Search results for: cost prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8162

Search results for: cost prediction

5042 Diagnostic Performance of Tumor Associated Trypsin Inhibitor in Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Aml M. El-Sharkawy, Hossam M. Darwesh

Abstract:

Abstract— Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between tumor associated trypsin inhibitor (TATI) and HCC progression, we aimed to develop a novel score based on combination of TATI and routine laboratory tests for early prediction of HCC. Methods: TATI was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-TATI score) = 3.1 (numerical constant) + 0.09 ×AFP (U L-1) + 0.067 × TATI (ng ml-1) + 0.16 × INR – 1.17 × Albumin (g l-1) – 0.032 × Platelet count × 109 l-1 was developed. HCC-TATI score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 6.5 (ie less than 6.5 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-TATI score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, TATI

Procedia PDF Downloads 338
5041 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 421
5040 The Impacts of New Digital Technology Transformation on Singapore Healthcare Sector: Case Study of a Public Hospital in Singapore from a Management Accounting Perspective

Authors: Junqi Zou

Abstract:

As one of the world’s most tech-ready countries, Singapore has initiated the Smart Nation plan to harness the full power and potential of digital technologies to transform the way people live and work, through the more efficient government and business processes, to make the economy more productive. The key evolutions of digital technology transformation in healthcare and the increasing deployment of Internet of Things (IoTs), Big Data, AI/cognitive, Robotic Process Automation (RPA), Electronic Health Record Systems (EHR), Electronic Medical Record Systems (EMR), Warehouse Management System (WMS in the most recent decade have significantly stepped up the move towards an information-driven healthcare ecosystem. The advances in information technology not only bring benefits to patients but also act as a key force in changing management accounting in healthcare sector. The aim of this study is to investigate the impacts of digital technology transformation on Singapore’s healthcare sector from a management accounting perspective. Adopting a Balanced Scorecard (BSC) analysis approach, this paper conducted an exploratory case study of a newly launched Singapore public hospital, which has been recognized as amongst the most digitally advanced healthcare facilities in Asia-Pacific region. Specifically, this study gains insights on how the new technology is changing healthcare organizations’ management accounting from four perspectives under the Balanced Scorecard approach, 1) Financial Perspective, 2) Customer (Patient) Perspective, 3) Internal Processes Perspective, and 4) Learning and Growth Perspective. Based on a thorough review of archival records from the government and public, and the interview reports with the hospital’s CIO, this study finds the improvements from all the four perspectives under the Balanced Scorecard framework as follows: 1) Learning and Growth Perspective: The Government (Ministry of Health) works with the hospital to open up multiple training pathways to health professionals that upgrade and develops new IT skills among the healthcare workforce to support the transformation of healthcare services. 2) Internal Process Perspective: The hospital achieved digital transformation through Project OneCare to integrate clinical, operational, and administrative information systems (e.g., EHR, EMR, WMS, EPIB, RTLS) that enable the seamless flow of data and the implementation of JIT system to help the hospital operate more effectively and efficiently. 3) Customer Perspective: The fully integrated EMR suite enhances the patient’s experiences by achieving the 5 Rights (Right Patient, Right Data, Right Device, Right Entry and Right Time). 4) Financial Perspective: Cost savings are achieved from improved inventory management and effective supply chain management. The use of process automation also results in a reduction of manpower costs and logistics cost. To summarize, these improvements identified under the Balanced Scorecard framework confirm the success of utilizing the integration of advanced ICT to enhance healthcare organization’s customer service, productivity efficiency, and cost savings. Moreover, the Big Data generated from this integrated EMR system can be particularly useful in aiding management control system to optimize decision making and strategic planning. To conclude, the new digital technology transformation has moved the usefulness of management accounting to both financial and non-financial dimensions with new heights in the area of healthcare management.

Keywords: balanced scorecard, digital technology transformation, healthcare ecosystem, integrated information system

Procedia PDF Downloads 166
5039 Exploring Causes of Irregular Migration: Evidence from Rural Punjab, India

Authors: Kulwinder Singh

Abstract:

Punjab is one of the major labour exporting states of India. Every year more than 20,000 youths from Punjab attempt irregular migration. About 84 irregular migrants are from rural areas and 16 per cent from urban areas. Irregular migration could only be achieved if be organized through highly efficient international networks with the countries of origin, transit, and destination. A good number of Punjabis continue to immigrate into the UK for work through unauthorized means entering the country on visit visas and overstaying or getting ‘smuggled into’ the country with the help of transnational networks of agents. Although, the efforts are being made by the government to curb irregular migration through The Punjab Prevention of Human Smuggling Rules (2012, 2014) and Punjab Travel Regulation Act (2012), but yet it exists parallel to regular migration. Despite unprecedented miseries of irregular migrants and strict laws implemented by the state government to check this phenomenon, ‘why do Punjabis migrate abroad irregularly’ is the important question to answer. This study addresses this question through the comparison of irregular migration with regular one. In other words, this analysis reveals major causes, specifically economic ones, of irregular migration from rural Punjab. This study is unique by presenting economics of irregular migration, given previous studies emphasize the role of sociological and psychological factors. Addressing important question “why do Punjabis migrate abroad irregularly?”, the present study reveals that Punjabi, being far-sighted, endeavor irregular migration as it is, though, economically nonviable in short run, but offers lucrative economic gains as gets older. Despite its considerably higher cost viz-a-viz regular migration, it is the better employment option to irregular migrants with higher permanent income than local low paid jobs for which risking life has become the mindset of the rural Punjabis. Although, it carries considerably lower economic benefits as compared to regular migration, but provides the opportunity of migrating abroad to less educated, semi-skilled and language-test ineligible Punjabis who cannot migrate through regular channels. As its positive impacts on source and destination countries are evident, it might not be restricted, rather its effective management, through liberalising restrictive migration policies by destination nations, can protect the interests of all involved stakeholders.

Keywords: cost, migration, income, irregular, regular, remittances

Procedia PDF Downloads 130
5038 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability

Procedia PDF Downloads 257
5037 Is the Addition of Computed Tomography with Angiography Superior to a Non-Contrast Neuroimaging Only Strategy for Patients with Suspected Stroke or Transient Ischemic Attack Presenting to the Emergency Department?

Authors: Alisha M. Ebrahim, Bijoy K. Menon, Eddy Lang, Shelagh B. Coutts, Katie Lin

Abstract:

Introduction: Frontline emergency physicians require clear and evidence-based approaches to guide neuroimaging investigations for patients presenting with suspected acute stroke or transient ischemic attack (TIA). Various forms of computed tomography (CT) are currently available for initial investigation, including non-contrast CT (NCCT), CT angiography head and neck (CTA), and CT perfusion (CTP). However, there is uncertainty around optimal imaging choice for cost-effectiveness, particularly for minor or resolved neurological symptoms. In addition to the cost of CTA and CTP testing, there is also a concern for increased incidental findings, which may contribute to the burden of overdiagnosis. Methods: In this cross-sectional observational study, analysis was conducted on 586 anonymized triage and diagnostic imaging (DI) reports for neuroimaging orders completed on patients presenting to adult emergency departments (EDs) with a suspected stroke or TIA from January-December 2019. The primary outcome of interest is the diagnostic yield of NCCT+CTA compared to NCCT alone for patients presenting to urban academic EDs with Canadian Emergency Department Information System (CEDIS) complaints of “symptoms of stroke” (specifically acute stroke and TIA indications). DI reports were coded into 4 pre-specified categories (endorsed by a panel of stroke experts): no abnormalities, clinically significant findings (requiring immediate or follow-up clinical action), incidental findings (not meeting prespecified criteria for clinical significance), and both significant and incidental findings. Standard descriptive statistics were performed. A two-sided p-value <0.05 was considered significant. Results: 75% of patients received NCCT+CTA imaging, 21% received NCCT alone, and 4% received NCCT+CTA+CTP. The diagnostic yield of NCCT+CTA imaging for prespecified clinically significant findings was 24%, compared to only 9% in those who received NCCT alone. The proportion of incidental findings was 30% in the NCCT only group and 32% in the NCCT+CTA group. CTP did not significantly increase the yield of significant or incidental findings. Conclusion: In this cohort of patients presenting with suspected stroke or TIA, an NCCT+CTA neuroimaging strategy had a higher diagnostic yield for clinically significant findings than NCCT alone without significantly increasing the number of incidental findings identified.

Keywords: stroke, diagnostic yield, neuroimaging, emergency department, CT

Procedia PDF Downloads 104
5036 A Clustering-Sequencing Approach to the Facility Layout Problem

Authors: Saeideh Salimpour, Sophie-Charlotte Viaux, Ahmed Azab, Mohammed Fazle Baki

Abstract:

The Facility Layout Problem (FLP) is key to the efficient and cost-effective operation of a system. This paper presents a hybrid heuristic- and mathematical-programming-based approach that divides the problem conceptually into those of clustering and sequencing. First, clusters of vertically aligned facilities are formed, which are later on sequenced horizontally. The developed methodology provides promising results in comparison to its counterparts in the literature by minimizing the inter-distances for facilities which have more interactions amongst each other and aims at placing the facilities with more interactions at the centroid of the shop.

Keywords: clustering-sequencing approach, mathematical modeling, optimization, unequal facility layout problem

Procedia PDF Downloads 335
5035 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment

Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello

Abstract:

For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.

Keywords: electromagnetic stirring, induction heating, interface modeling, metal load

Procedia PDF Downloads 273
5034 Thermophysical Properties and Kinetic Study of Dioscorea bulbifera

Authors: Emmanuel Chinagorom Nwadike, Joseph Tagbo Nwabanne, Matthew Ndubuisi Abonyi, Onyemazu Andrew Azaka

Abstract:

This research focused on the modeling of the convective drying of aerial yam using finite element methods. The thermo-gravimetric analyzer was used to determine the thermal stability of the sample. An aerial yam sample of size 30 x 20 x 4 mm was cut with a mold designed for the purpose and dried in a convective dryer set at 4m/s fan speed and temperatures of 68.58 and 60.56°C. The volume shrinkage of the resultant dried sample was determined by immersing the sample in a toluene solution. The finite element analysis was done with PDE tools in Matlab 2015. Seven kinetic models were employed to model the drying process. The result obtained revealed three regions in the thermogravimetric analysis (TGA) profile of aerial yam. The maximum thermal degradation rates of the sample occurred at 432.7°C. The effective thermal diffusivity of the sample increased as the temperature increased from 60.56°C to 68.58°C. The finite element prediction of moisture content of aerial yam at an air temperature of 68.58°C and 60.56°C shows R² of 0.9663 and 0.9155, respectively. There was a good agreement between the finite element predicted moisture content and the measured moisture content, which is indicative of a highly reliable finite element model developed. The result also shows that the best kinetic model for the aerial yam under the given drying conditions was the Logarithmic model with a correlation coefficient of 0.9991.

Keywords: aerial yam, finite element, convective, effective, diffusivity

Procedia PDF Downloads 159
5033 A Review on the Re-Usage of Single-Use Medical Devices

Authors: Lucas B. Naves, Maria José Abreu

Abstract:

Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV).

Keywords: reusing, reprocessing, single-use medical device, HIV, hepatitis B and C

Procedia PDF Downloads 397
5032 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing

Procedia PDF Downloads 315
5031 Identification of Rainfall Trends in Qatar

Authors: Abdullah Al Mamoon, Ataur Rahman

Abstract:

Due to climate change, future rainfall will change at many locations on earth; however, the spatial and temporal patterns of this change are not easy to predict. One approach of predicting such future changes is to examine the trends in the historical rainfall data at a given region and use the identified trends to make future prediction. For this, a statistical trend test is commonly applied to the historical data. This paper examines the trends of daily extreme rainfall events from 30 rain gauges located in the State of Qatar. Rainfall data covering from 1962 to 2011 were used in the analysis. A combination of four non-parametric and parametric tests was applied to identify trends at 10%, 5%, and 1% significance levels. These tests are Mann-Kendall (MK), Spearman’s Rho (SR), Linear Regression (LR) and CUSUM tests. These tests showed both positive and negative trends throughout the country. Only eight stations showed positive (upward) trend, which were however not statistically significant. In contrast, significant negative (downward) trends were found at the 5% and 10% levels of significance in six stations. The MK, SR and LR tests exhibited very similar results. This finding has important implications in the derivation/upgrade of design rainfall for Qatar, which will affect design and operation of future urban drainage infrastructure in Qatar.

Keywords: trends, extreme rainfall, daily rainfall, Mann-Kendall test, climate change, Qatar

Procedia PDF Downloads 565
5030 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay

Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers

Abstract:

The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.

Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations

Procedia PDF Downloads 227
5029 Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Hekmat R. Madian, Sherif A. El-Safty, Mohamed A. Shenashen

Abstract:

After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation.

Keywords: silicone antifouling, environmentally friendly, nanocomposites, nanofillers, fouling repellency, hydrophobicity

Procedia PDF Downloads 121
5028 Valuation on MEMS Pressure Sensors and Device Applications

Authors: Nurul Amziah Md Yunus, Izhal Abdul Halin, Nasri Sulaiman, Noor Faezah Ismail, Ong Kai Sheng

Abstract:

The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications.

Keywords: pressure sensor, diaphragm, MEMS, automotive application, biomedical application, NEMS

Procedia PDF Downloads 674
5027 Fabrication of a High-Performance Polyetherimide Membrane for Helium Separation

Authors: Y. Alqaheem, A. Alomair, F. Altarkait, F. Alswaileh, Nusrat Tanoli

Abstract:

Helium market is continuously growing due to its essential uses in the electronic and healthcare sectors. Currently, helium is produced by cryogenic distillation but the process is uneconomical especially for low production volumes. On the other hand, polymeric membranes can provide a cost-effective solution for helium purification due to their low operating energy. However, the preparation of membranes involves the use of very toxic solvents such as chloroform. In this work, polyetherimide membranes were prepared using a less toxic solvent, n-methylpyrrolidone with a polymer-to-solvent ratio of 27 wt%. The developed membrane showed a superior helium permeability of 15.9 Barrer that surpassed the permeability of membranes made by chloroform.

Keywords: helium separation, polyetherimide, dense membrane, gas permeability

Procedia PDF Downloads 175
5026 Water Dumpflood into Multiple Low-Pressure Gas Reservoirs

Authors: S. Lertsakulpasuk, S. Athichanagorn

Abstract:

As depletion-drive gas reservoirs are abandoned when there is insufficient production rate due to pressure depletion, waterflooding has been proposed to increase the reservoir pressure in order to prolong gas production. Due to high cost, water injection may not be economically feasible. Water dumpflood into gas reservoirs is a new promising approach to increase gas recovery by maintaining reservoir pressure with much cheaper costs than conventional waterflooding. Thus, a simulation study of water dumpflood into multiple nearly abandoned or already abandoned thin-bedded gas reservoirs commonly found in the Gulf of Thailand was conducted to demonstrate the advantage of the proposed method and to determine the most suitable operational parameters for reservoirs having different system parameters. A reservoir simulation model consisting of several thin-layered depletion-drive gas reservoirs and an overlying aquifer was constructed in order to investigate the performance of the proposed method. Two producers were initially used to produce gas from the reservoirs. One of them was later converted to a dumpflood well after gas production rate started to decline due to continuous reduction in reservoir pressure. The dumpflood well was used to flow water from the aquifer to increase pressure of the gas reservoir in order to drive gas towards producer. Two main operational parameters which are wellhead pressure of producer and the time to start water dumpflood were investigated to optimize gas recovery for various systems having different gas reservoir dip angles, well spacings, aquifer sizes, and aquifer depths. This simulation study found that water dumpflood can increase gas recovery up to 12% of OGIP depending on operational conditions and system parameters. For the systems having a large aquifer and large distance between wells, it is best to start water dumpflood when the gas rate is still high since the long distance between the gas producer and dumpflood well helps delay water breakthrough at producer. As long as there is no early water breakthrough, the earlier the energy is supplied to the gas reservoirs, the better the gas recovery. On the other hand, for the systems having a small or moderate aquifer size and short distance between the two wells, performing water dumpflood when the rate is close to the economic rate is better because water is more likely to cause an early breakthrough when the distance is short. Water dumpflood into multiple nearly-depleted or depleted gas reservoirs is a novel study. The idea of using water dumpflood to increase gas recovery has been mentioned in the literature but has never been investigated. This detailed study will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost and risk.

Keywords: dumpflood, increase gas recovery, low-pressure gas reservoir, multiple gas reservoirs

Procedia PDF Downloads 447
5025 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment

Authors: Zahra Hamedani

Abstract:

Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.

Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability

Procedia PDF Downloads 414
5024 Fostering Ties and Trusts through Social Interaction within Community Gardening

Authors: Shahida Mohd Sharif, Norsidah Ujang

Abstract:

Recent research has shown that many of the urban population in Kuala Lumpur, especially from the lower-income group, suffer from socio-psychological problems. They are reported as experiencing anxiety, depression, and stress, which is made worst by the recent COVID-19 pandemic. Much of the population was forced to observe the Movement Control Order (MCO), which is part of pandemic mitigation measures, pushing them to live in isolation as the new normal. The study finds the need to strategize for a better approach to help these people coping with the socio-psychological condition, especially the population from the lower-income group. In Kuala Lumpur, as part of the Local Agenda 21 programme, the Kuala Lumpur City Hall has introduced Green Initiative: Urban Farming, which among the approaches is the community garden. The local authority promotes the engagement to be capable of improving the social environment of the participants. Research has demonstrated that social interaction within community gardens can help the members improve their socio-psychological conditions. Therefore, the study explores the residents’ experience from low-cost flats participating in the community gardening initiative from a social attachment perspective. The study will utilise semi-structured interviews to collect the participants’ experience with community gardening and how the social interaction exchange between the members' forms and develop their ties and trust. For a context, the low-cost flats are part of the government social housing program (Program Perumahan Rakyat dan Perumahan Awam). Meanwhile, the community gardening initiative (Projek Kebun Kejiranan Bandar LA21 KL) is part of the local authority initiative to address the participants’ social, environmental, and economic issues. The study will conduct thematic analysis on the collected data and use the ATLAS.ti software for data organization and management purposes. The findings could help other researchers and stakeholders understand the social interaction experience within community gardens and its relation to ties and trusts. The findings could shed some light on how the participants could improve their social environment, and its report could provide the local authority with evidence-based documentation.

Keywords: community gardening participation, lower-income population, social attachment, social interaction

Procedia PDF Downloads 142
5023 An Empirical Study of the Best Fitting Probability Distributions for Stock Returns Modeling

Authors: Jayanta Pokharel, Gokarna Aryal, Netra Kanaal, Chris Tsokos

Abstract:

Investment in stocks and shares aims to seek potential gains while weighing the risk of future needs, such as retirement, children's education etc. Analysis of the behavior of the stock market returns and making prediction is important for investors to mitigate risk on investment. Historically, the normal variance models have been used to describe the behavior of stock market returns. However, the returns of the financial assets are actually skewed with higher kurtosis, heavier tails, and a higher center than the normal distribution. The Laplace distribution and its family are natural candidates for modeling stock returns. The Variance-Gamma (VG) distribution is the most sought-after distributions for modeling asset returns and has been extensively discussed in financial literatures. In this paper, it explore the other Laplace family, such as Asymmetric Laplace, Skewed Laplace, Kumaraswamy Laplace (KS) together with Variance-Gamma to model the weekly returns of the S&P 500 Index and it's eleven business sector indices. The method of maximum likelihood is employed to estimate the parameters of the distributions and our empirical inquiry shows that the Kumaraswamy Laplace distribution performs much better for stock returns modeling among the choice of distributions used in this study and in practice, KS can be used as a strong alternative to VG distribution.

Keywords: stock returns, variance-gamma, kumaraswamy laplace, maximum likelihood

Procedia PDF Downloads 74
5022 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 184
5021 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm

Authors: Essam Al Daoud

Abstract:

This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.

Keywords: least square, neighbor joining, phylogenetic tree, wild dog pack

Procedia PDF Downloads 322
5020 The Democratization of 3D Capturing: An Application Investigating Google Tango Potentials

Authors: Carlo Bianchini, Lorenzo Catena

Abstract:

The appearance of 3D scanners and then, more recently, of image-based systems that generate point clouds directly from common digital images have deeply affected the survey process in terms of both capturing and 2D/3D modelling. In this context, low cost and mobile systems are increasingly playing a key role and actually paving the way to the democratization of what in the past was the realm of few specialized technicians and expensive equipment. The application of Google Tango on the ancient church of Santa Maria delle Vigne in Pratica di Mare – Rome presented in this paper is one of these examples.

Keywords: the architectural survey, augmented/mixed/virtual reality, Google Tango project, image-based 3D capturing

Procedia PDF Downloads 154
5019 RFID and Intelligence: A Smart Authentication Method for Blind People​

Authors: V. Vishu, R. Manimegalai

Abstract:

A combination of Intelligence and Radio frequency identification to bring an enhanced authentication method for the improvement of visually challenged people. The main goal is to provide an improved authentication by combining Advanced Encryption Standard algorithm and Intelligence. Here the encryption key will be generated as a combination of intelligent information from sensors and tag values. The main challenges are security, privacy and cost. Besides, the method was created to evaluate the amount of interaction between sensors and significant influence on the level of visually challenged people’s mental and physical states. The proposal is to apply various ideas on independent living or to assist them for a good life.

Keywords: AES, encryption, intelligence, smart key

Procedia PDF Downloads 246
5018 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling

Procedia PDF Downloads 182
5017 Predictive Factors of Nasal Continuous Positive Airway Pressure (NCPAP) Therapy Success in Preterm Neonates with Hyaline Membrane Disease (HMD)

Authors: Novutry Siregar, Afdal, Emilzon Taslim

Abstract:

Hyaline Membrane Disease (HMD) is the main cause of respiratory failure in preterm neonates caused by surfactant deficiency. Nasal Continuous Positive Airway Pressure (NCPAP) is the therapy for HMD. The success of therapy is determined by gestational age, birth weight, HMD grade, time of NCAP administration, and time of breathing frequency recovery. The aim of this research is to identify the predictive factor of NCPAP therapy success in preterm neonates with HMD. This study used a cross-sectional design by using medical records of patients who were treated in the Perinatology of the Pediatric Department of Dr. M. Djamil Padang Central Hospital from January 2015 to December 2017. The samples were eighty-two neonates that were selected by using the total sampling technique. Data analysis was done by using the Chi-Square Test and the Multiple Logistic Regression Prediction Model. The results showed the success rate of NCPAP therapy reached 53.7%. Birth weight (p = 0.048, OR = 3.34 95% CI 1.01-11.07), HMD grade I (p = 0.018, OR = 4.95 CI 95% 1.31-18.68), HMD grade II (p = 0.044, OR = 5.52 95% CI 1.04-29.15), and time of breathing frequency recovery (p = 0,000, OR = 13.50 95% CI 3.58-50, 83) are the predictive factors of NCPAP therapy success in preterm neonates with HMD. The most significant predictive factor is the time of breathing frequency recovery.

Keywords: predictive factors, the success of therapy, NCPAP, preterm neonates, HMD

Procedia PDF Downloads 71
5016 Compression and Air Storage Systems for Small Size CAES Plants: Design and Off-Design Analysis

Authors: Coriolano Salvini, Ambra Giovannelli

Abstract:

The use of renewable energy sources for electric power production leads to reduced CO2 emissions and contributes to improving the domestic energy security. On the other hand, the intermittency and unpredictability of their availability poses relevant problems in fulfilling safely and in a cost efficient way the load demand along the time. Significant benefits in terms of “grid system applications”, “end-use applications” and “renewable applications” can be achieved by introducing energy storage systems. Among the currently available solutions, CAES (Compressed Air Energy Storage) shows favorable features. Small-medium size plants equipped with artificial air reservoirs can constitute an interesting option to get efficient and cost-effective distributed energy storage systems. The present paper is addressed to the design and off-design analysis of the compression system of small size CAES plants suited to absorb electric power in the range of hundreds of kilowatt. The system of interest is constituted by an intercooled (in case aftercooled) multi-stage reciprocating compressor and a man-made reservoir obtained by connecting large diameter steel pipe sections. A specific methodology for the system preliminary sizing and off-design modeling has been developed. Since during the charging phase the electric power absorbed along the time has to change according to the peculiar CAES requirements and the pressure ratio increases continuously during the filling of the reservoir, the compressor has to work at variable mass flow rate. In order to ensure an appropriately wide range of operations, particular attention has been paid to the selection of the most suitable compressor capacity control device. Given the capacity regulation margin of the compressor and the actual level of charge of the reservoir, the proposed approach allows the instant-by-instant evaluation of minimum and maximum electric power absorbable from the grid. The developed tool gives useful information to appropriately size the compression system and to manage it in the most effective way. Various cases characterized by different system requirements are analysed. Results are given and widely discussed.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), compressor design, compression system management.

Procedia PDF Downloads 233
5015 Gene Prediction in DNA Sequences Using an Ensemble Algorithm Based on Goertzel Algorithm and Anti-Notch Filter

Authors: Hamidreza Saberkari, Mousa Shamsi, Hossein Ahmadi, Saeed Vaali, , MohammadHossein Sedaaghi

Abstract:

In the recent years, using signal processing tools for accurate identification of the protein coding regions has become a challenge in bioinformatics. Most of the genomic signal processing methods is based on the period-3 characteristics of the nucleoids in DNA strands and consequently, spectral analysis is applied to the numerical sequences of DNA to find the location of periodical components. In this paper, a novel ensemble algorithm for gene selection in DNA sequences has been presented which is based on the combination of Goertzel algorithm and anti-notch filter (ANF). The proposed algorithm has many advantages when compared to other conventional methods. Firstly, it leads to identify the coding protein regions more accurate due to using the Goertzel algorithm which is tuned at the desired frequency. Secondly, faster detection time is achieved. The proposed algorithm is applied on several genes, including genes available in databases BG570 and HMR195 and their results are compared to other methods based on the nucleotide level evaluation criteria. Implementation results show the excellent performance of the proposed algorithm in identifying protein coding regions, specifically in identification of small-scale gene areas.

Keywords: protein coding regions, period-3, anti-notch filter, Goertzel algorithm

Procedia PDF Downloads 391
5014 Economics of Precision Mechanization in Wine and Table Grape Production

Authors: Dean A. McCorkle, Ed W. Hellman, Rebekka M. Dudensing, Dan D. Hanselka

Abstract:

The motivation for this study centers on the labor- and cost-intensive nature of wine and table grape production in the U.S., and the potential opportunities for precision mechanization using robotics to augment those production tasks that are labor-intensive. The objectives of this study are to evaluate the economic viability of grape production in five U.S. states under current operating conditions, identify common production challenges and tasks that could be augmented with new technology, and quantify a maximum price for new technology that growers would be able to pay. Wine and table grape production is primed for precision mechanization technology as it faces a variety of production and labor issues. Methodology: Using a grower panel process, this project includes the development of a representative wine grape vineyard in five states and a representative table grape vineyard in California. The panels provided production, budget, and financial-related information that are typical for vineyards in their area. Labor costs for various production tasks are of particular interest. Using the data from the representative budget, 10-year projected financial statements have been developed for the representative vineyard and evaluated using a stochastic simulation model approach. Labor costs for selected vineyard production tasks were evaluated for the potential of new precision mechanization technology being developed. These tasks were selected based on a variety of factors, including input from the panel members, and the extent to which the development of new technology was deemed to be feasible. The net present value (NPV) of the labor cost over seven years for each production task was derived. This allowed for the calculation of a maximum price for new technology whereby the NPV of labor costs would equal the NPV of purchasing, owning, and operating new technology. Expected Results: The results from the stochastic model will show the projected financial health of each representative vineyard over the 2015-2024 timeframe. Investigators have developed a preliminary list of production tasks that have the potential for precision mechanization. For each task, the labor requirements, labor costs, and the maximum price for new technology will be presented and discussed. Together, these results will allow technology developers to focus and prioritize their research and development efforts for wine and table grape vineyards, and suggest opportunities to strengthen vineyard profitability and long-term viability using precision mechanization.

Keywords: net present value, robotic technology, stochastic simulation, wine and table grapes

Procedia PDF Downloads 264
5013 Development of Imprinting and Replica Molding of Soft Mold Curved Surface

Authors: Yung-Jin Weng, Chia-Chi Chang, Chun-Yu Tsai

Abstract:

This paper is focused on the research of imprinting and replica molding of quasi-grey scale soft mold curved surface microstructure mold. In this paper, a magnetic photocuring forming system is first developed and built independently, then the magnetic curved surface microstructure soft mode is created; moreover, the magnetic performance of the magnetic curved surface at different heights is tested and recorded, and through experimentation and simulation, the magnetic curved surface microstructure soft mold is used in the research of quasi-grey scale soft mold curved surface microstructure imprinting and replica molding. The experimental results show that, under different surface curvatures and voltage control conditions, different quasi-grey scale array microstructures take shape. In addition, this paper conducts research on the imprinting and replica molding of photoresist composite magnetic powder in order to discuss the forming performance of magnetic photoresist, and finally, the experimental result is compared with the simulation to obtain more accurate prediction and results. This research is predicted to provide microstructure component preparation technology with heterogeneity and controllability, and is a kind of valid shaping quasi-grey scale microstructure manufacturing technology method.

Keywords: soft mold, magnetic, microstructure, curved surface

Procedia PDF Downloads 330