Search results for: gas distribution network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9383

Search results for: gas distribution network

6263 Analysis of Productivity and Poverty Status among Users of Improved Sorghum Varieties in Kano State, Nigeria

Authors: Temitope Adefunsho Olatoye, Julius Olabode Elega

Abstract:

Raising agricultural productivity is an important policy goal for governments and development agencies, and this is central to growth, income distribution, improved food security, and poverty alleviation among practitioners. This study analyzed the productivity and poverty status among users of improved sorghum varieties in Kano State, Nigeria. A multistage sampling technique was adopted in the selection of 131 sorghum farmers who were users of improved sorghum varieties. Data collected were analyzed using both descriptive (frequency distribution and percentage) and inferential (productivity index and FGT model) statistics. The result of the socioeconomic characteristics of the sorghum farmers showed a mean age of 40 years, with about 93.13% of the sorghum farmers being male. Also, as indicated by the result, the majority (82.44%) of the farmers were married, with most of them having qur’anic education with a mean farm size of 3.6 ha, as reported in the study area. Furthermore, the result showed that the mean farming experience of the sorghum farmers in the study area was 19 years, with an average monthly income of about ₦48,794, as reported in the study area. The result of the productivity index showed a ratio of 192,977kg/ha, while the result of poverty status shows that 62.88% were in the non-poor category, 21.21% were poor, and 15.91% were very poor, respectively. The result also showed that the incidence of poverty for sorghum farmers was 16%, indicating that the incidence of poverty was prevalent in the study area. Based on the findings of this study, it was therefore recommended that seed companies should facilitate the spread of improved sorghum varieties as it has an impact on the productivity and poverty status of sorghum farmers in the study area.

Keywords: Foster Greer Thorbecke model, improved sorghum varieties, productivity, poverty status

Procedia PDF Downloads 81
6262 K-12 Students’ Digital Life: Activities and Attitudes

Authors: Meital Amzalag, Sharon Hardof-Jaffe

Abstract:

In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.

Keywords: technology and learning, K-12, digital life, gender differences

Procedia PDF Downloads 139
6261 Assessment of Water Quality in Keluang River amidst Industrial Expansion in Bayan Lepas, Penang Island, Malaysia

Authors: Sharareh Khodami, Misni Surif, Wan Maznah Wan Omar, Parto Bahreini

Abstract:

Over the past three decades, Penang Island, Malaysia, has experienced rapid development across the industrial, urban, tourism, and aquaculture sectors. Consequently, wastewater from the Bayan Lepas Free Industrial Zone (FIZ) is discharged into a network of drainage canals and the Keluang River, which ultimately releases into the open sea near Jerjak Island. Among these waterways, the Keluang River is the largest canal receiving effluent from the Bayan Lepas FIZ. This study investigated the spatial and temporal variability of key physicochemical parameters water temperature, dissolved oxygen, salinity, pH, and nutrients (NO₃⁻, NO₂⁻, NH₄⁺, and PO₄³⁻) in the Bayan Lepas area. Water samples were collected from ten sampling stations (upstream, housing area, factory area, and coast) during low tide under both wet and dry seasonal conditions. The parameters were analyzed, and the spatial distribution of them were mapped using Geographic Information System (GIS) techniques. The observed ranges were 26–31.7 °C for water temperature, 0.3–9 mg/L for dissolved oxygen, 6.95–8.56 for pH, 0–30.1 ppt for salinity, 0.2–0.820 mg/L for nitrate, 0.002–0.090 mg/L for nitrite, 0.4–6.33 mg/L for ammonia, and 0.033–1.110 mg/L for phosphate. The selected stations exhibited characteristics ranging from fresh to saline water. One-way ANOVA showed that each parameter significantly differed among the stations during the two seasons (P < 0.05). The parameter values were evaluated against Malaysia's National Water Quality Standards (NWQS) and Marine Water Quality Criteria and Standards (MWQCS), and stations for each parameter were categorized from Class I to V. Results indicated that the Keluang River is polluted with high levels of ammonia and phosphate and low dissolved oxygen. The phosphate and ammonium concentrations at the river mouth of the Keluang River were 47.60 and 18.8 times higher than the standard values (0.056 mg/L and 0.024 mg/L), respectively. In light of the ongoing industrial expansion in the Bayan Lepas area, it is imperative to prioritize environmental protection and sustainable development practices to mitigate nutrient pollution and preserve the ecological health of the Keluang River and adjacent coastal regions.

Keywords: industrial impact, Keluang River, nutrient pollution, water quality

Procedia PDF Downloads 16
6260 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 503
6259 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring

Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie

Abstract:

Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.

Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement

Procedia PDF Downloads 18
6258 Crop Classification using Unmanned Aerial Vehicle Images

Authors: Iqra Yaseen

Abstract:

One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.

Keywords: image processing, UAV, YOLO, CNN, deep learning, classification

Procedia PDF Downloads 115
6257 Sequence Polymorphism and Haplogroup Distribution of Mitochondrial DNA Control Regions HVS1 and HVS2 in a Southwestern Nigerian Population

Authors: Ogbonnaya O. Iroanya, Samson T. Fakorede, Osamudiamen J. Edosa, Hadiat A. Azeez

Abstract:

The human mitochondrial DNA (mtDNA) is about 17 kbp circular DNA fragments found within the mitochondria together with smaller fragments of 1200 bp known as the control region. Knowledge of variation within populations has been employed in forensic and molecular anthropology studies. The study was aimed at investigating the polymorphic nature of the two hypervariable segments (HVS) of the mtDNA, i.e., HVS1 and HVS2, and to determine the haplogroup distribution among individuals resident in Lagos, Southwestern Nigeria. Peripheral blood samples were obtained from sixty individuals who are not related maternally, followed by DNA extraction and amplification of the extracted DNA using primers specific for the regions under investigation. DNA amplicons were sequenced, and sequenced data were aligned and compared to the revised Cambridge Reference Sequence (rCRS) GenBank Accession number: NC_012920.1) using BioEdit software. Results obtained showed 61 and 52 polymorphic nucleotide positions for HVS1 and HVS2, respectively. While a total of three indels mutation were recorded for HVS1, there were seven for HVS2. Also, transition mutations predominate nucleotide change observed in the study. Genetic diversity (GD) values for HVS1 and HVS2 were estimated to be 84.21 and 90.4%, respectively, while random match probability was 0.17% for HVS1 and 0.89% for HVS2. The study also revealed mixed haplogroups specific to the African (L1-L3) and the Eurasians (U and H) lineages. New polymorphic sites obtained from the study are promising for human identification purposes.

Keywords: hypervariable region, indels, mitochondrial DNA, polymorphism, random match probability

Procedia PDF Downloads 121
6256 A Novel Approach to Design and Implement Context Aware Mobile Phone

Authors: G. S. Thyagaraju, U. P. Kulkarni

Abstract:

Context-aware computing refers to a general class of computing systems that can sense their physical environment, and adapt their behaviour accordingly. Context aware computing makes systems aware of situations of interest, enhances services to users, automates systems and personalizes applications. Context-aware services have been introduced into mobile devices, such as PDA and mobile phones. In this paper we are presenting a novel approaches used to realize the context aware mobile. The context aware mobile phone (CAMP) proposed in this paper senses the users situation automatically and provides user context required services. The proposed system is developed by using artificial intelligence techniques like Bayesian Network, fuzzy logic and rough sets theory based decision table. Bayesian Network to classify the incoming call (high priority call, low priority call and unknown calls), fuzzy linguistic variables and membership degrees to define the context situations, the decision table based rules for service recommendation. To exemplify and demonstrate the effectiveness of the proposed methods, the context aware mobile phone is tested for college campus scenario including different locations like library, class room, meeting room, administrative building and college canteen.

Keywords: context aware mobile, fuzzy logic, decision table, Bayesian probability

Procedia PDF Downloads 371
6255 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 669
6254 Finding a Redefinition of the Relationship between Rural and Urban Knowledge

Authors: Bianca Maria Rulli, Lenny Valentino Schiaretti

Abstract:

The considerable recent urbanization has increasingly sharpened environmental and social problems all over the world. During the recent years, many answers to the alarming attitudes in modern cities have emerged: a drastic reduction in the rate of growth is becoming essential for future generations and small scale economies are considered more adaptive and sustainable. According to the concept of degrowth, cities should consider surpassing the centralization of urban living by redefining the relationship between rural and urban knowledge; growing food in cities fundamentally contributes to the increase of social and ecological resilience. Through an innovative approach, this research combines the benefits of urban agriculture (increase of biological diversity, shorter and thus more efficient supply chains, food security) and temporary land use. They stimulate collaborative practices to satisfy the changing needs of communities and stakeholders. The concept proposes a coherent strategy to create a sustainable development of urban spaces, introducing a productive green-network to link specific areas in the city. By shifting the current relationship between architecture and landscape, the former process of ground consumption is deeply revised. Temporary modules can be used as concrete tools to create temporal areas of innovation, transforming vacant or marginal spaces into potential laboratories for the development of the city. The only permanent ground traces, such as foundations, are minimized in order to allow future land re-use. The aim is to describe a new mindset regarding the quality of space in the metropolis which allows, in a completely flexible way, to bring back the green and the urban farming into the cities. The wide possibilities of the research are analyzed in two different case-studies. The first is a regeneration/connection project designated for social housing, the second concerns the use of temporary modules to answer to the potential needs of social structures. The intention of the productive green-network is to link the different vacant spaces to each other as well as to the entire urban fabric. This also generates a potential improvement of the current situation of underprivileged and disadvantaged persons.

Keywords: degrowth, green network, land use, temporary building, urban farming

Procedia PDF Downloads 505
6253 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model

Procedia PDF Downloads 235
6252 Biaxial Fatigue Specimen Design and Testing Rig Development

Authors: Ahmed H. Elkholy

Abstract:

An elastic analysis is developed to obtain the distribution of stresses, strains, bending moment and deformation for a thin hollow, variable thickness cylindrical specimen when subjected to different biaxial loadings. The specimen was subjected to a combination of internal pressure, axial tensile loading and external pressure. Several axial to circumferential stress ratios were investigated in detail. The analytical model was then validated using experimental results obtained from a test rig using several biaxial loadings. Based on the preliminary results obtained, the specimen was then modified geometrically to ensure uniform strain distribution through its wall thickness and along its gauge length. The new design of the specimen has a higher buckling strength and a maximum value of equivalent stress according to the maximum distortion energy theory. A cyclic function generator of the standard servo-controlled, electro-hydraulic testing machine is used to generate a specific signal shape (sine, square,…) at a certain frequency. The two independent controllers of the electronic circuit cause an independent movement to each servo-valve piston. The movement of each piston pressurizes the upper and lower sides of the actuators alternately. So, the specimen will be subjected to axial and diametral loads independent of each other. The hydraulic system has two different pressures: one pressure will be responsible for axial stress produced in the specimen and the other will be responsible for the tangential stress. Changing the two pressure ratios will change the stress ratios accordingly. The only restriction on the maximum stress obtained is the capacity of the testing system and specimen instability due to buckling.

Keywords: biaxial, fatigue, stress, testing

Procedia PDF Downloads 133
6251 Scope of Virtualization

Authors: Pavneet Kaur, Palak Sharma

Abstract:

Virtualization is a term that basically describe creation of virtual version of something like operating system, network, etc. Virtualization is a technology which is in use from 1970, but with new developments and inventions, it is now useful in education, software development etc. This paper will describe basic introduction of virtualization, along with its various categories. It will also describe use of virtualization in software engineering, its various benefits and shortcomings.

Keywords: virtualization, hardware, software, os

Procedia PDF Downloads 372
6250 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions

Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.

Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation

Procedia PDF Downloads 216
6249 Improvements in Double Q-Learning for Anomalous Radiation Source Searching

Authors: Bo-Bin Xiaoa, Chia-Yi Liua

Abstract:

In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.

Keywords: double Q learning, dueling network, NoisyNet, source searching

Procedia PDF Downloads 116
6248 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 256
6247 Influence of Yield Stress and Compressive Strength on Direct Shear Behaviour of Steel Fibre-Reinforced Concrete

Authors: Bensaid Boulekbache, Mostefa Hamrat, Mohamed Chemrouk, Sofiane Amziane

Abstract:

This study aims in examining the influence of the paste yield stress and compressive strength on the behaviour of fibre-reinforced concrete (FRC) versus direct shear. The parameters studied are the steel fibre contents, the aspect ratio of fibres and the concrete strength. Prismatic specimens of dimensions 10x10x35cm made of concrete of various yield stress reinforced with steel fibres hooked at the ends with three fibre volume fractions (i.e. 0, 0.5, and 1%) and two aspects ratio (65 and 80) were tested to direct shear. Three types of concretes with various compressive strength and yield stress were tested, an ordinary concrete (OC), a self-compacting concrete (SCC) and a high strength concrete (HSC). The concrete strengths investigated include 30 MPa for OC, 60 MPa for SCC and 80 MPa for HSC. The results show that the shear strength and ductility are affected and have been improved very significantly by the fibre contents, fibre aspect ratio and concrete strength. As the compressive strength and the volume fraction of fibres increase, the shear strength increases. However, yield stress of concrete has an important influence on the orientation and distribution of the fibres in the matrix. The ductility was much higher for ordinary and self-compacting concretes (concrete with good workability). The ductility in direct shear depends on the fibre orientation and is significantly improved when the fibres are perpendicular to the shear plane. On the contrary, for concrete with poor workability, an inadequate distribution and orientation of fibres occurred, leading to a weak contribution of the fibres to the direct shear behaviour.

Keywords: concrete, fibre, direct shear, yield stress, orientation, strength

Procedia PDF Downloads 546
6246 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 191
6245 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: road safety, prediction, accident, model, Qatar

Procedia PDF Downloads 260
6244 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 154
6243 Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt

Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer

Abstract:

Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.

Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening

Procedia PDF Downloads 62
6242 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 304
6241 A Complex Network Approach to Structural Inequality of Educational Deprivation

Authors: Harvey Sanchez-Restrepo, Jorge Louca

Abstract:

Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.

Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics

Procedia PDF Downloads 128
6240 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method

Authors: Lee Yan Nian

Abstract:

Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.

Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation

Procedia PDF Downloads 130
6239 Pathway to Sustainable Shipping: Electric Ships

Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang

Abstract:

Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.

Keywords: cost reduction, electric ship, environmental protection, sustainable shipping

Procedia PDF Downloads 84
6238 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 117
6237 Evaluation of Actual Nutrition Patients of Osteoporosis

Authors: Aigul Abduldayeva, Gulnar Tuleshova

Abstract:

Osteoporosis (OP) is a major socio-economic problem and is a major cause of disability, reduced quality of life and premature death of elderly people. In Astana, the study involved 93 respondents, of whom 17 were men (18.3%), and 76 were women (81.7%). Age distribution of the respondents is as follows: 40-59 (66.7%), 60-75 (29.0%), 75-90 (4.3%). In the city of Astana general breach of bone mass (CCM) was determined in 83.8% (nationwide figure - RRP - 79.0%) of the patients, and normal levels of ultrasound densitometry were detected in 16.1% (RRP 21.0%) of the patients. OP was diagnosed in 20.4% of people over 40 (RRP for citizens is 19.0%), 25.4% in the group older than 50 (23.4% PIU), 22,6% in the group older than 60 (RRP 32.6%), 25.0% in the group older than 70 (47.6% of RRP). OPN was detected in 63.4% (RRP 59.6%) of the surveyed population. These data indicate that, there is no sharp difference between Astana and other cities in the country regarding the incidence of OP, that is, the situation with the OP is not aggravated by any regional characteristics. In the distribution of respondents by clusters it was found that 80.0% of the respondents with CCM were in the "best urban cluster", 93.8% were in "average urban cluster", and 77.4% were in a "poor urban cluster". There is a high rate construction of new buildings in Astana, presumably, that the new settlers inhabit the outskirts of the city, and very difficult to trace the socio-economic differences there. Based on these data the following conclusions can be made: 1. According to the ultrasound densitometry of the calcaneus the prevalence rate of NCM among the residents of Astana is 83.3%, OP - 20.4%, which generally coincides with data elsewhere in the country. 2. The urban population of Astana is under a high degree of risk for low energetic fracture, 46.2% of the population had medium and high risks of fracture, while the nationwide index is 26.7%. 3. In the development of CCM residents of Akmola region play a significant role gender, age, ethnic factors. According to the ultrasound densitometry women are more prone to Astana OP - 22.4% of respondents than men - 11.8% of respondents.

Keywords: nutrition, osteoporosis, elderly, urban population

Procedia PDF Downloads 478
6236 Approximation by Generalized Lupaş-Durrmeyer Operators with Two Parameter α and β

Authors: Preeti Sharma

Abstract:

This paper deals with the Stancu type generalization of Lupaş-Durrmeyer operators. We establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0, 1]. Also, Voronovskaja type theorem is studied.

Keywords: Lupas-Durrmeyer operators, polya distribution, weighted approximation, rate of convergence, modulus of continuity

Procedia PDF Downloads 347
6235 Molecular Dynamics Studies of Main Factors Affecting Mass Transport Phenomena on Cathode of Polymer Electrolyte Membrane Fuel Cell

Authors: Jingjing Huang, Nengwei Li, Guanghua Wei, Jiabin You, Chao Wang, Junliang Zhang

Abstract:

In this work, molecular dynamics (MD) simulation is applied to analyze the mass transport process in the cathode of proton exchange membrane fuel cell (PEMFC), of which all types of molecules situated in the cathode is considered. a reasonable and effective MD simulation process is provided, and models were built and compared using both Materials Studio and LAMMPS. The mass transport is one of the key issues in the study of proton exchange membrane fuel cells (PEMFCs). In this report, molecular dynamics (MD) simulation is applied to analyze the influence of Nafion ionomer distribution and Pt nano-particle size on mass transport process in the cathode. It is indicated by the diffusion coefficients calculation that a larger quantity of Nafion, as well as a higher equivalent weight (EW) value, will hinder the transport of oxygen. In addition, medium-sized Pt nano-particles (1.5~2nm) are more advantageous in terms of proton transport compared with other particle sizes (0.94~2.55nm) when the center-to-center distance between two Pt nano-particles is around 5 nm. Then mass transport channels are found to be formed between the hydrophobic backbone and the hydrophilic side chains of Nafion ionomer according to the radial distribution function (RDF) curves. And the morphology of these channels affected by the Pt size is believed to influence the transport of hydronium ions and, consequently the performance of PEMFC.

Keywords: cathode catalytic layer, mass transport, molecular dynamics, proton exchange membrane fuel cell

Procedia PDF Downloads 255
6234 Resilience of Infrastructure Networks: Maintenance of Bridges in Mountainous Environments

Authors: Lorenza Abbracciavento, Valerio De Biagi

Abstract:

Infrastructures are key elements to ensure the operational functionality of the transport system. The collapse of a single bridge or, equivalently, a tunnel can leads an entire motorway to be considered completely inaccessible. As a consequence, the paralysis of the communications network determines several important drawbacks for the community. Recent chronicle events have demonstrated that ensuring the functional continuity of the strategic infrastructures during and after a catastrophic event makes a significant difference in terms of life and economical losses. Moreover, it has been observed that RC structures located in mountain environments show a worst state of conservation compared to the same typology and aging structures located in temperate climates. Because of its morphology, in fact, the mountain environment is particularly exposed to severe collapse and deterioration phenomena, generally: natural hazards, e.g. rock falls, and meteorological hazards, e.g. freeze-thaw cycles or heavy snows. For these reasons, deep investigation on the characteristics of these processes becomes of fundamental importance to provide smart and sustainable solutions and make the infrastructure system more resilient. In this paper, the design of a monitoring system in mountainous environments is presented and analyzed in its parts. The method not only takes into account the peculiar climatic conditions, but it is integrated and interacts with the environment surrounding.

Keywords: structural health monitoring, resilience of bridges, mountain infrastructures, infrastructural network, maintenance

Procedia PDF Downloads 80