Search results for: thermoelectric power
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: thermoelectric power

Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording

Authors: P. Tueku, P. Supnithi, R. Wongsathan

Abstract:

Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.

Keywords: heat-assisted magnetic recording, thermal Williams-Comstock equation, microtrack model, equalizer

Procedia PDF Downloads 358
The Impact of School Education, Islamic Studies in Specific on the Student Identity Development

Authors: Lina Khashogji

Abstract:

This study highlights on analysing the educational experience of female Saudi Arabian students in private schools in Islamic studies subjects. Exploring how school environment, teachers’ authority and textbooks could influence the level of individuality. Considering the complex interaction between religious is social and political power in Saudi Arabia. The study draws on phenomenology as a guiding theoretical framework using multi methods. It includes a vertical/horizontal individualism measurement tool “survey” used on 120 students of two age groups (9-12) and (13-15). Semi-structured interviews with eight school teachers, observational notes in the classroom, and textbook analysis. The study links the interactions between the student mind, the teacher, the classroom and the curriculum.

Keywords: education, individualism, identity development, Islamic studies, Saudi Arabia

Procedia PDF Downloads 350
Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network

Authors: T. Lydon, A. McNabola, P. Coughlan

Abstract:

Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.

Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network

Procedia PDF Downloads 265
Mechanic and Thermal Analysis on an 83 kW Electric Motorcycle: A First-Principles Study

Authors: Martín Felipe García Romero, Nancy Mondragón Escamilla, Ismael Araujo Vargas, Viviana Basurto Rios, Kevin Cano Pulido, Pedro Enrique Velázquez Elisondo

Abstract:

This paper presents a preliminary prototype of an 83 kW all-electric motorbike since, nowadays, electric motorbikes have advanced drastically in their technology in such a way that lately, there has been a boom in the field of competition of medium power electric vehicles. The field of electric vehicle racing mainly pursues the aim of obtaining an optimal performance of all the motorbike components in order to obtain a safe racing vehicle fast enough while looking for the stability of all the systems onboard. A general description of the project is given up to date, detailing the parts of the system, integration, numerical estimations, and a rearrangement proposal of the actual prototype with the aim to mechanically and thermally improve the vehicle.

Keywords: electric motorcycle, thermal analysis, mechanic analysis, electric vehicle

Procedia PDF Downloads 123
A Novel Design Methodology for a 1.5 KW DC/DC Converter in EV and Hybrid EV Applications

Authors: Farhan Beg

Abstract:

This paper presents a method for the efficient implementation of a unidirectional or bidirectional DC/DC converter. The DC/DC converter is used essentially for energy exchange between the low voltage service battery and a high voltage battery commonly found in Electric Vehicle applications. In these applications, apart from cost, efficiency of design is an important characteristic. A useful way to reduce the size of electronic equipment in the electric vehicles is proposed in this paper. The technique simplifies the mechanical complexity and maximizes the energy usage using the latest converter control techniques. Moreover a bidirectional battery charger for hybrid electric vehicles is also implemented in this paper. Several simulations on the test system have been carried out in Matlab/Simulink environment. The results exemplify the robustness of the proposed design methodology in case of a 1.5 KW DC-DC converter.

Keywords: DC-DC converters, electric vehicles, power electronics, direct current control

Procedia PDF Downloads 733
To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate

Authors: Kshitij Sawke, Pradnyavant Kamble, Shrikant Patil

Abstract:

The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples.

Keywords: laser clad, processing parameters, wear rate, wear resistance

Procedia PDF Downloads 261
Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 38
Analysing Perceptions of Online Games-Based Learning: Case Study of the University of Northampton

Authors: Alison Power

Abstract:

Games-based learning aims to enhance students’ engagement with and enjoyment of learning opportunities using games-related principles to create a fun yet productive learning environment. Motivating students to learn in an online setting can be particularly challenging, so a cross-Faculty synchronous online session provided students with the opportunity to engage with ‘GAMING’: an interactive, flexible and scalable e-resource for students to work synchronously in groups to complete a series of e-tivities designed to enhance their skills of leadership, collaboration and negotiation. Findings from a post-session online survey found the majority of students had a positive learning experience, finding 'GAMING' to be an innovative and engaging e-resource which motivated their group to learn.

Keywords: collaboration, games-based learning, groupwork, synchronous online learning, teamwork

Procedia PDF Downloads 130
Understanding Feminization of Indian Agriculture and the Dynamics of Intrahousehold Bargaining Power at a Household Level

Authors: Arpit Sachan, Nilanshu Kumar

Abstract:

This paper tries to understand the nuances of feminisation of agriculture in the Indian context and how that is associated with better intrahousehold bargaining power for women. The economic survey of India indicates a constant increase in the share of the female workforce in Indian agriculture in the past few decades. This can be accounted for by many factors like the migration of male workers to urban areas and, therefore, the complete burden of agriculture shifting on the female counterparts. Therefore this study is an attempt to study that how this increase in the female workforce corresponds to a better decision-making ability for women in rural farm households. This paper is an attempt to carefully evaluate this aspect of the feminisation of Indian agriculture. The paper tries to study how various factors that improve the status of women in agriculture change with things like resource ownership. This paper uses both the macro-level and micro-level data to study the dynamics of the proportion of the workforce in agriculture across different states in India and how that has translated into better indicators for women in rural areas. The fall in India’s rank in the global gender wage gap index is alarming in such a context, and this creates a puzzle with increasing female workforce participation. The paper will consider if the condition of women improved over time with the increased share of employment or not? Using field survey data, this paper tries to understand if there exists any digression for some of the indicators both at the macro and micro level. The paper also tries to integrate the economic understanding of gender aspects of the workforce and the sociological stance prevailing in the existing literature. Therefore, this paper takes a mixed-method approach to better understand the role that social structure plays in the improved status of women within and across various households. Therefore, this paper will finally help us understanding if at all there is a feminisation of Indian agriculture or it's just exploitation of a different kind. This study intends to create a distinction between the gendered labour force in Indian agriculture and the complete democratization of Indian agriculture. The study is primarily focused on areas where the exodus of male migrants pushes women to work on agricultural farms. The question posits is whether it is the willingness of women to work in agriculture or is it urbanisation and development-induced conditions that make women work in agriculture as farm labourers? The motive is to understand if factors like resource ownership and the ability to autonomous decision-making are interlinked with an increased proportion of the female workforce or not? Based on this framework, we finally provide a brief comment on policy implications of government intervention in improving Indian agriculture and the gender aspects associated with it.

Keywords: feminisation, intrahousehold bargaining, farm households, migration, agriculture, decision-making

Procedia PDF Downloads 132
Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments

Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract:

This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.

Keywords: blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer

Procedia PDF Downloads 287
Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity

Procedia PDF Downloads 227
To Investigate the Effects of Potassium Ion Doping and Oxygen Vacancies in Thin-Film Transistors of Gallium Oxide-Indium Oxide on Their Electrical

Authors: Peihao Huang, Chun Zhao

Abstract:

Thin-film transistors(TFTs) have the advantages of low power consumption, short reaction time, and have high research value in the field of semiconductors, based on this reason, people have focused on gallium oxide-indium oxide thin-film transistors, a relatively common thin-film transistor, elaborated and analyzed his production process, "aqueous solution method", explained the purpose of each step of operation, and finally explored the influence of potassium ions doped in the channel layer on the electrical properties of the device, as well as the effect of oxygen vacancies on its switching ratio and memory, and summarized the conclusions.

Keywords: aqueous solution, oxygen vacancies, switch ratio, thin-film transistor(TFT)

Procedia PDF Downloads 124
Behavior of Polymeric Mortars: An Analysis from the Point of View of Application in Severe Conditions

Authors: J. P. Gorninski, J. M. L. Reis

Abstract:

This present work was aimed to develop polymeric mortars having as binder two polyester resins namely isophtalic and orthophtalic polyester. The inorganic phase was composed by medium-size river sand and fly ash fíller, a by-product of the burning of coal in power plants. The compositions in this study are high performance mortars and were assessed by mechanical properties, through compressive strength and flexural strength, by durability strength when exposed to the cyclical variation of temperature from -400C to +300C and by the chemical aggression test. The composites displayed good performance when exposed to cyclical temperature variations and chemical solutions. The mechanical strength values reached the 100 MPa, the flexural strength yielded values of about twenty percent of mechanical strength.

Keywords: polymer mortar, mechanical strength, cyclical temperatures, chemical strength, sustainability

Procedia PDF Downloads 398
A Problem with IFOC and a New PWM Based 180 Degree Conduction Mode

Authors: Usman Nasir, Minxiao Han, S. M. R. Kazmi

Abstract:

Three phase inverters being used today are based on field orientation control (FOC) and sine wave PWM (SPWM) techniques because 120 degree or 180 degree conduction methods produce high value of THD (total harmonic distortion) in the power system. The indirect field orientation control (IFOC) method is difficult to implement in real systems due to speed sensor accuracy issue. This paper discusses the problem with IFOC and a PWM based 180 degree conduction mode for the three phase inverter. The modified control method improves THD and this paper also compares the results obtained using modified control method with the conventional 180 degree conduction mode.

Keywords: three phase inverters, IFOC, THD, sine wave PWM (SPWM)

Procedia PDF Downloads 429
Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 327
Narrating Irish Identity: Retrieving ‘Irishness’ in the Works of William Butler Yeats and Seamus Heaney

Authors: Rafik Massoudi

Abstract:

Irish identity continues to be discussed in various fields including social science, culture, literary humanities as well as political debates. In this context, Irishness had been usurped for a long time by the hegemonic power of the British Empire. That is why, Irish writers, in general, and Seamus Heaney along with William Butler Yeats, in particular, endeavored to retrieve this lost identity by shedding light on Irish history, folklore, communal traditions, landscape, indigenous people, language as well as culture. In this context, we may speak of a decolonizing attempt that allowed these writers to represent the autonomous Irish subjectivity by establishing an ethical relationship based on an extraordinary approach to the represented alterity. This article, indeed, places itself within the arena of postmodern, postcolonial discussions of the issue of identity and, particularly, of Irishness.

Keywords: identity, Irishess, narration, postcolonialism

Procedia PDF Downloads 331
Teacher’s Role in the Process of Identity Construction in Language Learners

Authors: Gaston Bacquet

Abstract:

The purpose of this research is to explore how language and culture shape a learner’s identity as they immerse themselves in the world of second language learning and how teachers can assist in the process of identity construction within a classroom setting. The study will be conducted as an in-classroom ethnography, using a qualitative methods approach and analyzing students’ experiences as language learners, their degree of investment, inclusion/exclusion, and attitudes, both towards themselves and their social context; the research question the study will attempt to answer is: What kind of pedagogical interventions are needed to help language learners in the process of identity construction so they can offset unequal conditions of power and gain further social inclusion? The following methods will be used for data collection: i) Questionnaires to investigate learners’ attitudes and feelings in different areas divided into four strands: themselves, their classroom, learning English and their social context. ii) Participant observations, conducted in a naturalistic manner. iii) Journals, which will be used in two different ways: on the one hand, learners will keep semi-structured, solicited diaries to record specific events as requested by the researcher (event-contingent). On the other, the researcher will keep his journal to maintain a record of events and situations as they happen to reduce the risk of inaccuracies. iv) Person-centered interviews, which will be conducted at the end of the study to unearth data that might have been occluded or be unclear from the methods above. The interviews will aim at gaining further data on experiences, behaviors, values, opinions, feelings, knowledge and sensory, background and demographic information. This research seeks to understand issues of socio-cultural identities and thus make a significant contribution to knowledge in this area by investigating the type of pedagogical interventions needed to assist language learners in the process of identity construction to achieve further social inclusion. It will also have applied relevance for those working with diverse student groups, especially taking our present social context into consideration: we live in a highly mobile world, with migrants relocating to wealthier, more developed countries that pose their own particular set of challenges for these communities. This point is relevant because an individual’s insight and understanding of their own identity shape their relationship with the world and their ability to continue constructing this relationship. At the same time, because a relationship is influenced by power, the goal of this study is to help learners feel and become more empowered by increasing their linguistic capital, which we hope might result in a greater ability to integrate themselves socially. Exactly how this help will be provided will vary as data is unearthed through questionnaires, focus groups and the actual participant observations being carried out.

Keywords: identity construction, second-language learning, investment, second-language culture, social inclusion

Procedia PDF Downloads 106
Modeling and Simulation of a Cycloconverter with a Bond Graph Approach

Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez

Abstract:

The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.

Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling

Procedia PDF Downloads 42
Estimation of Global and Diffuse Solar Radiation Over Two Cities of Sindh, Pakistan

Authors: M. A. Ahmed, Sidra A. Shaikh, M. W. Akhtar

Abstract:

Global and Diffuse Solar radiation on horizontal surface over two cities of Sindh, namely Jacobabad and Rohri were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization in Sindh province. The result obtained shows a high variation in direct and diffuse component of solar radiation in summer and winter months (80% direct and 20% diffuse). The contribution of diffuse solar radiation is low even in monsoon months i.e. July and August. The appearance of cloud is rare even in monsoon months. The estimated value indicates that this part of Sindh has higher solar potential and solar panels can be used for power generation. The solar energy can be utilized throughout the year in this part of Sindh, Pakistan.

Keywords: solar potential over Sindh, global and diffuse solar radiation, radiation over two cities of Sindh, environmental engineering

Procedia PDF Downloads 453
Energy Saving Techniques for MIMO Decoders

Authors: Zhuofan Cheng, Qiongda Hu, Mohammed El-Hajjar, Basel Halak

Abstract:

Multiple-input multiple-output (MIMO) systems can allow significantly higher data rates compared to single-antenna-aided systems. They are expected to be a prominent part of the 5G communication standard. However, these decoders suffer from high power consumption. This work presents a design technique in order to improve the energy efficiency of MIMO systems; this facilitates their use in the next generation of battery-operated communication devices such as mobile phones and tablets. The proposed optimization approach consists of the use of low complexity lattice reduction algorithm in combination with an adaptive VLSI implementation. The proposed design has been realized and verified in 65nm technology. The results show that the proposed design is significantly more energy-efficient than conventional K-best MIMO systems.

Keywords: energy, lattice reduction, MIMO, VLSI

Procedia PDF Downloads 333
Concrete-Wall-Climbing Testing Robot

Authors: S. Tokuomi, K. Mori, Y. Tsuruzono

Abstract:

A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.

Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method

Procedia PDF Downloads 666
Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm

Authors: Saeed Kamarian, Mahmoud Shakeri

Abstract:

Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.

Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm

Procedia PDF Downloads 575
Energy Consumption Models for Electric Vehicles: Survey and Proposal of a More Realistic Model

Authors: I. Sagaama, A. Kechiche, W. Trojet, F. Kamoun

Abstract:

Replacing combustion engine vehicles by electric vehicles (EVs) is a major step in recent years due to their potential benefits. Battery autonomy and charging processes are still a big issue for that kind of vehicles. Therefore, reducing the energy consumption of electric vehicles becomes a necessity. Many researches target introducing recent information and communication technologies in EVs in order to propose reducing energy consumption services. Evaluation of realistic scenarios is a big challenge nowadays. In this paper, we will elaborate a state of the art of different proposed energy consumption models in the literature, then we will present a comparative study of these models, finally, we will extend previous works in order to propose an accurate and realistic energy model for calculating instantaneous power consumption of electric vehicles.

Keywords: electric vehicle, vehicular networks, energy models, traffic simulation

Procedia PDF Downloads 377
Experimental Studies of Dragonfly Flight Aerodynamics

Authors: Mohd Izmir Bin Yamin, Thomas Arthur Ward

Abstract:

Past aerodynamic studies of flapping wing flight have shown that it has increased aerodynamic performances compared to fixed wing steady flight. One of the dominant mechanisms that is responsible for causing this phenomenon is a leading edge vortex, generated by the flapping motion of a flexible wing. Wind tunnel experiments were conducted to observe the aerodynamic profile of a flapping wing, by measuring the lift, drag and thrust. Analysis was done to explain how unsteady aerodynamics leads towards better power performances than a fixed wing flight. The information from this study can be used as a base line for designing future Bio-mimetic Micro Air Vehicles that are based on flying insect aerodynamic mechanisms.

Keywords: flapping wing flight, leading edge vortex, aerodynamics performances, wind tunnel test

Procedia PDF Downloads 391
Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material

Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike

Abstract:

Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.

Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance

Procedia PDF Downloads 275
Solutions to Reduce CO2 Emissions in Autonomous Robotics

Authors: Antoni Grau, Yolanda Bolea, Alberto Sanfeliu

Abstract:

Mobile robots can be used in many different applications, including mapping, search, rescue, reconnaissance, hazard detection, and carpet cleaning, exploration, etc. However, they are limited due to their reliance on traditional energy sources such as electricity and oil which cannot always provide a convenient energy source in all situations. In an ever more eco-conscious world, solar energy offers the most environmentally clean option of all energy sources. Electricity presents threats of pollution resulting from its production process, and oil poses a huge threat to the environment. Not only does it pose harm by the toxic emissions (for instance CO2 emissions), it produces the combustion process necessary to produce energy, but there is the ever present risk of oil spillages and damages to ecosystems. Solar energy can help to mitigate carbon emissions by replacing more carbon intensive sources of heat and power. The challenge of this work is to propose the design and the implementation of electric battery recharge stations. Those recharge docks are based on the use of renewable energy such as solar energy (with photovoltaic panels) with the object to reduce the CO2 emissions. In this paper, a comparative study of the CO2 emission productions (from the use of different energy sources: natural gas, gas oil, fuel and solar panels) in the charging process of the Segway PT batteries is carried out. To make the study with solar energy, a photovoltaic panel, and a Buck-Boost DC/DC block has been used. Specifically, the STP005S-12/Db solar panel has been used to carry out our experiments. This module is a 5Wp-photovoltaic (PV) module, configured with 36 monocrystalline cells serially connected. With those elements, a battery recharge station is made to recharge the robot batteries. For the energy storage DC/DC block, a series of ultracapacitors have been used. Due to the variation of the PV panel with the temperature and irradiation, and the non-integer behavior of the ultracapacitors as well as the non-linearities of the whole system, authors have been used a fractional control method to achieve that solar panels supply the maximum allowed power to recharge the robots in the lesser time. Greenhouse gas emissions for production of electricity vary due to regional differences in source fuel. The impact of an energy technology on the climate can be characterised by its carbon emission intensity, a measure of the amount of CO2, or CO2 equivalent emitted by unit of energy generated. In our work, the coal is the fossil energy more hazardous, providing a 53% more of gas emissions than natural gas and a 30% more than fuel. Moreover, it is remarkable that existing fossil fuel technologies produce high carbon emission intensity through the combustion of carbon-rich fuels, whilst renewable technologies such as solar produce little or no emissions during operation, but may incur emissions during manufacture. The solar energy thus can help to mitigate carbon emissions.

Keywords: autonomous robots, CO2 emissions, DC/DC buck-boost, solar energy

Procedia PDF Downloads 424
Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 316
The Role of Biosecurity in Sustainable Aquaculture

Authors: Barbara Montwill

Abstract:

The last three decades of continuing increase in the farming of aquatic animals worldwide placed a biosecurity in a different perspective. An introduction of new countries, technologies, species to aquaculture, increased movement of animals are a few factors the might be associated with biosecurity risks. Most farms depend on trade for various inputs such as broodstock, post-larvae/fingerlings and feed. These inputs represent potential pathways by which pathogens can enter farming operations and create conditions for emergence of new or reoccurrence of diseases and production loses. Farm biosecurity should be considered an essential component of a national aquatic animal biosecurity program and together with adequate import and export controls can lead to the development of successful aquaculture industry as a reliable source of safe seafood product. This presentation would describe some biosecurity management approaches to minimize the negative impact of aquatic diseases on production and preserve the power of antibiotics.

Keywords: aquaculture, biosecurity, antibiotics, antibiotics residues

Procedia PDF Downloads 285
Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array

Authors: Masahiro Takahashi, Kosuke Harada, Shihomi Nakao, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada

Abstract:

Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as building blocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5 µm and 200 nm, respectively. UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser.

Keywords: zinc oxide, nanowall, interference laser, UV lasing

Procedia PDF Downloads 509
Analysis of Simply Supported Beams Using Elastic Beam Theory

Authors: M. K. Dce

Abstract:

The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span.

Keywords: beam, UDL, bending moment, deflection, elastic beam theory

Procedia PDF Downloads 396