Search results for: energy efficiency
10147 Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils
Authors: Cosmas Parwada, Ronald Mandumbu, Handseni Tibugari, Trust Chinyama
Abstract:
A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production.Keywords: evapotranspiration, infiltration rate, organic mulch, sand, water use efficiency
Procedia PDF Downloads 22010146 Thin-Layer Drying Characteristics and Modelling of Instant Coffee Solution
Authors: Apolinar Picado, Ronald Solís, Rafael Gamero
Abstract:
The thin-layer drying characteristics of instant coffee solution were investigated in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (80, 100 and 120 °C) and an air velocity of 1.2 m/s. Drying experimental data obtained are fitted to six (6) thin-layer drying models using the non-linear least squares regression analysis. The acceptability of the thin-layer drying model has been based on a value of the correlation coefficient that should be close to one, and low values for root mean square error (RMSE) and chi-square (x²). According to this evaluation, the most suitable model for describing drying process of thin-layer instant coffee solution is the Page model. Further, the effective moisture diffusivity and the activation energy were computed employing the drying experimental data. The effective moisture diffusivity values varied from 1.6133 × 10⁻⁹ to 1.6224 × 10⁻⁹ m²/s over the temperature range studied and the activation energy was estimated to be 162.62 J/mol.Keywords: activation energy, diffusivity, instant coffee, thin-layer models
Procedia PDF Downloads 26710145 Thermodynamics of Stable Micro Black Holes Production by Modeling from the LHC
Authors: Aref Yazdani, Ali Tofighi
Abstract:
We study a simulative model for production of stable micro black holes based on investigation on thermodynamics of LHC experiment. We show that how this production can be achieved through a thermodynamic process of stability. Indeed, this process can be done through a very small amount of powerful fuel. By applying the second law of black hole thermodynamics at the scale of quantum gravity and perturbation expansion of the given entropy function, a time-dependent potential function is obtained which is illustrated with exact numerical values in higher dimensions. Seeking for the conditions for stability of micro black holes is another purpose of this study. This is proven through an injection method of putting the exact amount of energy into the final phase of the production which is equivalent to the same energy injection into the center of collision at the LHC in order to stabilize the produced particles. Injection of energy into the center of collision at the LHC is a new pattern that it is worth a try for the first time.Keywords: micro black holes, LHC experiment, black holes thermodynamics, extra dimensions model
Procedia PDF Downloads 14710144 Co-integration for Soft Commodities with Non-Constant Volatility
Authors: E. Channol, O. Collet, N. Kostyuchyk, T. Mesbah, Quoc Hoang Long Nguyen
Abstract:
In this paper, a pricing model is proposed for co-integrated commodities extending Larsson model. The futures formulae have been derived and tests have been performed with non-constant volatility. The model has been applied to energy commodities (gas, CO2, energy) and soft commodities (corn, wheat). Results show that non-constant volatility leads to more accurate short term prices, which provides better evaluation of value-at-risk and more generally improve the risk management.Keywords: co-integration, soft commodities, risk management, value-at-risk
Procedia PDF Downloads 55110143 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method
Procedia PDF Downloads 40710142 Effect of Calving Season on the Economic and Production Efficiency of Dairy Production Breeds
Authors: Eman. K. Ramadan, Abdelgawad. S. El-Tahawy
Abstract:
The objective of this study was to evaluate the effects of calving season on the production and economic efficiency of dairy farms in Egypt. Our study was performed at dairy production farms in the Alexandria, Behera, and Kafr El-Sheikh provinces of Egypt from summer 2010 to winter 2013. The randomly selected dairy farms had herds consisting of Baladi, Holstein-Friesian, or cross-bred (Baladi × Holstein-Friesian) cows. The data were collected from production records and responses to a structured questionnaire. The average total return differed significantly (P < 0.05) between the different cattle breeds and calving seasons. The average total return was highest for the Holstein-Friesian cows that calved in the winter (29106.42 EGP/cow/year), and it was lowest for Baladi cows that calved in the summer (12489.79 EGP/cow/year). Differences in total returns between the cows that calved in the winter or summer or between the foreign and native breeds, as well as variations in calf prices, might have contributed to the differences in milk yield. The average net profit per cow differed significantly (P < 0.05) between the cattle breeds and calving seasons. The average net profit values for the Baladi cows that calved in the winter or summer were 2413 and 2994.96 EGP/cow/year, respectively, and those for the Holstein-Friesian cows were 10744.17 and 7860.56 EGP/cow/year, respectively, whereas those for the cross-bred cows were 10174.86 and 7571.33 EGP/cow/year, respectively. The variations in net profit might have resulted from variation in the availability or price of feed materials, milk prices, or sales volumes. Our results show that the breed and calving season of dairy cows significantly affected the economic efficiency of dairy farms in Egypt. The cows that calved in the winter produced more milk than those that calved in the summer, which may have been the result of seasonal influences, such as temperature, humidity, management practices, and the type of feed or green fodder available.Keywords: calving season, economic, production, efficiency, dairy
Procedia PDF Downloads 43610141 Morphology Evolution in Titanium Dioxide Nanotubes Arrays Prepared by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
Photocatalysis has established as viable option in the development of processes for the treatment of pollutants and clean energy production. This option is based on the ability of semiconductors to generate an electron flow by means of the interaction with solar radiation. Owing to its electronic structure, TiO₂ is the most frequently used semiconductors in photocatalysis, although it has a high recombination of photogenerated charges and low solar energy absorption. An alternative to reduce these limitations is the use of nanostructured morphologies which can be produced during the synthesis of TiO₂ nanotubes (TNTs). Therefore, if possible to produce vertically oriented nanostructures it will be possible to generate a greater contact area with electrolyte and better charge transfer. At present, however, the development of these innovative structures still presents an important challenge for the development of competitive photoelectrochemical devices. This research focuses on established correlations between synthesis variables and 1D nanostructure morphology which has a direct effect on the photocatalytic performance. TNTs with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C-550 °C. Morphology and crystalline phase of the TNTs were carried out by SEM, EDS and XRD analysis. As results, the synthesis conditions were established to produce nanostructures with specific morphological characteristics. Anatase was the predominant phase of TNTs after thermal treatment. Nanotubes with 10 μm in length, 40 nm in pore diameter and a surface-volume ratio of 50 are important in photoelectrochemical applications based on TiO₂ due to their 1D characteristics, high surface-volume ratio, reduced radial dimensions and high oxide/electrolyte interface. Finally, this knowledge can be used to improve the photocatalytic activity of TNTs by making additional surface modifications with dopants that improve their efficiency.Keywords: electrochemical anodization, morphology, self-organized nanotubes, TiO₂ nanotubes
Procedia PDF Downloads 16310140 Vibration Analysis of Power Lines with Moving Dampers
Authors: Mohammad Bukhari, Oumar Barry
Abstract:
In order to reduce the Aeolian vibration of overhead transmission lines, the Stockbridge damper is usually attached. The efficiency of Stockbridge damper depends on its location on the conductor and its resonant frequencies. When the Stockbridge damper is located on a vibration node, it becomes inefficient. Hence, the static damper should be subrogated by a dynamic one. In the present study, a proposed dynamic absorber for transmission lines is studied. Hamilton’s principle is used to derive the governing equations, then the system of ordinary differential equations is solved numerically. Parametric studies are conducted to determine how certain parameters affect the performance of the absorber. The results demonstrate that replacing the static absorber by a dynamic one enhance the absorber performance for wider range of frequencies. The results also indicate that the maximum displacement decreases as the absorber speed and the forcing frequency increase. However, this reduction in maximum displacement is accompanying with increasing in the steady state vibration displacement. It is also indicated that the energy dissipation in moving absorber covers higher range of frequencies.Keywords: absorber performance, Aeolian vibration, Hamilton’s principle, stockbridge damper
Procedia PDF Downloads 27210139 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester
Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni
Abstract:
Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph
Procedia PDF Downloads 19310138 Morphological Characteristic of Hybrid Thin Films
Authors: Azyuni Aziz, Syed A. Malik, Shahrul Kadri Ayop, Fatin Hana Naning
Abstract:
Currently, organic-inorganic hybrid thin films have attracted researchers to explore them, where these thin films can give a lot of benefits. Hybrid thin films are thin films that consist of inorganic and organic materials. Inorganic and organic materials give high efficiency and low manufacturing cost in some applications such as solar cells application, furthermore, organic materials are environment-friendly. In this study, poly (3-hexylthiophene) was choosing as organic material which combined with inorganic nanoparticles, Cadmium Sulfide (CdS) quantum dots. Samples were prepared using new technique, Angle Lifting Deposition (ALD) at different weight percentage. All prepared samples were then characterized by Field Emission Scanning Electron Microscopy (FESEM) with Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscopy (AFM) to study surface of samples and determine their surface roughness. Results show that these inorganic nanoparticles have affected the surface of samples and surface roughness of samples increased due to increasing of weight percentage of CdS in the thin films samples.Keywords: AFM, CdS, FESEM-EDX, hybrid thin films, P3HT
Procedia PDF Downloads 50510137 Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications
Authors: Katherine Dropiewski, Michael Yakimov, Vadim Tokranov, Allan Minns, Pavel Murat, Serge Oktyabrsky
Abstract:
InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator.Keywords: GaAs, InAs, molecular beam epitaxy, quantum dots, III-V semiconductor
Procedia PDF Downloads 25910136 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems
Authors: Nadaniela Egidi, Pierluigi Maponi
Abstract:
The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem
Procedia PDF Downloads 10810135 Effect of Multi-Enzyme Supplementation on Growth Performance of Broiler
Authors: Abdur Rahman, Saima, T. N. Pasha, Muhammad Younus, Yassar Abbas, Shahid Jaleel
Abstract:
Non-starch polysaccharides (NSPs) are not completely digested by broiler endogenous enzymes and consequently the soluble NSPs in feed results in high digesta viscosity and poor retention of nutrients. Supplementation of NSPs digesting enzymes may release the nutrients from feed and reduce the anti-nutritional effects of NSP’s. The present study was conducted to determine the effects of NSPs digesting enzymes (Zympex) in broiler chicks. A total of 120 day old broiler chicks (Hubbard) were categorized into 3 treatments and each treatment was having four replicates with 10 birds in each. Dietary treatments comprised of Basal diet (2740 KCal/Kg) as control-1 (T1), low energy diet (2630 KCal/kg) control-2 (T2) and low energy diet with 0.5 gm/Kg enzyme as T3. Multi-enzymes supplementation showed significant (P < 0.05) positive effect on weight gain (last three weeks), feed intake (last two weeks), FCR (1st, 2nd, 4th and 5th) and nutrient retention in T3 when compared with control-2. Weight gain was lower (P < 0.05) in low caloric feed group C when compared with control-1 in all weeks except last week (P > 0.05), feed consumption was significantly lower (P < 0.05) in 5th week and results showed significantly poor FCR (P < 0.05) in 2nd, 3rd and 4th week but non-significant effect in 1st and 5th week when compared with control-1 group, which revealed the positive effect of enzyme supplementation in low energy diet. These results revealed that enzyme supplementation releases more energy from low energy diets and results in equal performance to normal diet.Keywords: body weight, FCR, feed intake, enzyme, non-starch polysaccharides
Procedia PDF Downloads 35410134 Increasing Efficiency of Orthodontic Treatment by Using Gummetal Arch Wires and Ceramic Zirconium Restoration with Laser ND-YAG for Fixation
Authors: Faeze Zamani Zade, Faeze Razm, Mehekk Repaswal
Abstract:
New technology such as laser and alloys have greatly contributed to the orthodontic industry. In this article, we will investigate and compare two important scales in orthodontics: Arch wire and bonding system; Gummetal is a new wire successfully used in clinical application in orthodontic, and their differences with other arch wire was significance. Background: Currently, finding the most effective method to treat a complex case in orthodontics in such a way that it has the least damage to the enamel tissue and the most efficiency has been one of the daily issues in the orthodontic industry, which has attracted the attention of dentists, orthodontists, and also patients. Methods: The review of article is made up by searching in different journals with related topics, we analyzed different subjects in this review. Results: The number of literary references that we identified during the literature in this review is 56. After excluding publications we removed the topics they weren’t match, the total number of articles included in the systematic review was determined to be 13. Conclusions: The flexibility of Gummetal compared to other archwires is indicative of the unique difference of this product with the rest of the products. It is correct to use a metal bracket, which is less aesthetically pleasing than a ceramic bracket, but in this article, we are looking for finding the best and most effective method for treating complex cases, using laser and ceramic zirconium for brackets and using Gummetal will increase the efficiency of our braces system.Keywords: archwire, Gummetal, metal bracket, methods, zirconium ceramic, semi-material
Procedia PDF Downloads 1210133 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station
Authors: Elvis Nyirenda
Abstract:
This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy
Procedia PDF Downloads 12010132 Repair of Thermoplastic Composites for Structural Applications
Authors: Philippe Castaing, Thomas Jollivet
Abstract:
As a result of their advantages, i.e. recyclability, weld-ability, environmental compatibility, long (continuous) fiber thermoplastic composites (LFTPC) are increasingly used in many industrial sectors (mainly automotive and aeronautic) for structural applications. Indeed, in the next ten years, the environmental rules will put the pressure on the use of new structural materials like composites. In aerospace, more than 50% of the damage are due to stress impact and 85% of damage are repaired on the fuselage (fuselage skin panels and around doors). With the arrival of airplanes mainly of composite materials, replacement of sections or panels seems difficult economically speaking and repair becomes essential. The objective of the present study is to propose a solution of repair to prevent the replacement the damaged part in thermoplastic composites in order to recover the initial mechanical properties. The classification of impact damage is not so not easy : talking about low energy impact (less than 35 J) can be totally wrong when high speed or weak thicknesses as well as thermoplastic resins are considered. Crash and perforation with higher energy create important damages and the structures are replaced without repairing, so we just consider here damages due to impacts at low energy that are as follows for laminates : − Transverse cracking; − Delamination; − Fiber rupture. At low energy, the damages are barely visible but can nevertheless reduce significantly the mechanical strength of the part due to resin cracks while few fiber rupture is observed. The patch repair solution remains the standard one but may lead to the rupture of fibers and consequently creates more damages. That is the reason why we investigate the repair of thermoplastic composites impacted at low energy. Indeed, thermoplastic resins are interesting as they absorb impact energy through plastic strain. The methodology is as follows: - impact tests at low energy on thermoplastic composites; - identification of the damage by micrographic observations; - evaluation of the harmfulness of the damage; - repair by reconsolidation according to the extent of the damage ; -validation of the repair by mechanical characterization (compression). In this study, the impacts tests are performed at various levels of energy on thermoplastic composites (PA/C, PEEK/C and PPS/C woven 50/50 and unidirectional) to determine the level of impact energy creating damages in the resin without fiber rupture. We identify the extent of the damage by US inspection and micrographic observations in the plane part thickness. The samples were in addition characterized in compression to evaluate the loss of mechanical properties. Then the strategy of repair consists in reconsolidating the damaged parts by thermoforming, and after reconsolidation the laminates are characterized in compression for validation. To conclude, the study demonstrates the feasibility of the repair for low energy impact on thermoplastic composites as the samples recover their properties. At a first step of the study, the “repair” is made by reconsolidation on a thermoforming press but we could imagine a process in situ to reconsolidate the damaged parts.Keywords: aerospace, automotive, composites, compression, damages, repair, structural applications, thermoplastic
Procedia PDF Downloads 30610131 Comparative Analysis of Single vs. Multiple gRNA on NGN3 Expression Using a Controllable dCas9-VP192 Activator (CRISPRa)
Authors: Nicholas Abdilmasih, Habib Rezanejad
Abstract:
This study investigates the gene expression induction efficiency of single versus multiple guide RNAs (gRNAs) targeting the NGN3 gene using the CRISPR activation system in HEK293 cells. Our study aimed to contribute to optimizing the use of gRNAs in gene therapy applications, particularly in treating diseases like diabetes, where precise gene regulation is essential. The experimental design involves culturing HEK293 cells, and once they reach approximately 70-80% confluence, cells were transfected with specific gRNAs targeting the NGN3 gene promoter. Specific gRNAs targeting the NGN3 promoter that was previously designed, incorporated into plasmid clone cassettes and introduced into HEK293 cells through co-transfection using pCAG-DDdCas9-VP192-EGFP transactivator. Post-transfection, cell viability, and fluorescence were monitored to assess transfection efficiency. RNA was extracted, converted to cDNA, and analyzed via qPCR to measure NGN3 expression levels. Results indicated that specific combinations of fewer gRNAs led to higher NGN3 activation compared to multiple gRNAs, challenging the assumption that more gRNAs result in synergistic gene activation. These findings suggest that optimized gRNA combinations can enhance gene therapy efficiency, potentially leading to more effective treatments for conditions like diabetes.Keywords: CRISPR activation, Diabetes mellitus, gene therapy, guide RNA, Neurogenin3
Procedia PDF Downloads 3210130 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City
Authors: Emejeamara Francis
Abstract:
The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content
Procedia PDF Downloads 27910129 Design and Development of Compact 1KW Floating Battery Discharge Regulator
Authors: A. Sreedevi, G. Anantaramu
Abstract:
The present space research organizations are striving towards the development of lighter, smaller, more efficient, low cost, and highly reliable power supply. Switch mode power supplies (SMPS) overcome the demerits of linear power supplies such as low efficiency, difficulties in thermal management, and in boosting the output voltage. Space applications require a constant DC voltage to supply its load. As the load varies, the battery terminal voltage tends to vary accordingly. To avoid this variation in the load terminal voltage, a DC-DC regulator is required. The conventional regulator for space applications is isolated boost topology. The proposed topology uses an interleaved push-pull converter with a current doubler secondary to reduce the EMI issues and increase efficiency. The proposed topology uses a floating technique where the converter derives power from the battery and generates only the voltage that is required to fill the gap between the bus and the battery voltage. The direct voltage sense and current loop provide tight regulation of output and better stability. Converter is designed with 50 kHz switching frequency using UC 1825 PWM controller employing both voltage and peak current mode control. Experimental tests have been carried out on the converter under different input and load conditions to validate the design. The experimental results showed that the efficiency was greater than 91%. Stability analysis is done using venable stability analyzer.Keywords: push pull converter, current doubler, converter, PWM control
Procedia PDF Downloads 10710128 A New Converter Topology for Wind Energy Conversion System
Authors: Mahmoud Khamaira, Ahmed Abu-Siada, Yasser Alharbi
Abstract:
Doubly Fed Induction Generators (DFIGs) are currently extensively used in variable speed wind power plants due to their superior advantages that include reduced converter rating, low cost, reduced losses, easy implementation of power factor correction schemes, variable speed operation and four quadrants active and reactive power control capabilities. On the other hand, DFIG sensitivity to grid disturbances, especially for voltage sags represents the main disadvantage of the equipment. In this paper, a coil is proposed to be integrated within the DFIG converters to improve the overall performance of a DFIG-based wind energy conversion system (WECS). The charging and discharging of the coil are controlled by controlling the duty cycle of the switches of the dc-dc chopper. Simulation results reveal the effectiveness of the proposed topology in improving the overall performance of the WECS system under study.Keywords: doubly fed induction generator, coil, wind energy conversion system, converter topology
Procedia PDF Downloads 66410127 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area
Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo
Abstract:
Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine
Procedia PDF Downloads 35710126 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds
Authors: Vishal Kumar, Soumitra Satapathi
Abstract:
Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer
Procedia PDF Downloads 13810125 High Power Thermal Energy Storage for Industrial Applications Using Phase Change Material Slurry
Authors: Anastasia Stamatiou, Markus Odermatt, Dominic Leemann, Ludger J. Fischer, Joerg Worlitschek
Abstract:
The successful integration of thermal energy storage in industrial processes is expected to play an important role in the energy turnaround. Latent heat storage technologies can offer more compact thermal storage at a constant temperature level, in comparison to conventional, sensible thermal storage technologies. The focus of this study is the development of latent heat storage solutions based on the Phase Change Slurry (PCS) concept. Such systems promise higher energy densities both as refrigerants and as storage media while presenting better heat transfer characteristics than conventional latent heat storage technologies. This technology is expected to deliver high thermal power and high-temperature stability which makes it ideal for storage of process heat. An evaluation of important batch processes in industrial applications set the focus on materials with a melting point in the range of 55 - 90 °C. Aluminium ammonium sulfate dodecahydrate (NH₄Al(SO₄)₂·12H₂O) was chosen as the first interesting PCM for the next steps of this study. The ability of this material to produce slurries at the relevant temperatures was demonstrated in a continuous mode in a laboratory test-rig. Critical operational and design parameters were identified.Keywords: esters, latent heat storage, phase change materials, thermal properties
Procedia PDF Downloads 30210124 Carbon Footprint and Exergy Destruction Footprint in White Wine Production Line
Authors: Mahmut Genc, Seda Genc
Abstract:
Wine is the most popular alcoholic drink in the World with 274.4 million of hectoliter annual production in the year of 2015. The wine industry is very important for some regions as well as creating significant value in their economies. This industry is very sensitive to the global warming since viticulture highly depends on climate and geographical region. Sustainability concept is a crucial issue for the wine industry and sustainability performances of wine production processes should be determined. Although wine production industry is an energy intensive sector as a whole, the most energy intensive products are widely used both in the viti and vinicultural process. In this study, gate-to-gate LCA approach in energy resource utilization and global warming potential impacts for white wine production line were attempted and carbon footprint and exergy destruction footprint were calculated, accordingly. As a result, carbon footprint and exergy destruction footprint values were calculated to be 1.75 kg CO2eq and 365.3kW, respectively.Keywords: carbon footprint, exergy analysis, exergy destruction footprint, white wine
Procedia PDF Downloads 27510123 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves
Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman
Abstract:
The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.Keywords: Ficus, ultrasounds, vitexin, isovitexin
Procedia PDF Downloads 42110122 Analytical Study Of Holographic Polymer Dispersed Liquid Crystals Using Finite Difference Time Domain Method
Authors: N. R. Mohamad, H. Ono, H. Haroon, A. Salleh, N. M. Z. Hashim
Abstract:
In this research, we have studied and analyzed the modulation of light and liquid crystal in HPDLCs using Finite Domain Time Difference (FDTD) method. HPDLCs are modeled as a mixture of polymer and liquid crystals (LCs) that categorized as an anisotropic medium. FDTD method is directly solves Maxwell’s equation with less approximation, so this method can analyze more flexible and general approach for the arbitrary anisotropic media. As the results from FDTD simulation, the highest diffraction efficiency occurred at ±19 degrees (Bragg angle) using p polarization incident beam to Bragg grating, Q > 10 when the pitch is 1µm. Therefore, the liquid crystal is assumed to be aligned parallel to the grating constant vector during these parameters.Keywords: birefringence, diffraction efficiency, finite domain time difference, nematic liquid crystals
Procedia PDF Downloads 46610121 Model-Based Global Maximum Power Point Tracking at Photovoltaic String under Partial Shading Conditions Using Multi-Input Interleaved Boost DC-DC Converter
Authors: Seyed Hossein Hosseini, Seyed Majid Hashemzadeh
Abstract:
Solar energy is one of the remarkable renewable energy sources that have particular characteristics such as unlimited, no environmental pollution, and free access. Generally, solar energy can be used in thermal and photovoltaic (PV) types. The cost of installation of the PV system is very high. Additionally, due to dependence on environmental situations such as solar radiation and ambient temperature, electrical power generation of this system is unpredictable and without power electronics devices, there is no guarantee to maximum power delivery at the output of this system. Maximum power point tracking (MPPT) should be used to achieve the maximum power of a PV string. MPPT is one of the essential parts of the PV system which without this section, it would be impossible to reach the maximum amount of the PV string power and high losses are caused in the PV system. One of the noticeable challenges in the problem of MPPT is the partial shading conditions (PSC). In PSC, the output photocurrent of the PV module under the shadow is less than the PV string current. The difference between the mentioned currents passes from the module's internal parallel resistance and creates a large negative voltage across shaded modules. This significant negative voltage damages the PV module under the shadow. This condition is called hot-spot phenomenon. An anti-paralleled diode is inserted across the PV module to prevent the happening of this phenomenon. This diode is known as the bypass diode. Due to the performance of the bypass diode under PSC, the P-V curve of the PV string has several peaks. One of the P-V curve peaks that makes the maximum available power is the global peak. Model-based Global MPPT (GMPPT) methods can estimate the optimal point with higher speed than other GMPPT approaches. Centralized, modular, and interleaved DC-DC converter topologies are the significant structures that can be used for GMPPT at a PV string. there are some problems in the centralized structure such as current mismatch losses at PV sting, loss of power of the shaded modules because of bypassing by bypass diodes under PSC, needing to series connection of many PV modules to reach the desired voltage level. In the modular structure, each PV module is connected to a DC-DC converter. In this structure, by increasing the amount of demanded power from the PV string, the number of DC-DC converters that are used at the PV system will increase. As a result, the cost of the modular structure is very high. We can implement the model-based GMPPT through the multi-input interleaved boost DC-DC converter to increase the power extraction from the PV string and reduce hot-spot and current mismatch error in a PV string under different environmental condition and variable load circumstances. The interleaved boost DC-DC converter has many privileges than other mentioned structures, such as high reliability and efficiency, better regulation of DC voltage at DC link, overcome the notable errors such as module's current mismatch and hot spot phenomenon, and power switches voltage stress reduction.Keywords: solar energy, photovoltaic systems, interleaved boost converter, maximum power point tracking, model-based method, partial shading conditions
Procedia PDF Downloads 13510120 Adaptive Power Control Topology Based Photovoltaic-Battery Microgrid System
Authors: Rajat Raj, Rohini S. Hallikar
Abstract:
The ever-increasing integration of renewable energy sources in the power grid necessitates the development of efficient and reliable microgrid systems. Photovoltaic (PV) systems coupled with energy storage technologies, such as batteries, offer promising solutions for sustainable and resilient power generation. This paper proposes an adaptive power control topology for a PV-battery microgrid system, aiming to optimize the utilization of available solar energy and enhance the overall system performance. In order to provide a smooth transition between the OFF-GRID and ON-GRID modes of operation with proportionate power sharing, a self-adaptive control method for a microgrid is proposed. Three different modes of operation are discussed in this paper, i.e., GRID connected, the transition between Grid-connected and Islanded State, and changing the irradiance of PVs and doing the transitioning. The simulation results show total harmonic distortion to be 0.08, 1.43 and 2.17 for distribution generation-1 and 4.22,3.92 and 2.10 for distribution generation-2 in the three modes, respectively which helps to maintain good power quality. The simulation results demonstrate the superiority of the adaptive power control topology in terms of maximizing renewable energy utilization, improving system stability and ensuring a seamless transition between grid-connected and islanded modes.Keywords: islanded modes, microgrids, photo voltaic, total harmonic distortion
Procedia PDF Downloads 18010119 Mobile Agents-Based Framework for Dynamic Resource Allocation in Cloud Computing
Authors: Safia Rabaaoui, Héla Hachicha, Ezzeddine Zagrouba
Abstract:
Nowadays, cloud computing is becoming the more popular technology to various companies and consumers, which benefit from its increased efficiency, cost optimization, data security, unlimited storage capacity, etc. One of the biggest challenges of cloud computing is resource allocation. Its efficiency directly influences the performance of the whole cloud environment. Finding an effective method to address these critical issues and increase cloud performance was necessary. This paper proposes a mobile agents-based framework for dynamic resource allocation in cloud computing to minimize both the cost of using virtual machines and the makespan. Furthermore, its impact on the best response time and power consumption has been studied. The simulation showed that our method gave better results than here.Keywords: cloud computing, multi-agent system, mobile agent, dynamic resource allocation, cost, makespan
Procedia PDF Downloads 11110118 Spectroscopic Constant Calculation of the BeF Molecule
Authors: Nayla El-Kork, Farah Korjieh, Ahmed Bentiba, Mahmoud Korek
Abstract:
Ab-initio calculations have been performed to investigate the spectroscopic constants for the diatomic compound BeF. Values of the internuclear distance Re, the harmonic frequency ωe, the rotational constants Be, the electronic transition energy with respect to the ground state Te, the eignvalues Ev, the abscissas of the turning points Rmin, Rmax, the rotational constants Bv and the centrifugal distortion constants Dv have been calculated for the molecule’s ground and excited electronic states. Results are in agreement with experimental data.Keywords: spectroscopic constant, potential energy curve, diatomic molecule, spectral analysis
Procedia PDF Downloads 573