Search results for: complex network platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11246

Search results for: complex network platform

8096 Association of Major Histocompatibility Complex Alleles with Antibody Response to Newcastle Vaccine in Chicken

Authors: Atefeh Esmailnejad, Gholam Reza Nikbakht Brujeni

Abstract:

The major histocompatibility complex (MHC) is the best-characterized genetic region associated with susceptibility and/or resistance to a wide range of infectious diseases, autoimmune diseases and immune responses to vaccines. It has been demonstrated that there is an association between the MHC and resistance to Marek disease, Newcastle disease, Rous sarcoma tumor, Avian leucosis, Fowl cholera, Salmonellosis and Pasteurellosis in chicken. The present study evaluated the MHC polymorphism and its association with antibody response to Newcastle (ND) vaccine in Iranian native chickens. The MHC polymorphism was investigated using LEI0258 microsatellite locus by PCR-based fragment analysis. LEI0258 microsatellite marker is a genetic indicator for MHC, which is located on microchromosome 16 and strongly associated with serologically defined MHC haplotypes. Antibody titer against ND vaccine was measured by Haemaglutination Inhibition (HI) assay. Statistical analysis was performed using SPSS software (version 21). Total of 13 LEI0258 microsatellite alleles were identified in 72 samples which indicated a high genetic diversity in the population. The association study revealed a significant influence of MHC alleles on immune responses to Newcastle vaccine. 311 and 313 bp alleles were significantly associated with elevated immune responses to Newcastle vaccine (p<0.05). These results would be applicable in designing and improving the populations under selective breeding.

Keywords: chicken, LEI0258, MHC, Newcastle vaccine

Procedia PDF Downloads 444
8095 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.

Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption

Procedia PDF Downloads 275
8094 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter

Authors: Mengmeng Liu, J. David Frost

Abstract:

Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.

Keywords: connectivity, interstate highway system, network analysis, resilience analysis

Procedia PDF Downloads 266
8093 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 226
8092 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 368
8091 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 73
8090 The Impact of Research and Development Cooperation Partner Diversity, Knowledge Source Diversity and Knowledge Source Network Embeddedness on Radical Innovation: Direct Relationships and Interaction with Non-Price Competition

Authors: Natalia Strobel, Jan Kratzer

Abstract:

In this paper, we test whether different types of research and development (R&D) alliances positively impact the radical innovation performance of firms. We differentiate between the R&D alliances without extern R&D orders and embeddedness in knowledge source network. We test the differences between the domestically diversified R&D alliances and R&D alliances diversified abroad. Moreover, we test how non-price competition influences the impact of domestically diversified R&D alliances, and R&D alliance diversified abroad on radical innovation performance. Our empirical analysis is based on the comprehensive Swiss innovation panel, which allowed us to study 3520 firms between the years between 1996 and 2011 in 3 years intervals. We analyzed the data with a linear estimation with Swamy-Aurora transformation using plm package in R software. Our results show as hypothesized a positive impact of R&D alliances diversity abroad as well as domestically on radical innovation performance. The effect of non-price interaction is in contrast to our hypothesis, not significant. This suggests that diversity of R&D alliances is highly advantageous independent of non-price competition.

Keywords: R&D alliances, partner diversity, knowledge source diversity, non-price competition, absorptive capacity

Procedia PDF Downloads 367
8089 Homeostatic Analysis of the Integrated Insulin and Glucagon Signaling Network: Demonstration of Bistable Response in Catabolic and Anabolic States

Authors: Pramod Somvanshi, Manu Tomar, K. V. Venkatesh

Abstract:

Insulin and glucagon are responsible for homeostasis of key plasma metabolites like glucose, amino acids and fatty acids in the blood plasma. These hormones act antagonistically to each other during the secretion and signaling stages. In the present work, we analyze the effect of macronutrients on the response from integrated insulin and glucagon signaling pathways. The insulin and glucagon pathways are connected by DAG (a calcium signaling component which is part of the glucagon signaling module) which activates PKC and inhibits IRS (insulin signaling component) constituting a crosstalk. AKT (insulin signaling component) inhibits cAMP (glucagon signaling component) through PDE3 forming the other crosstalk between the two signaling pathways. Physiological level of anabolism and catabolism is captured through a metric quantified by the activity levels of AKT and PKA in their phosphorylated states, which represent the insulin and glucagon signaling endpoints, respectively. Under resting and starving conditions, the phosphorylation metric represents homeostasis indicating a balance between the anabolic and catabolic activities in the tissues. The steady state analysis of the integrated network demonstrates the presence of a bistable response in the phosphorylation metric with respect to input plasma glucose levels. This indicates that two steady state conditions (one in the homeostatic zone and other in the anabolic zone) are possible for a given glucose concentration depending on the ON or OFF path. When glucose levels rise above normal, during post-meal conditions, the bistability is observed in the anabolic space denoting the dominance of the glycogenesis in liver. For glucose concentrations lower than the physiological levels, while exercising, metabolic response lies in the catabolic space denoting the prevalence of glycogenolysis in liver. The non-linear positive feedback of AKT on IRS in insulin signaling module of the network is the main cause of the bistable response. The span of bistability in the phosphorylation metric increases as plasma fatty acid and amino acid levels rise and eventually the response turns monostable and catabolic representing diabetic conditions. In the case of high fat or protein diet, fatty acids and amino acids have an inhibitory effect on the insulin signaling pathway by increasing the serine phosphorylation of IRS protein via the activation of PKC and S6K, respectively. Similar analysis was also performed with respect to input amino acid and fatty acid levels. This emergent property of bistability in the integrated network helps us understand why it becomes extremely difficult to treat obesity and diabetes when blood glucose level rises beyond a certain value.

Keywords: bistability, diabetes, feedback and crosstalk, obesity

Procedia PDF Downloads 278
8088 A Critical Geography of Reforestation Program in Ghana

Authors: John Narh

Abstract:

There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.

Keywords: translocality, deforestation, forest management, social network

Procedia PDF Downloads 101
8087 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 148
8086 Polypeptide Modified Carbon Nanotubes – Mediated GFP Gene Transfection for H1299 Cells and Toxicity Assessment

Authors: Pei-Ying Lo, Jing-Hao Ciou, Kai-Cheng Yang, Jia-Huei Zheng, Shih-Hsiang Huang, Kuen-Chan Lee, Er-Chieh Cho

Abstract:

As-produced CNTs are insoluble in all organic solvents and aqueous solutions have imposed limitations to the use of CNTs. Therefore, how to debundle carbon nanotubes and to modify them for further uses is an important issue. There are several methods for the dispersion of CNTs in water using covalent attachment of hydrophilic groups to the surface of tubes. These methods, however, alter the electronic structure of the nanotubes by disrupting the network of sp2 hybridized carbons. In order to keep the nanotubes’ intrinsic mechanical and electrical properties intact, non-covalent interactions are increasingly being explored as an alternative route for dispersion. Apart from conventional surfactants such as sodium dodecylsulfate (SDS) or sodium dodecylbenzenesulfonate (SDBS) which are highly effective in dispersing CNTs, biopolymers have received much attention as dispersing agents due to the anticipated biocompatibility of the dispersed CNTs. Also, The pyrenyl group is known to interact strongly with the basal plane of graphene via π-stacking. In this study, a highly re-dispersible biopolymer is reported for the synthesis of pyrene-modified poly-L-lysine (PBPL) and poly(D-Glu, D-Lys) (PGLP). To provide the evidence of the safety of the PBPL/CNT & PGLP/CNT materials we use in this study, H1299 and HCT116 cells were incubated with PBPL/CNT & PGLP/CNT materials for toxicity analysis, MTS assays. The results from MTS assays indicated that no significant cellular toxicity was shown in H1299 and HCT116 cells. Furthermore, the fluorescence marker fluorescein isothiocyanate (FITC) was added to PBPL & PGLP dispersions. From the fluorescent measurements showed that the chemical functionalisation of the PBPL/CNT & PGLP/CNT conjugates with the fluorescence marker were successful. The fluorescent PBPL/CNT & PGLP/CNT conjugates could find application in medical imaging. In the next step, the GFP gene is immobilized onto PBPL/CNT conjugates by introducing electrostatic interaction. GFP-transfected cells that emitted fluorescence were imaged and counted under a fluorescence microscope. Due to the unique biocompatibility of PBPL modified CNTs, the GFP gene could be transported into H1299 cells without using antibodies. The applicability of such soluble and chemically functionalised polypeptide/CNT conjugates in biomedicine is currently investigated. We expect that this polypeptide/CNT system will be a safe and multi-functional nanomedical delivery platform and contribute to future medical therapy.

Keywords: carbon nanotube, nanotoxicology, GFP transfection, polypeptide/CNT hybrids

Procedia PDF Downloads 343
8085 Challenges and Problems of the Implementation of the Individual's Right to a Safe and Clean Environment

Authors: Dalia Perkumiene

Abstract:

The process of globalization has several unforeseen negative effects on the quality of the environment, including increased pollution, climate change, and the depletion and destruction of natural resources. The impact of these processes makes it difficult to guarantee citizens' rights to a clean environment, and complex legal solutions are needed to implement this right. In order to implement human rights in a clean and safe environment, international legal documents and court rulings are analyzed. It is important to find a balance between the legal context: the right to a clean environment and environmental challenges such as climate change and global warming. Research Methods: The following methods were used in this study: analytical, analysis, and synthesis of scientific literature and legal documents, comparative analysis of legal acts, and generalization. Major Findings: It is difficult to implement the right to a clean, safe and sustainable environment. The successful implementation of this right depends on the application of various complex ideas and rational, not only legal solutions. Legislative measures aim to maximize the implementation of citizens' rights in the face of climate change and other environmental challenges. This area remains problematic, especially in international law. Concluding Statement: The right to a clean environment should allow a person to live in a harmonious system, where environmental factors do not pose a risk to human health and well-being.

Keywords: clean and safe and clean environmen, environmen, persons’ rights, right to a clean and safe and clean environment

Procedia PDF Downloads 207
8084 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization

Authors: Y. Alrubyli

Abstract:

Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.

Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter

Procedia PDF Downloads 183
8083 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 302
8082 Tracing the Direction of Media Activism: Public Perspective

Authors: G. Arockiasamy, B. Sujeevan Kumar, Surendheran

Abstract:

Human progress and development are highly influenced by the power of information access and technology. A global and multi-national transformation all over the word is possible due to digitalization. In the process of exchanging information, experience, and resources, there is a radical shift in who controls them. Mass media has turned the world into a global village by strengthening communication network. As a result, a new digital culture has emerged as a social network commonly known as new media. Today the advancement of technology is at the doorstep of everyone linking to anywhere. The traditional social restrictions are broken down by the new type of virtual communication modality that transcends people beyond boundaries At the same time media empire has invaded every nook and corner of the world through great expansion. Media activism is growing stronger and stronger but the truth and true meaning lost in the process. This paper explores the peoples’ attitude to media activism and tracing its direction. The methodology employed is random sampling survey and content analysis method. Both qualitatively and quantitatively measured. The findings tend to show 60 percent indicate media activism as positive and others indicate as negative. As a conclusion, media activism has danger within but depends on nature of the development of human orientation.

Keywords: media activism, media industry, program, truth information, orientation and nature

Procedia PDF Downloads 213
8081 Application of Monitoring of Power Generation through GPRS Network in Rural Residênias Cabo Frio/Rj

Authors: Robson C. Santos, David D. Oliveira, Matheus M. Reis, Gerson G. Cunha, Marcos A. C. Moreira

Abstract:

The project demonstrates the construction of a solar power generation, integrated inverter equipment to a "Grid-Tie" by converting direct current generated by solar panels, into alternating current, the same parameters of frequency and voltage concessionaire distribution network. The energy generated is quantified by smart metering module that transmits the information in specified periods of time to a microcontroller via GSM modem. The modem provides the measured data on the internet, using networks and cellular antennas. The monitoring, fault detection and maintenance are performed by a supervisory station. Employed board types, best inverter selection and studies about control equipment and devices have been described. The article covers and explores the global trend of implementing smart distribution electrical energy networks and the incentive to use solar renewable energy. There is the possibility of the excess energy produced by the system be purchased by the local power utility. This project was implemented in residences in the rural community of the municipality of Cabo Frio/RJ. Data could be seen through daily measurements during the month of November 2013.

Keywords: rural residence, supervisory, smart grid, solar energy

Procedia PDF Downloads 596
8080 LHCII Proteins Phosphorylation Changes Involved in the Dark-Chilling Response in Plant Species with Different Chilling Tolerance

Authors: Malgorzata Krysiak, Anna Wegrzyn, Maciej Garstka, Radoslaw Mazur

Abstract:

Under constantly fluctuating environmental conditions, the thylakoid membrane protein network evolved the ability to dynamically respond to changing biotic and abiotic factors. One of the most important protective mechanism is rearrangement of the chlorophyll-protein (CP) complexes, induced by protein phosphorylation. In a temperate climate, low temperature is one of the abiotic stresses that heavily affect plant growth and productivity. The aim of this study was to determine the role of LHCII antenna complex phosphorylation in the dark-chilling response. The study included an experimental model based on dark-chilling at 4 °C of detached chilling sensitive (CS) runner bean (Phaseolus coccineus L.) and chilling tolerant (CT) garden pea (Pisum sativum L.) leaves. This model is well described in the literature as used for the analysis of chilling impact without any additional effects caused by light. We examined changes in thylakoid membrane protein phosphorylation, interactions between phosphorylated LHCII (P-LHCII) and CP complexes, and their impact on the dynamics of photosystem II (PSII) under dark-chilling conditions. Our results showed that the dark-chilling treatment of CS bean leaves induced a substantial increase of phosphorylation of LHCII proteins, as well as changes in CP complexes composition and their interaction with P-LHCII. The PSII photochemical efficiency measurements showed that in bean, PSII is overloaded with light energy, which is not compensated by CP complexes rearrangements. On the contrary, no significant changes in PSII photochemical efficiency, phosphorylation pattern and CP complexes interactions were observed in CT pea. In conclusion, our results indicate that different responses of the LHCII phosphorylation to chilling stress take place in CT and CS plants, and that kinetics of LHCII phosphorylation and interactions of P-LHCII with photosynthetic complexes may be crucial to chilling stress response. Acknowledgments: presented work was financed by the National Science Centre, Poland grant No.: 2016/23/D/NZ3/01276

Keywords: LHCII, phosphorylation, chilling stress, pea, runner bean

Procedia PDF Downloads 145
8079 Computational Tool for Surface Electromyography Analysis; an Easy Way for Non-Engineers

Authors: Fabiano Araujo Soares, Sauro Emerick Salomoni, Joao Paulo Lima da Silva, Igor Luiz Moura, Adson Ferreira da Rocha

Abstract:

This paper presents a tool developed in the Matlab platform. It was developed to simplify the analysis of surface electromyography signals (S-EMG) in a way accessible to users that are not familiarized with signal processing procedures. The tool receives data by commands in window fields and generates results as graphics and excel tables. The underlying math of each S-EMG estimator is presented. Setup window and result graphics are presented. The tool was presented to four non-engineer users and all of them managed to appropriately use it after a 5 minutes instruction period.

Keywords: S-EMG estimators, electromyography, surface electromyography, ARV, RMS, MDF, MNF, CV

Procedia PDF Downloads 563
8078 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 391
8077 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin

Authors: Jose Flores, Nadia Gamboa

Abstract:

A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.

Keywords: PCA, HCA, Jequetepeque, multivariate statistical

Procedia PDF Downloads 359
8076 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 87
8075 Essential Oil Encapsulated into Succinic Acid Modified Beta-Cyclodextrin: Characterization, Docking Study, and Antifungal Activity

Authors: Amine Ez-Zoubi, Abdellah Farah

Abstract:

Because of their effectiveness and environmental safety, many essential oils have been investigated as biopesticides. Nevertheless, the encapsulation process is necessary to improve its physical, chemical, and biological properties. Therefore, the purpose of this paper was to study the physicochemical characteristics, and antifungal activity of the Artemisia Herba-Alba essential oil (HAEO) encapsulated in succinic acid modified β-CD (SACD). A yellowish oil was obtained from plant A. Herba-Alba using hydrodistillation and GC-MS was used to identify the chemical composition, in which α-Thujone (65.0%) was the main component in HAEO. The succinic acid has been esterified via the hydroxyl groups in β-CD to produce SACD. In addition, the inclusion complex formation of HAEO and SACD was generated according to the co-precipitation method and was analyzed by several techniques. The antifungal activity in vitro was examined against Botrytis cinerea by direct contact with a potato dextrose agar culture medium. At a 0.1 % concentration, the HAEO in encapsulated form showed higher potential for the control of B. cinerea when compared to the EO in free form (38.34 to 12%). Thus, these results produced evidence that the encapsulation of EOs in SACD can be useful for the development of B.cinerea inhibitors and a promising alternative biopesticide.

Keywords: Artemisia Herba-Alba essential oil, succinic acid modified β-cyclodextrin, inclusion complex, co-precipitation, Botrytis cinerea, direct contact

Procedia PDF Downloads 93
8074 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 131
8073 A Development of Producing eBooks Competency of Teachers in Chachengsao, Thailand

Authors: Boonrat Plangsorn

Abstract:

Using ebooks can make not only a meaningful learning and achievement for students, but also can help teacher effectively enhance and improve their teaching. Nowadays, teachers try to develop ebooks for their class but it does not success in some cases because they do not have clear understanding on how to design, develop, and using ebooks that align with their teaching and learning objectives. Thus, the processes of using, designing, and producing ebooks have become one of important competency for teacher because it will enhance teacher’s knowledge for ebooks production. The purposes of this research were: (1) to develop the competency of producing and using ebooks of teachers in Chachengsao and (2) to promote the using ebooks of teachers in Chachengsao. The research procedures were divided into four phases. Phase I (study components and process of the designing and development of ebooks) was an interview in which the qualitative data were collected from five experts in instructional media. Phase II (develop teachers’ competency of producing ebooks) was a workshop for 28 teachers in Chachengsao. Phase III (study teachers’ using ebooks) was an interview in which the qualitative data were collected from seven teachers. Phase IV (study teachers’ using ebooks) was an interview in which the qualitative data were collected from six teachers. The research findings were as follows: 1. The components of ebooks comprised three components: ebooks structure, multimedia, and hyperlink. The eleven processes of design ebooks for education included (1) analyze the ebooks objective, (2) analyze learner characteristics, (3) set objective, (4) set learning content, (5) learner’s motivation, (6) design and construct activity, (7) design hyperlink, (8) produce script and storyboard, (9) confirm storyboard by expert, (10) develop ebooks, and (11) evaluate ebooks. 2. The evaluation of designing and development of ebooks for teacher workshop revealed the participants’ highest satisfaction (M = 4.65). 3. The teachers’ application of ebooks were found that obstacles of producing an ebooks: Time period of producing ebooks, a readiness of school resources, and small teacher network of producing and using ebooks. The result of using ebooks was students’ motivation. 4. The teachers’ ebooks utilization through educational research network of teacher in Chachengsao revealed that the characteristic of ebooks consist of picture, multimedia, voice, music, video, and hyperlink. The application of ebooks caused students interested in the contents; enjoy learning, and enthusiastic learning.

Keywords: ebooks, producing ebooks competency, using ebooks competency, educational research network

Procedia PDF Downloads 356
8072 Exploring the Influence of Culture on Dietary Practices and Ethnic Inequality in Health among Migrant Nigerians in the UK

Authors: Babatunde Johnson

Abstract:

The rate of diseases and death from preventable diseases among ethnic minority groups is high when compared with the wider white population in the UK. This can be due in part to the diet consumed and various cultural reasons. Changes in dietary practices and the health of ethnic minority groups can be caused by the adoption of food practices of the host culture after migration (acculturation) and generational differences among migrants. However, understanding how and why these changes occur is limited due to the challenges of data collection in research. This research utilizes the interpretive phenomenological approach, coupled with Bourdieu’s theory used as the conceptual framework, and seeks an in-depth understanding of how adult immigrant Nigerians in the UK interpret their experience of the influence of ethnic and prevailing cultures on their dietary practice. Recruiting participants from a close-knit community, such as the Nigerian population in the UK, can be complex and problematic and is determined by the accessibility to the community. Although complex, the researcher leveraged the principles of Patient and Public Involvement (PPI) in gaining access to participants within the Nigerian community. This study emphasizes the need for a culturally tailored and community-centered approach to interventions geared toward the reduction of ethnic health inequality in the UK other than the existing practice, which focuses on better healthy eating through the improvement of skills and knowledge about food groups.

Keywords: culture, dietary practice, ethnic minority, health inequality

Procedia PDF Downloads 92
8071 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities

Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb

Abstract:

Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.

Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network

Procedia PDF Downloads 64
8070 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho

Abstract:

We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.

Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation

Procedia PDF Downloads 214
8069 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 168
8068 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 24
8067 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks

Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.

Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions

Procedia PDF Downloads 86