Search results for: GAN architecture for 2D animated cartoonizing neural style
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4223

Search results for: GAN architecture for 2D animated cartoonizing neural style

1073 Goblet cells and Mucin Related Gene Expression in Mice Infected with Eimeria papillata

Authors: Mohamed A. Dkhil, Denis Delic, Saleh Al-Quraishy

Abstract:

Coccidiosis causes considerable economic loss in the poultry industry. The current study aimed to investigate the response of goblet cells as well as the induced tissue damage during Eimeria papilata infection. Mice were infected with sporulated E. papillata oocyts. On day 5 post-infection, the fecal output was determined. Also, the jejunum was prepared for the histological, histochemical and molecular studies. Our results revealed that the intestinal coccidian infection with E. papillata induced a marked goblet cell hypoplasia and depleted mucus secretion. Also, the infection was able to alter the jejuna architecture and increased the apoptotic cells inside the villi. In addition, the real time PCR results indicated that, the inflammatory cytokines TNF-α, iNOS, IFN-y and IL-1β were significantly up-regulated. In contrast, the mRNA expression patterns of IL-6 in response to E. papillata infection did not differ significantly between control and infected mice. Moreover, the mRNA expression of TLR4 was significantly up-regulated, whereas the expression of MUC2 is significantly down-regulated upon infection. Further studies are required to understand the regulatory mechanisms of goblet cells related genes.

Keywords: goblet cells, Eimeria papillata, mice, jejunum

Procedia PDF Downloads 275
1072 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 7
1071 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
1070 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features

Procedia PDF Downloads 119
1069 Fault-Tolerant Configuration for T-Type Nested Neutral Point Clamped Converter

Authors: S. Masoud Barakati, Mohsen Rahmani Haredasht

Abstract:

Recently, the use of T-type nested neutral point clamped (T-NNPC) converter has increased in medium voltage applications. However, the T-NNPC converter architecture's reliability and continuous operation are at risk by including semiconductor switches. Semiconductor switches are a prone option for open-circuit faults. As a result, fault-tolerant converters are required to improve the system's reliability and continuous functioning. This study's primary goal is to provide a fault-tolerant T-NNPC converter configuration. In the proposed design utilizing the cold reservation approach, a redundant phase is considered, which replaces the faulty phase once the fault is diagnosed in each phase. The suggested fault-tolerant configuration can be easily implemented in practical applications due to the use of a simple PWM control mechanism. The performance evaluation of the proposed configuration under different scenarios in the MATLAB-Simulink environment proves its efficiency.

Keywords: T-type nested neutral point clamped converter, reliability, continuous operation, open-circuit faults, fault-tolerant converters

Procedia PDF Downloads 118
1068 The Effect of Health Promoting Programs on Patient's Life Style after Coronary Artery Bypass Graft–Hospitalized in Shiraz Hospitals

Authors: Azizollah Arbabisarjou, Leila Safabakhsh, Mozhgan Jahantigh, Mahshid Nazemzadeh, Shahindokht Navabi

Abstract:

Background: Health promotion is an essential strategy for reduction of health disparities. Health promotion includes all activities that encourage optimum physical, spiritual, and mental function. The aim of this study was to determine the impact of a Health Promotion Program (HPP) on behavior in terms of the dimensions of the Health Promoting Lifestyle Profile (HPLP) in patients after Coronary Artery Bypass Graft (CABG). Methods and Materials: In this clinical trial study, 80 patients who had undergone CABG surgery (2011-2012) were selected and randomly divided in two groups: Experimental and Control that investigated by (HPLP II). Then the experimental group was educated about diet, walking and stress management. The program process was followed up for 3months and after that all variables were investigated again. The overall score and the scores for the six dimensions of the HPLP (self-actualization, health responsibility, exercise, nutrition, interpersonal support and stress management) were measured in the pre- and post-test periods. Statistical analysis was performed using Student's t-test and paired t-test. Results: Results showed that Score of stress management (p=.036), diet (p=.002), Spiritual Growth (p=.001) and interrelationship (p=002) increase in experimental group after intervention .Average scores after 3 months in the control group had no significant changes; except responsibility for health (p < .05). Results of the study revealed that comparison the scores of the experimental group were significantly different from the control group in all lifestyle aspects except for spiritual growth. Conclusion: This study showed that Health promoting program on lifestyle and health promotion in patients who suffer from CAD could enhance patient's awareness of healthy behaviors and improves the quality of life.

Keywords: coronary artery bypass graft, health promotion, lifestyle, education

Procedia PDF Downloads 461
1067 The Effects of the Parent Training Program for Obesity Reduction on Child Waist Circumference and Health Behaviors of Pre-School Children at the Samut-Songkhram Kindergarten School, Samut-Songkhram Province, Thailand

Authors: Muntanavadee Maytapattana

Abstract:

This research aims to study the effects of the Parent Training Program for Obesity Reduction (PTPOR) on child waist circumference and health behaviors of pre-school children at the Samut-Songkhram kindergarten school, Samut-Songkhram province, Thailand. The objective of this research is to evaluate the effectiveness of the PTPOR on child waist circumference and health behaviors of the pre-school children. The conceptual framework of this study is developed on the basis of the Ecological Systems Theory (EST), not only do the individual factors such as child characteristics and child risk factors contribute to the child’s weight status, but also other factors such as parenting style and family characteristics, as well as community and demographic factors. This research is a quasi-experimental study. Participants were pre-school overweight and obese children and their parents. Forty-one parent-child dyads were recruited into the program. Parents participated in two sessions including an educational session and a group discussion session. Research methodology uses Paired-Samples t-test to determine the difference between groups in the mean scores of the outcome variables of the children and parents. The research results show that there was significant difference between child waist circumferences mean score at the baseline and finishing the program at the 0.01 level (p = 0.001), mean score of the child waist circumference was decrease after finishing the program. And there was no significant difference between child exercise health behaviors mean score at the baseline and finishing the program at the 0.05 level; however, mean score of the child exercise behavior was increase after finishing the program. Meanwhile, there was significant difference between child dietary health behavior mean score at the baseline and finishing the program at the 0.01 level (p = 0.001), mean score of the child dietary was increase after finishing the program.

Keywords: PTPOR, child waist circumference, child health behaviors, pre-school children

Procedia PDF Downloads 570
1066 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 445
1065 Provision of Different Layers of Activities for Different Iranian Intermediate English as a Foreign Language Learners for the Beneficial Use of Films within Speaking Classes

Authors: Zahra Ebrahimi, Abbas Moradan

Abstract:

This study investigated the effect of applying different layers of activity for different Iranian intermediate EFL learner’s oral proficiency and two of its components (fluency and accura-cy) for the beneficial use of films within speaking classes. For this purpose, thirty Iranian EFL intermediate learners were selected based on availability sampling, they were divided into one experimental group and one control group, each consisting of 15 participants, who were proved to be homogeneous based on the results obtained from IELTS oral proficien-cy test prior to the treatment. Experimental Group received the treatment which was apply-ing different layers of speaking tasks according to learners’ level of fluency and accuracy. Control group received ordinal treatment of speaking classrooms. The materials for this study consisted of 11 English movies for each session, voice-recorder device, and IELTS oral proficiency tests as well as two interviews based on Ur’s oral scale for measuring fluen-cy and accuracy. The treatment was run for 12 sessions in six weeks. At the end of the treatment, all the students both in experimental and control group were given a post-test interview based on Ur’s scale. To compare and contrast the amount of progress of the learners in different groups the results of the pre-test and post-test of speaking were analysed by using T-tests. Moreover, Multivariate analysis of variance was also used to check the hypotheses. Results showed that application of different layers of activity with regard to students’ level, led to a significantly superior performance in experimental group. Thus, this study verified the positive effect of implementation of different layers of activity and tasks to achieve progress in speaking skill. It can also help to create a less stressful at-mosphere of learning in which all the students will be given specific time to speak and lead them to be autonomous learners.

Keywords: differentiated instruction, learners’ style, multiple intelligence, speaking skill, task-based activities

Procedia PDF Downloads 141
1064 Study of Hypertension at Sohag City: Upper Egypt Experience

Authors: Aly Kassem, Eman Sapet, Eman Abdelbaset, Hosam Mahmoud

Abstract:

Objective: Hypertension is an important public health challenge being one of the most common worldwide disease-affecting human. Our aim is to study the clinical characteristics, therapeutic regimens, treatment compliance, and risk factors in a sector of of hypertensive patients at Sohag City. Subject and Methods: A cross sectional study; conducted in Sohag city; it involved 520 patients; males (45.7 %) and females (54.3 %). Their ages ranged between 35-85 years. BP measurements, BMI, blood glucose, Serum creatinine, urine analysis, serum Lipids, blood picture and ECG were done all the studied patients. Results: Hypertension presented more between non-smokers (72.55%), females (54.3%), educated patients (50.99%) and patients with low SES (54.9%). CAD presented in (51.63%) of patients, while laboratory investigations showed hyperglycaemia in (28.7%), anemia in (18.3%), high serum creatinine level in (8.49%) and proteinuria in (10.45%) of patient. Adequate BP control was achieved in (49.67%); older patients had lower adequacy of BP control in spite of the extensive use of multiple-drug therapy. Most hypertensive patients had more than one coexistent CV risk factor. Aging, being a female (54.3%), DM (32.3%), family history of hypertension (28.7%), family history of CAD (25.4%), and obesity (10%) were the common contributing risk factors. ACE-inhibitors were prescribed in (58.16%), Beta-blockers in (34.64%) of the patients. Monotherapy was prescribed for (41.17%) of the patients. (75.81%) of patients had regular use of their drug regimens. (49.67%) only of patients had their condition under control, the number of drugs was inversely related to BP control. Conclusion: Hypertensive patients in Sohag city had a profile of high CV risks, and poor blood pressure control particularly in the elderly. A multidisciplinary approach for routine clinical check-up, follow-up, physicians and patients training, prescribing simple once-daily regimens and encouraging life style modifications are recommended. Anti hypertensives, hypertension, elderly patients, risk factors, treatment compliance.

Keywords: anti hypertensives, hypertension, elderly patients, risk factors, treatment compliance

Procedia PDF Downloads 304
1063 Mordechai Vanunu: “The Atomic Spy” as a Nuclear Threat to Discourse in Israeli Society

Authors: Ada Yurman

Abstract:

Using the case of Israeli Atomic Spy Mordechai Vanunu as an example, this study sought to examine social response to political deviance whereby social response can be mobilized in order to achieve social control. Mordechai Vanunu, a junior technician in the Dimona Atomic Research Center, played a normative role in the militaristic discourse while working in the “holy shrine” of the Israeli defense system for many years. At a certain stage, however, Vanunu decided to detach himself from this collective and launched an assault on this top-secret circle. Israeli society in general and the security establishment in particular found this attack intolerable and unforgivable. They presented Vanunu as a ticking time bomb, delegitimized him and portrayed him as “other”. In addition, Israeli enforcement authorities imposed myriad prohibitions and sanctions on Vanunu even after his release from prison – “as will be done to he who desecrates holiness.” Social response to Vanunu at the time of his capture and trial was studied by conducting a content analysis of six contemporary daily newspapers. The analysis focused on use of language and forms of expression. In contrast with traditional content analysis methodology, this study did not just look at frequency of expressions of ideas and terms in the text and covert content; rather, the text was analyzed as a structural whole, and included examination of style, tone and unusual use of imagery, and more, in order to uncover hidden messages within the text. The social response to this case was extraordinarily intense, not only because in this case of political deviance, involving espionage and treason, Vanunu’s actions comprised a real potential threat to the country, but also because of the threat his behavior posed to the symbolic universe of society. Therefore, the response to this instance of political deviance can be seen as being part of a mechanism of social control aiming to protect world view of society as a whole, as well as to punish the criminal.

Keywords: militarism, political deviance, social construction, social control

Procedia PDF Downloads 111
1062 Applying Augmented Reality Technology for an E-Learning System

Authors: Fetoon K. Algarawi, Wejdan A. Alslamah, Ahlam A. Alhabib, Afnan S. Alfehaid, Dina M. Ibrahim

Abstract:

Over the past 20 years, technology was rapidly developed and no one expected what will come next. Advancements in technology open new opportunities for immersive learning environments. There is a need to transmit education to a level that makes it more effective for the student. Augmented reality is one of the most popular technologies these days. This paper is an experience of applying Augmented Reality (AR) technology using a marker-based approach in E-learning system to transmitting virtual objects into the real-world scenes. We present a marker-based approach for transmitting virtual objects into real-world scenes to explain information in a better way after we developed a mobile phone application. The mobile phone application was then tested on students to determine the extent to which it encouraged them to learn and understand the subjects. In this paper, we talk about how the beginnings of AR, the fields using AR, how AR is effective in education, the spread of AR these days and the architecture of our work. Therefore, the aim of this paper is to prove how creating an interactive e-learning system using AR technology will encourage students to learn more.

Keywords: augmented reality, e-learning, marker-based, monitor-based

Procedia PDF Downloads 221
1061 Comparative Study on Manet Using Soft Computing Techniques

Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri

Abstract:

Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.

Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network

Procedia PDF Downloads 348
1060 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 14
1059 A Method to Assess Aspect of Sustainable Development: Walkability

Authors: Amna Ali Al-Saadi, Riken Homma, Kazuhisa Iki

Abstract:

Despite the fact that many places have successes in achieving some aspects of sustainable urban development, there are no scientific facts to convince decision makers. Also, each of them was developed to fulfill the need of specific city only. Therefore, objective method to generate the solutions from a successful case is the aim of this research. The questions were: how to learn the lesson from each case study; how to distinguish the potential criteria and negative one; snd how to quantify their effects in the future development. Walkability has been selected as a goal. This is because it has been found as a solution to achieve healthy life style as well as social, environmental and economic sustainability. Moreover, it has complication as every aspect of sustainable development. This research is stand on quantitative- comparative methodology in order to assess pedestrian oriented development. Three analyzed area (AAs) were selected. One site is located in Oman in which hypotheses as motorized oriented development, while two sites are in Japan where the development is pedestrian friendly. The study used Multi- criteria evaluation method (MCEM). Initially, MCEM stands on analytic hierarchy process (AHP). The later was structured into main goal (walkability), objectives (functions and layout) and attributes (the urban form criteria). Secondly, the GIS were used to evaluate the attributes in multi-criteria maps. Since each criterion has different scale of measurement, all results were standardized by z-score and used to measure the co-relations among criteria. As results, different scenario was generated from each AA. MCEM (AHP-OWA)-GIS measured the walkability score and determined the priority of criteria development in the non-walker friendly environment. The comparison criteria for z-score presented a measurable distinguished orientation of development. This result has been used to prove that Oman is motorized environment while Japan is walkable. Also, it defined the powerful criteria and week criteria regardless to the AA. This result has been used to generalize the priority for walkable development. In conclusion, the method was found successful in generate scientific base for policy decisions.

Keywords: walkability, policy decisions, sustainable development, GIS

Procedia PDF Downloads 438
1058 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 414
1057 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC

Authors: Qiang Zhang, Chun Yuan

Abstract:

Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).

Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel

Procedia PDF Downloads 394
1056 Incorporating Adult Learners’ Interests into Learning Styles: Enhancing Education for Lifelong Learners

Authors: Christie DeGregorio

Abstract:

In today's rapidly evolving educational landscape, adult learners are becoming an increasingly significant demographic. These individuals often possess a wealth of life experiences and diverse interests that can greatly influence their learning styles. Recognizing and incorporating these interests into educational practices can lead to enhanced engagement, motivation, and overall learning outcomes for adult learners. This essay aims to explore the significance of incorporating adult learners' interests into learning styles and provide an overview of the methodologies used in related studies. When investigating the incorporation of adult learners' interests into learning styles, researchers have employed various methodologies to gather valuable insights. These methodologies include surveys, interviews, case studies, and classroom observations. Surveys and interviews allow researchers to collect self-reported data directly from adult learners, providing valuable insights into their interests, preferences, and learning styles. Case studies offer an in-depth exploration of individual adult learners, highlighting how their interests can be integrated into personalized learning experiences. Classroom observations provide researchers with a firsthand understanding of the dynamics between adult learners' interests and their engagement within a learning environment. The major findings from studies exploring the incorporation of adult learners' interests into learning styles reveal the transformative impact of this approach. Firstly, aligning educational content with adult learners' interests increases their motivation and engagement in the learning process. By connecting new knowledge and skills to topics they are passionate about, adult learners become active participants in their own education. Secondly, integrating interests into learning styles fosters a sense of relevance and applicability. Adult learners can see the direct connection between the knowledge they acquire and its real-world applications, which enhances their ability to transfer learning to various contexts. Lastly, personalized learning experiences tailored to individual interests enable adult learners to take ownership of their educational journey, promoting lifelong learning habits and self-directedness.

Keywords: integration, personalization, transferability, learning style

Procedia PDF Downloads 73
1055 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 132
1054 Facade Design Impact on the Urban Landscape

Authors: Seyyed Hossein Alavi, Soudabe Mehri Talarposhti

Abstract:

Passages urban landscape is made up of various components that the component parts of the whole and vice versa has relationships. In today’s cities, we have not seen a dual relationship and only one side of the equation which is the relationships of the component parts are considered. However, the effect of the component to whole is stronger and also longer. This means that every time the outer shell of the building was constructed instant impact on the viewers while it takes a long time to understand the impact of the building in its environment and basically, it seems city portrait has the sensory and untouchable effect on observer. Today, building facades are designated individually and in isolation from the context. Designers are familiar with the details of the facade, but they are not informed with the science of combination and its impact on portrait. The importance of city and also more important than that, the city portrait haven’t confirmed for those involved in the building and authorities and the construction been changed to a market for more glaring taste of designers and attracting more business and the city and its landscape has been forgotten. This essay is an attempt to collect a part of the principles and definitions needed on perspective issues and portrait, and it is hoped that it will open arena for more research and studies in this field and other related fields.

Keywords: facade, urban housing, urban design, sustainable architecture

Procedia PDF Downloads 484
1053 Product Feature Modelling for Integrating Product Design and Assembly Process Planning

Authors: Baha Hasan, Jan Wikander

Abstract:

This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.

Keywords: assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology

Procedia PDF Downloads 307
1052 Valence Effects on Episodic Memory Retrieval Following Exposure to Arousing Stimuli in Young and Old Adults

Authors: Marianna Constantinou, Hana Burianova, Ala Yankouskaya

Abstract:

Episodic memory retrieval benefits from arousal, with better performance linked to arousing to-be-remembered information. However, the enduring impact of arousal on subsequent memory processes, particularly for non-arousing stimuli, remains unclear. This functional Magnetic Resonance Imaging (fMRI) study examined the effects of arousal on episodic memory processes in young and old adults, focusing on memory of neutral information following arousal exposure. Neural activity was assessed at three distinct timepoints: during exposure to arousing and non-arousing stimuli, memory consolidation (with or without arousing stimulus exposure), and during memory retrieval (with or without arousing stimulus exposure). Behavioural results show that across both age groups, participants performed worse when retrieving episodic memories about a video preceded by a highly arousing negative image. Our fMRI findings reveal three key findings: i) the extension of the influence of negative arousal beyond encoding; ii) the presence of this influence in both young and old adults; iii) and the differential treatment of positive arousal between these age groups. Our findings emphasise valence-specific effects on memory processes and support the enduring impact of negative arousal. We further propose an age-related alteration in the old adult brain in differentiating between positive and negative arousal.

Keywords: episodic memory, ageing, fmri, arousal, valence

Procedia PDF Downloads 60
1051 From Name-Calling to Insidious Rhetoric: Construction and Evolution of the Transgender Imagery in News Discourse, 1953-2016

Authors: Hsiao-Yung Wang

Abstract:

This essay aims to examine how the transgender imagery has been constructed in the Taiwanese news media and its evolution from 1953 to 2016. It also explores the discourse patterns and rhetorical strategies in the transgender-related issues which contributed to levels of evaluation in forming ‘social deviance.’ Samples for analysis were selected from mainstream newspapers, including China Times, United Daily and Apple Daily. The time frame for sample selection is from August 1953 (when the first transgender case was reported in Taiwan) to June 2016. To enhance understanding of media representation as nominalistic-based, the author refers to the representative of critical rhetoric Raymie McKerrow for his study on remembrance and forgetfulness in public discourse (especially in his model of ‘critique of domination’); thereby categorizing the 64 years of transgender discourse into five periods: (1) transgender as ‘intersex’ of surgical-reparative medical treatment; (2) transgender as ‘freak gender-bender’ with criminal behaviors; (3) transgender as ‘ladyboy’ (‘katoey in a Thai term) of bar girls or sex workers; (4) transgender as ‘cross dresser’ of transvestite performance; and (5) transgender as ‘life-style or human right’ of spontaneous gender identification. Based on the research findings, this essay argues that the characterization of transgender reporting as a site for the production of compulsory sexism and gender stereotype by the specific forms of name-calling. Besides, the evolution of word-image addressing to transgender issues also pinpoints media as a reflection of fashion of the day. While the transgender imagery might be crystallized as ‘still social problems’ or ‘gender transgression’ in insidious rhetoric; and while the so-called ‘phobia’ persistently embodies in media discourse to exercise name-calling in an ambiguous (rather than in a bullying) way or under the cover of humanist-liberalist rationales, these emergent rhetorical dilemma should be resolved without any delay.

Keywords: critical rhetoric, media representation, McKerrow, nominalistic, social deviance, transgender

Procedia PDF Downloads 312
1050 Juxtaposing South Africa’s Private Sector and Its Public Service Regarding Innovation Diffusion, to Explore the Obstacles to E-Governance

Authors: Petronella Jonck, Freda van der Walt

Abstract:

Despite the benefits of innovation diffusion in the South African public service, implementation thereof seems to be problematic, particularly with regard to e-governance which would enhance the quality of service delivery, especially accessibility, choice, and mode of operation. This paper reports on differences between the public service and the private sector in terms of innovation diffusion. Innovation diffusion will be investigated to explore identified obstacles that are hindering successful implementation of e-governance. The research inquiry is underpinned by the diffusion of innovation theory, which is premised on the assumption that innovation has a distinct channel, time, and mode of adoption within the organisation. A comparative thematic document analysis was conducted to investigate organisational differences with regard to innovation diffusion. A similar approach has been followed in other countries, where the same conceptual framework has been used to guide document analysis in studies in both the private and the public sectors. As per the recommended conceptual framework, three organisational characteristics were emphasised, namely the external characteristics of the organisation, the organisational structure, and the inherent characteristics of the leadership. The results indicated that the main difference in the external characteristics lies in the focus and the clientele of the private sector. With regard to organisational structure, private organisations have veto power, which is not the case in the public service. Regarding leadership, similarities were observed in social and environmental responsibility and employees’ attitudes towards immediate supervision. Differences identified included risk taking, the adequacy of leadership development, organisational approaches to motivation and involvement in decision making, and leadership style. Due to the organisational differences observed, it is recommended that differentiated strategies be employed to ensure effective innovation diffusion, and ultimately e-governance. It is recommended that the results of this research be used to stimulate discussion on ways to improve collaboration between the mentioned sectors, to capitalise on the benefits of each sector.

Keywords: E-governance, ICT, innovation diffusion, comparative analysis

Procedia PDF Downloads 354
1049 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 496
1048 Investigating the Impact of Factors Associated with Student Academic Achievement and Expectations through the Ecosystemic Perspective in the Greek Context: The Role of the Individual, Family, School and of the Community

Authors: Olga Giovani

Abstract:

In this research, Bronfenbrenner's theory will be used to investigate the individual, microsystemic, and exosystemic factors that may affect adolescents' academic achievement as well as their expectations in Greece. First, the topic of academic achievement in an adolescent developmental context will be set as the target of the proposed study while focusing on the aspects of community influences on adolescents. More specifically, the effect of available resources and the perceived sense of safety and support will be further investigated. Then the issue of family factors will be analyzed, as they are subjectively perceived by the adolescents, focusing on the perceived parental style, parental monitor, and involvement as a mesosystemic factor. In turn, the school will also be discussed with emphasis on the perceived school climate and support as well as the academic aspects of student achievement. Finally, the adolescent's individual perspective will be taken into consideration in developmental terms, examining their perceptions regarding their community/neighborhood, their family, their school, as well as their sense of self-concept and self-esteem as these are expressed through their academic performance and prosocial behavior. The aim of the proposed research is to study these associations through the prism of the systemic perspective, the relationship between aspects of educational achievement and socioeconomic background, with an emphasis on the role of the community, which has not been adequately researched in the Greek context. Community will be defined by the available community resources (recreational activities, public library, local orchestras, free entrance museums, etc.), adolescents' own perception of social support, safety, and support inside that community. These perceptions need to be investigated since they may serve as possible predictors of a child's current cognitive, developmental, and psycho-social outcomes, such as their perceived self-concept and self-esteem, as well as on their future expectations related to the entrance to university and job expectations.

Keywords: bioecological model, developmental psychology, ecosystemic approach, student achievement, microsystemic factors, mesosystemic factors, individual perceptions

Procedia PDF Downloads 136
1047 Transcriptome Analysis of Saffron (crocus sativus L.) Stigma Focusing on Identification Genes Involved in the Biosynthesis of Crocin

Authors: Parvaneh Mahmoudi, Ahmad Moeni, Seyed Mojtaba Khayam Nekoei, Mohsen Mardi, Mehrshad Zeinolabedini, Ghasem Hosseini Salekdeh

Abstract:

Saffron (Crocus sativus L.) is one of the most important spice and medicinal plants. The three-branch style of C. sativus flowers are the most important economic part of the plant and known as saffron, which has several medicinal properties. Despite the economic and biological significance of this plant, knowledge about its molecular characteristics is very limited. In the present study, we, for the first time, constructed a comprehensive dataset for C. sativus stigma through de novo transcriptome sequencing. We performed de novo transcriptome sequencing of C. sativus stigma using the Illumina paired-end sequencing technology. A total of 52075128 reads were generated and assembled into 118075 unigenes, with an average length of 629 bp and an N50 of 951 bp. A total of 66171unigenes were identified, among them, 66171 (56%) were annotated in the non-redundant National Center for Biotechnology Information (NCBI) database, 30938 (26%) were annotated in the Swiss-Prot database, 10273 (8.7%) unigenes were mapped to 141 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, while 52560 (44%) and 40756 (34%) unigenes were assigned to Gen Ontology (GO) categories and Eukaryotic Orthologous Groups of proteins (KOG), respectively. In addition, 65 candidate genes involved in three stages of crocin biosynthesis were identified. Finally, transcriptome sequencing of saffron stigma was used to identify 6779 potential microsatellites (SSRs) molecular markers. High-throughput de novo transcriptome sequencing provided a valuable resource of transcript sequences of C. sativus in public databases. In addition, most of candidate genes potentially involved in crocin biosynthesis were identified which could be further utilized in functional genomics studies. Furthermore, numerous obtained SSRs might contribute to address open questions about the origin of this amphiploid spices with probable little genetic diversity.

Keywords: saffron, transcriptome, NGS, bioinformatic

Procedia PDF Downloads 99
1046 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)

Authors: Juzhong Tan, William Kerr

Abstract:

Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.

Keywords: artificial neutron network, cocoa bean, electronic nose, roasting

Procedia PDF Downloads 232
1045 Turbulent Channel Flow Synthesis using Generative Adversarial Networks

Authors: John M. Lyne, K. Andrea Scott

Abstract:

In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.

Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network

Procedia PDF Downloads 205
1044 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform

Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos

Abstract:

Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.

Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform

Procedia PDF Downloads 7