstract:

Waterway transport in the Amazon was the first means of access and occupation in the region. For the economic and social matter of high importance, still nowadays one of the main transport modes to several places in the region. To some places, still the only transport mode. With the advent of the pandemic, transport companies that already faced management challenges began to experience unprecedented structural changes and trends in trade and global supply chains. Thus, companies need operational reorganization to maintain the sustainability of the service under the penalty of loss of demand. Allied to this fact, it was observed that the demand presented behavior changes to adapt to this new moment. However, the lack of information about these changes makes it difficult to find solutions to maintain the quality of service. This work aimed to characterize the changes in the demand of waterway passengers through an empirical study with field research involving interviews with users and crew, on-board journeys, and visits to the waterway service company. The case study is the route Belém-Camara, on Marajó Island, in the state of Pará. This line is traditionally the only means of transport for this route, besides air transport on a much smaller scale. The collected data had a descriptive and analytical statistical treatment presented in this work. As the main result, the COVID-19 pandemic has caused significant changes, mainly in trip time and motives and, in the perception itself on service quality by part of the demand, with the increase of trip time and the feeling of insecurity. In conclusion, the service operator must review cost management and business survival strategies and tactics. The viability of the service and the social guarantee of transport proved to be threatened, putting at risk the service to the riverside populations.

Keywords: demand of waterway transport passengers, data analysis, COVID-19, amazonia

Procedia PDF Downloads 113
621 Turkey in Minds: Cognitive and Social Representation of "East" and "West"

Authors: Feyzan Tuzkaya, Nihan S. Soylu, Caglar Solak, Mehmet Peker, Hilal Peker, Kemal Ozeralp, Ceren Mete, Ezgi Mehmetoglu, Mehmet Karasu, Cihan Elci, Ece Akca, Melek Goregenli

Abstract:

Perception, evaluation and representation of the environment have been the subject of many disciplines including psychology, geography and architecture. In environmental and social psychology literature there are several evidences which suggest that cognitive representations about a place consisted of not only geographic items but also social and cultural. Mental representations of residence area or a country is influenced and determined by social-demographics, the physical and social context. Thus, all mental representations of a given place are also social representations. Cognitive maps are the main and common instruments that are used to identify spatial images and the difference between physical and subjective environments. The aim of the current study is investigating the mental and social representations of Turkey in university students’ minds. Data was collected from 249 university students from different departments (i.e. psychology, geography, history, tourism departments) of Ege University. Participants were requested to reflect Turkey in their mind onto the paper drawing sketch maps. According to the results, cognitive maps showed geographic aspects of Turkey as well as the context of symbolic, cultural and political reality of Turkey. That is to say, these maps had many symbolic and verbal items related to critics on social and cultural problems, ongoing ethnic and political conflicts, and actual political agenda of Turkey. Additionally, one of main differentiations in these representations appeared in terms of the East and West side of the Turkey, and the representations of the East and West was varied correspondingly participants’ cultural background, their ethnic values, and where they have born. The results of the study were discussed in environmental and social psychological perspective considering cultural and social values of Turkey and current political circumstances of the country.

Keywords: cognitive maps, East, West, politics, social representations, Turkey

Procedia PDF Downloads 408
620 Ta(l)king Pictures: Development of an Educational Program (SELVEs) for Adolescents Combining Social-Emotional Learning and Photography Taking

Authors: Adi Gielgun-Katz, Alina S. Rusu

Abstract:

In the last two decades, education systems worldwide have integrated new pedagogical methods and strategies in lesson plans, such as innovative technologies, social-emotional learning (SEL), gamification, mixed learning, multiple literacies, and many others. Visual language, such as photographs, is known to transcend cultures and languages, and it is commonly used by youth to express positions and affective states in social networks. Therefore, visual language needs more educational attention as a linguistic and communicative component that can create connectedness among the students and their teachers. Nowadays, when SEL is gaining more and more space and meaning in the area of academic improvement in relation to social well-being, and taking and sharing pictures is part of the everyday life of the majority of people, it becomes natural to add the visual language to SEL approach as a reinforcement strategy for connecting education to the contemporary culture and language of the youth. This article presents a program conducted in a high school class in Israel, which combines the five SEL with photography techniques, i.e., Social-Emotional Learning Visual Empowerments (SELVEs) program (experimental group). Another class of students from the same institution represents the control group, which is participating in the SEL program without the photography component. The SEL component of the programs addresses skills such as: troubleshooting, uncertainty, personal strengths and collaboration, accepting others, control of impulses, communication, self-perception, and conflict resolution. The aim of the study is to examine the effects of programs on the level of the five SEL aspects in the two groups of high school students: Self-Awareness, Social Awareness, Self-Management, Responsible Decision Making, and Relationship Skills. The study presents a quantitative assessment of the SEL programs’ impact on the students. The main hypothesis is that the students’ questionnaires' analysis will reveal a better understanding and improvement of the five aspects of the SEL in the group of students involved in the photography-enhanced SEL program.

Keywords: social-emotional learning, photography, education program, adolescents

Procedia PDF Downloads 84
619 A Case Study of An Artist Diagnosed with Schizophrenia-Using the Graphic Rorschach (Digital version) “GRD”

Authors: Maiko Kiyohara, Toshiki Ito

Abstract:

In this study, we used a psychotherapy process for patient with dissociative disorder and the graphic Rorschach (Digital version) (GRD). A dissociative disorder is a type of dissociation characterized by multiple alternating personalities (also called alternate identity or another identity). "dissociation" is a state in which consciousness, memory, thinking, emotion, perception, behavior, body image, and so on are divided and experienced. Dissociation symptoms, such as lack of memory, are seen, and the repetition of blanks in daily events causes serious problems in life. Although the pathological mechanism of dissociation has not yet been fully elucidated, it is said that it is caused by childhood abuse or shocking trauma. In case of Japan, no reliable data has been reported on the number of patients and prevalence of dissociative disorders, no drug is compatible with dissociation symptoms, and no clear treatment has been established. GRD is a method that the author revised in 2017 to a Graphic Rorschach, which is a special technique for subjects to draw language responses when enforce Rorschach. GRD reduces the burden on both the subject and the examiner, reduces the complexity of organizing data, improves the simplicity of organizing data, and improves the accuracy of interpretation by introducing a tablet computer during the drawing reaction. We are conducting research for the purpose. The patient in this case is a woman in her 50s, and has multiple personalities since childhood. At present, there are about 10 personalities whose main personality is just grasped. The patients is raising her junior high school sons as single parent, but personal changes often occur at home, which makes the home environment inferior and economically oppressive, and has severely hindered daily life. In psychotherapy, while a personality different from the main personality has appeared, I have also conducted psychotherapy with her son. In this case, the psychotherapy process and the GRD were performed to understand the personality characteristics, and the possibility of therapeutic significance to personality integration is reported.

Keywords: GRD, dissociative disorder, a case study of psychotherapy process, dissociation

Procedia PDF Downloads 117
618 The Benefits of a Totally Autologous Breast Reconstruction Technique Using Extended Latissimus Dorsi Flap with Lipo-Modelling: A Seven Years United Kingdom Tertiary Breast Unit Results

Authors: Wisam Ismail, Brendan Wooler, Penelope McManus

Abstract:

Introduction: The public perception of implants has been damaged in the wake of recent negative publicity and increasingly we are finding patients wanting to avoid them. Planned lipo-modelling to enhance the volume of a Latissimus dorsi flap is a viable alternative to silicone implants and maintains a Totally Autologous Technique (TAT). Here we demonstrate that when compared to an Implant Assisted Technique (IAT), a TAT offers patients many benefits that offset the requirement of more operations initially, with reduced short and long term complications, reduced symmetrisation surgery and reduced revision rates. Methods. Data was collected prospectively over 7 years. The minimum follows up was 3 years. The technique was generally standardized in the hand of one surgeon. All flaps were extended LD flaps (ELD). Lipo-modelling was performed using standard techniques. Outcome measures were unplanned secondary procedures, complication rates, and contralateral symmetrisation surgery rates. Key Results Were: Lower complication rates in the TAT group (18.5% vs. 33.3%), despite higher radiotherapy rates (TAT=49%, IAT=36.8%), TAT was associated with lower subsequent symmetrisation rates (30.6% vs. 50.9%), IAT had a relative risk of 3.1 for subsequent unplanned procedure, Autologous patients required an average of 1.76 sessions of lipo-modelling, Conclusions: Using lipo-modelling to enable totally autologous LD reconstruction offers significant advantages over an implant assisted technique. We have shown a lower subsequent unplanned procedure rate, lower revision surgery, and less contralateral symmetrisation surgery. We anticipate that a TAT will be supported by patient satisfaction surveys and long-term patient-reported cosmetic outcome data and intended to study this.

Keywords: breast, Latissimus dorsi, lipomodelling, reconstruction

Procedia PDF Downloads 335
617 Fact-checking and Political Polarization in an Emerging Democracy

Authors: Eric Agyekum, Dominic Asitanga

Abstract:

Ghana is widely considered asa beacon of democracy in sub-Saharan Africa. With a relatively free media, the country was ranked30thin the world and third in Africaon the 2021 Press Freedom Index. Despite the democratic gains, itis one of the most politically polarized nations in the world. Ghana’spolitical division is evident in the current hunglegislature, where each of the two dominant political parties has 137 members, with an independent member occupying the remaining one seat. Misinformation and fake newsthrive in systems with acuteideological and political differences(Imelda et al, 2021; Azzimonti&Fernandes, 2018; Spohr, 2017) and Ghana is no exception. The information disorder problem has been exacerbatedby the COVID-19 pandemic, with its attendant conspiracy theories and speculations, making it difficult for the media and fact-checking organizations to verifyall claims and flag false information. In Ghana, fact-checking agencies like Ghana Fact, Dubawa Ghana, and some mainstream news media organizations have been fact-checking political claims, COVID-19 conspiracy theories, and many others. However, it is not clear if the audience consumeand attach prominence to these fact-checked stories or even visit the websites of the fact-checking agencies to read the content. Nekmat (2020) opine that though the literature on fact-checking suggest that fact-checked stories can alter readers’ beliefs, very few studies have investigated the patronage and the potential of fact-checks to deter users from sharing false news with others, particularly on social media. In response to Nekmat, this study has been initiated to examine the perception and attitude of the audience in Ghana towards fact-checks. Anchored on the principles of the nudge theory, this study will investigate how fact-checked stories alters readers’ behavioural patterns. A survey will be conducted to collect data from sampled members of the Ghanaian society.

Keywords: fact-checking, information disorder, nudge theory, political polarization

Procedia PDF Downloads 142
616 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127