Search results for: numerical weather prediction
3149 Digitalization in Aggregate Quarries
Authors: José Eugenio Ortiz, Pierre Plaza, Josefa Herrero, Iván Cabria, José Luis Blanco, Javier Gavilanes, José Ignacio Escavy, Ignacio López-Cilla, Virginia Yagüe, César Pérez, Silvia Rodríguez, Jorge Rico, Cecilia Serrano, Jesús Bernat
Abstract:
The development of Artificial Intelligence services in mining processes, specifically in aggregate quarries, is facilitating automation and improving numerous aspects of operations. Ultimately, AI is transforming the mining industry by improving efficiency, safety and sustainability. With the ability to analyze large amounts of data and make autonomous decisions, AI offers great opportunities to optimize mining operations and maximize the economic and social benefits of this vital industry. Within the framework of the European DIGIECOQUARRY project, various services were developed for the identification of material quality, production estimation, detection of anomalies and prediction of consumption and production automatically with good results.Keywords: aggregates, artificial intelligence, automatization, mining operations
Procedia PDF Downloads 923148 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines
Authors: S. O. Oyamakin, A. U. Chukwu
Abstract:
Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic
Procedia PDF Downloads 4833147 Study on the Forging of AISI 1015 Spiral Bevel Gear by Finite Element Analysis
Authors: T. S. Yang, J. H. Liang
Abstract:
This study applies the finite element method (FEM) to predict maximum forging load, effective stress distribution, effective strain distribution, workpiece temperature temperature in spiral bevel gear forging of AISI 1015. Maximum forging load, effective stress, effective strain, workpiece temperature are determined for different process parameters, such as modules, number of teeth, helical angle and workpiece temperature of the spiral bevel gear hot forging, using the FEM. Finally, the prediction of the power requirement for the spiral bevel gear hot forging of AISI 1015 is determined.Keywords: spiral bevel gear, hot forging, finite element method
Procedia PDF Downloads 4813146 An Optimal and Efficient Family of Fourth-Order Methods for Nonlinear Equations
Authors: Parshanth Maroju, Ramandeep Behl, Sandile S. Motsa
Abstract:
In this study, we proposed a simple and interesting family of fourth-order multi-point methods without memory for obtaining simple roots. This family requires only three functional evaluations (viz. two of functions f(xn), f(yn) and third one of its first-order derivative f'(xn)) per iteration. Moreover, the accuracy and validity of new schemes is tested by a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal fourth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, the dynamic study of these methods also supports the theoretical aspect.Keywords: basins of attraction, nonlinear equations, simple roots, Newton's method
Procedia PDF Downloads 3143145 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation
Authors: Jesus Ruano, Asensi Oliva
Abstract:
The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise
Procedia PDF Downloads 3023144 General Network with Four Nodes and Four Activities with Triangular Fuzzy Number as Activity Times
Authors: Rashmi Tamhankar, Madhav Bapat
Abstract:
In many projects, we have to use human judgment for determining the duration of the activities which may vary from person to person. Hence, there is vagueness about the time duration for activities in network planning. Fuzzy sets can handle such vague or imprecise concepts and has an application to such network. The vague activity times can be represented by triangular fuzzy numbers. In this paper, a general network with fuzzy activity times is considered and conditions for the critical path are obtained also we compute total float time of each activity. Several numerical examples are discussed.Keywords: PERT, CPM, triangular fuzzy numbers, fuzzy activity times
Procedia PDF Downloads 4783143 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria
Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List
Abstract:
Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM
Procedia PDF Downloads 3183142 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms
Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz
Abstract:
Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery
Procedia PDF Downloads 3723141 The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind
Authors: Melusi Khumalo, Anastacia Dlamini
Abstract:
In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method.Keywords: finite element method, Galerkin approach, Fredholm integral equations, nonlinear integral equations
Procedia PDF Downloads 3803140 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone
Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng
Abstract:
Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.Keywords: acid mine drainage, neutralisation, limestone, mathematical modelling
Procedia PDF Downloads 3693139 Nanoporous Metals Reinforced with Fullerenes
Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca
Abstract:
Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals
Procedia PDF Downloads 2423138 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 783137 Internal Corrosion Rupture of a 6-in Gas Line Pipe
Authors: Fadwa Jewilli
Abstract:
A sudden leak of a 6-inch gas line pipe after being in service for one year was observed. The pipe had been designed to transport dry gas. The failure had taken place in 6 o’clock position at the stage discharge of the flow process. Laboratory investigations were conducted to find out the cause of the pipe rupture. Visual and metallographic observations confirmed that the pipe split was due to a crack initiated in circumferential and then turned into longitudinal direction. Sever wall thickness reduction was noticed on the internal pipe surface. Scanning electron microscopy observations at the fracture surface revealed features of ductile fracture mode. Corrosion product analysis showed the traces of iron carbonate and iron sulphate. The laboratory analysis resulted in the conclusion that the pipe failed due to the effect of wet fluid (condensate) caused severe wall thickness dissolution resulted in pipe could not stand the continuation at in-service working condition.Keywords: gas line pipe, corrosion prediction ductile fracture, ductile fracture, failure analysis
Procedia PDF Downloads 873136 Solving SPDEs by Least Squares Method
Authors: Hassan Manouzi
Abstract:
We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.Keywords: least squares, wick product, SPDEs, finite element, wiener chaos expansion, gradient method
Procedia PDF Downloads 4243135 Islamic Finance: Its Theory, Products and a Brief View of Islamic Finance in Europe
Authors: Ahmet Sekreter
Abstract:
Although there are conceptual similarities in terms of financial products between conventional and Islamic finance, they are entirely different financial systems. Despite Islamic finance’s small size in the conventional finance world, its promising growth makes Islamic finance a hot topic both in academia and business world. Today customers can access sophisticated Islamic financial products not only in Muslim countries but also in Europe. This study analyzes Islamic finance and its products and includes a brief overview of Islamic finance in Europe. Literature review is the basis of this paper. The author analyzed the academic papers, numerical data, and estimations to set a perspective for the future of Islamic finance in Europe. Findings show that UK is the main hub for the Islamic finance, and it will remain so in the near future.Keywords: islamic finance, islamic banking, islamic finance in Europe, finance
Procedia PDF Downloads 2423134 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests
Authors: Rose Shayeghi, Pejman Hosseinioun
Abstract:
The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learner-centered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.Keywords: multiple intelligence, grammar, ELT, EFL, TIMI
Procedia PDF Downloads 4963133 TransDrift: Modeling Word-Embedding Drift Using Transformer
Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur
Abstract:
In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.Keywords: NLP applications, transformers, Word2vec, drift, word embeddings
Procedia PDF Downloads 963132 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems
Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai
Abstract:
In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU
Procedia PDF Downloads 1613131 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 573130 Descent Algorithms for Optimization Algorithms Using q-Derivative
Authors: Geetanjali Panda, Suvrakanti Chakraborty
Abstract:
In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method
Procedia PDF Downloads 4013129 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar
Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo
Abstract:
The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB
Procedia PDF Downloads 913128 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.Keywords: cognitive decline, functional connectivity, MCI, MMSE
Procedia PDF Downloads 3893127 Combustion Analysis of Suspended Sodium Droplet
Authors: T. Watanabe
Abstract:
Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.Keywords: analysis, combustion, droplet, sodium
Procedia PDF Downloads 2133126 Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling
Authors: Ali Ashtiani, Cesar Carrasco
Abstract:
Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model.Keywords: built-in curling, finite element modeling, loss of slab support, rigid pavement
Procedia PDF Downloads 1503125 Evaluation of Particle Settling in Flow Chamber
Authors: Abdulrahman Alenezi, B. Stefan
Abstract:
Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity.Keywords: flow experiment, drag coefficient, Particle Settling, Flow Chamber
Procedia PDF Downloads 1453124 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System
Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon
Abstract:
This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control
Procedia PDF Downloads 3233123 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 763122 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation
Authors: Aritras Roy, Rinku Mukherjee
Abstract:
The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.Keywords: post-stall, unsteady, wing, aerodynamics
Procedia PDF Downloads 3733121 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention
Authors: Ashish Kumar, Kaptan Singh, Amit Saxena
Abstract:
Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.Keywords: K-nearest neighbor, random forest, decision tree, pre-processing
Procedia PDF Downloads 983120 Lessons of Passive Environmental Design in the Sarabhai and Shodan Houses by Le Corbusier
Authors: Juan Sebastián Rivera Soriano, Rosa Urbano Gutiérrez
Abstract:
The Shodan House and the Sarabhai House (Ahmedabad, India, 1954 and 1955, respectively) are considered some of the most important works of Le Corbusier produced in the last stage of his career. There are some academic publications that study the compositional and formal aspects of their architectural design, but there is no in-depth investigation into how the climatic conditions of this region were a determining factor in the design decisions implemented in these projects. This paper argues that Le Corbusier developed a specific architectural design strategy for these buildings based on scientific research on climate in the Indian context. This new language was informed by a pioneering study and interpretation of climatic data as a design methodology that would even involve the development of new design tools. This study investigated whether their use of climatic data meets values and levels of accuracy obtained with contemporary instruments and tools, such as Energy Plus weather data files and Climate Consultant. It also intended to find out if Le Corbusier's office’s intentions and decisions were indeed appropriate and efficient for those climate conditions by assessing these projects using BIM models and energy performance simulations from Design Builder. Accurate models were built using original historical data through archival research. The outcome is to provide a new understanding of the environment of these houses through the combination of modern building science and architectural history. The results confirm that in these houses, it was achieved a model of low energy consumption. This paper contributes new evidence not only on exemplary modern architecture concerned with environmental performance but also on how it developed progressive thinking in this direction.Keywords: bioclimatic architecture, Le Corbusier, Shodan, Sarabhai Houses
Procedia PDF Downloads 69