Search results for: accuracy improvement
4777 Determining Full Stage Creep Properties from Miniature Specimen Creep Test
Authors: W. Sun, W. Wen, J. Lu, A. A. Becker
Abstract:
In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.Keywords: creep damage property, miniature specimen, inverse approach, finite element modeling
Procedia PDF Downloads 2334776 Spanish University Governance Reporting
Authors: Agustin Baidez, Yolanda Ramirez
Abstract:
There is currently a growing interest in the improvement of university governance and the disclosure of information on governance processes as an essential part of the transparency and accountability of universities. This paper aims to examine the extent and quality of voluntary corporate governance disclosure by public Spanish universities on their websites in relation to information need of stakeholders. The results of this study show that Spanish university stakeholders attach great importance to the disclosure of specific information on aspects of corporate governance. However, the quality of disclosed information on university governance in public Spanish universities websites is in the middle level. In order to satisfy the information needs of university stakeholders, Spanish universities can be recommended to focus on reporting higher quality information on university autonomy in financing, autonomy in management, autonomy regarding student selection and assessment, degree of consanguinity of executive directors, report on assigned public funding based on results, and management reports.Keywords: university, governance, transparency, stakeholders
Procedia PDF Downloads 614775 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 914774 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle
Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He
Abstract:
According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque
Procedia PDF Downloads 4814773 A Fuzzy Logic Based Health Assesment Platform
Authors: J. Al-Dmour, A. Sagahyroon, A. Al-Ali, S. Abusnana
Abstract:
Radio Frequency Based Identification Systems have emerged as one of the possible valuable solutions that can be utilized in healthcare systems. Nowadays, RFID tags are available with built-in human vital signs sensors such as Body Temperature, Blood Pressure, Heart Rate, Blood Sugar level and Oxygen Saturation in Blood. This work proposes the design, implementation, and testing of an integrated mobile RFID-based health care system. The system consists of a wireless mobile vital signs data acquisition unit (RFID-DAQ) integrated with a fuzzy-logic–based software algorithm to monitor and assess patients conditions. The system is implemented and tested in ‘Rashid Center for Diabetes and Research’, Ajman, UAE. System testing results are compared with the Modified Early Warning System (MEWS) that is currently used in practice. We demonstrate that the proposed and implemented system exhibits an accuracy level that is comparable and sometimes better than the widely adopted MEWS system.Keywords: healthcare, fuzzy logic, MEWS, RFID
Procedia PDF Downloads 3504772 Towards Interconnectedness: A Study of Collaborative School Culture and Principal Curriculum Leadership
Authors: Fan Chih-Wen
Abstract:
The Ministry of Education (2014) released the 12-year National Basic Education Curriculum Syllabus. Curriculum implementation has evolved from a loose connection of cooperation to a closely structured relationship of coordination and collaboration. Collaboration opens the door to teachers' culture of isolation and classrooms and allows them to discuss educational issues from multiple perspectives and achieve shared goals. The purpose of study is to investigate facilitating factors of collaborative school culture and implications for principal curriculum leadership. The development and implementation of the new curriculum involves collaborative governance across systems and levels, including cooperation between central governments and schools. First, it analyzes the connotation of the 12-year National Basic Education Curriculum; Second, it analyzes the meaning of collaborative culture; Third, it analyzes the motivating factors of collaborative culture. Finally, based on this, it puts forward relevant suggestions for principal curriculum leadership.Keywords: curriculum leadership, collaboration culture, tracher culture, school improvement
Procedia PDF Downloads 274771 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 2894770 Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector
Authors: Alibakhsh Kasaeian, Mohammad Sameti, Zahra Noori, Mona Rastgoo Bahambari
Abstract:
Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.Keywords: heat transfer, nanofluid, numerical analysis, trough
Procedia PDF Downloads 3754769 Using Heat-Mask in the Thermoforming Machine for Component Positioning in Thermoformed Electronics
Authors: Behnam Madadnia
Abstract:
For several years, 3D-shaped electronics have been rising, with many uses in home appliances, automotive, and manufacturing. One of the biggest challenges in the fabrication of 3D shape electronics, which are made by thermoforming, is repeatable and accurate component positioning, and typically there is no control over the final position of the component. This paper aims to address this issue and present a reliable approach for guiding the electronic components in the desired place during thermoforming. We have proposed a heat-control mask in the thermoforming machine to control the heating of the polymer, not allowing specific parts to be formable, which can assure the conductive traces' mechanical stability during thermoforming of the substrate. We have verified our approach's accuracy by applying our method on a real industrial semi-sphere mold for positioning 7 LEDs and one touch sensor. We measured the LEDs' position after thermoforming to prove the process's repeatability. The experiment results demonstrate that the proposed method is capable of positioning electronic components in thermoformed 3D electronics with high precision.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioning
Procedia PDF Downloads 1014768 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX
Procedia PDF Downloads 4004767 The Mediating Role of Bank Image in Customer Satisfaction Building
Abstract:
The main objective of this research was to determine the dimensions of service quality in the banking industry of Iran. For this purpose, the study empirically examined the European perspective suggesting that service quality consists of three dimensions, technical, functional and image. This research is an applied research and its strategy is casual strategy. A standard questionnaire was used for collecting the data. 287 customers of Melli Bank of Northwest were selected through cluster sampling and were studied. The results from a banking service sample revealed that the overall service quality is influenced more by a consumer’s perception of technical quality than functional quality. Accordingly, the Gronroos model is a more appropriate representation of service quality than the American perspective with its limited concentration on the dimension of functional quality in the banking industry of Iran. So, knowing the key dimensions of the quality of services in this industry and planning for their improvement can increase the satisfaction of customers and productivity of this industry.Keywords: technical quality, functional quality, banking, image, mediating role
Procedia PDF Downloads 3754766 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 2904765 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.Keywords: supervised, functional principal component analysis, functional response, functional linear regression
Procedia PDF Downloads 824764 Evaluation of the Use of U-Wrap Anchorage Systems for Strengthening Concrete Members Reinforced by Fiber Reinforced-Polymer Laminate
Authors: Mai A. Aljaberi
Abstract:
The anchorage of fibre-reinforced polymer (FRP) sheets is the most effective solution to prevent or delay debonding failure; this system has proven to get better levels of FRP utilization. Unfortunately, the related design information is still unclear. This shortcoming limits the widespread use of the anchorage system. In order to minimize the knowledge gap about the design of U-wrap anchors, this paper reports the results of tested beams which were strengthened with carbon fiber-reinforced polymer (CFRP) sheets at their tension sides and secured with U-wrap anchors at each end of the longitudinal CFRP. The beams were tested under four-point loading until failure. The parameters examined include the compressive strength of the concrete and the number of longitudinal CFRP. It is concluded that these parameters have a considerable effect on the debonding of the strain. The greatest improvement in the strain was 55.8% over the control beam.Keywords: CFRP, concrete strengthening, debonding failure, debonding strain, U-wrap anchor
Procedia PDF Downloads 884763 Surface Integrity Improvement for Selective Laser Melting (SLM) Additive Manufacturing of C300 Parts Using Ball Burnishing
Authors: Adrian Travieso Disotuar, J. Antonio Travieso Rodriguez, Ramon Jerez Mesa, Montserrat Vilaseca
Abstract:
The effect of the non-vibration-assisted and vibration-assisted ball burnishing on both the surface and mechanical properties of C300 obtained by Selective Laser Melting additive manufacturing technology is studied in this paper. Different vibration amplitudes preloads, and burnishing strategies were tested. A topographical analysis was performed to determine the surface roughness of the different conditions. Besides, micro tensile tests were carried out in situ on Scanning Electron Microscopy to elucidate the post-treatment effects on damaging mechanisms. Experiments show that vibration-assisted ball burnishing significantly enhances mechanical properties compared to the non-vibration-assisted method. Moreover, it was found that the surface roughness was significantly improved with respect to the reference surface.Keywords: additive manufacturing, ball burnishing, mechanical properties, metals, surface roughness
Procedia PDF Downloads 844762 Review of Dielectric Permittivity Measurement Techniques
Authors: Ahmad H. Abdelgwad, Galal E. Nadim, Tarek M. Said, Amr M. Gody
Abstract:
The prime objective of this manuscript is to provide intensive review of the techniques used for permittivity measurements. The measurement techniques, relevant for any desired application, rely on the nature of the measured dielectric material, both electrically and physically, the degree of accuracy required, and the frequency of interest. Regardless of the way that distinctive sorts of instruments can be utilized, measuring devices that provide reliable determinations of the required electrical properties including the obscure material in the frequency range of interest can be considered. The challenge in making precise dielectric property or permittivity measurements is in designing of the material specimen holder for those measurements (RF and MW frequency ranges) and adequately modeling the circuit for reliable computation of the permittivity from the electrical measurements. If the RF circuit parameters such as the impedance or admittance are estimated appropriately at a certain frequency, the material’s permittivity at this frequency can be estimated by the equations which relate the way in which the dielectric properties of the material affect on the parameters of the circuit.Keywords: dielectric permittivity, free space measurement, waveguide techniques, coaxial probe, cavity resonator
Procedia PDF Downloads 3714761 Effective Method of Paneling for Source/Vortex/Doublet Panel Methods Using Conformal Mapping
Authors: K. C. R. Perera, B. M. Hapuwatte
Abstract:
This paper presents an effective method to divide panels for mesh-less methods of source, vortex and doublet panel methods. In this research study the physical domain of air-foils were transformed into computational domain of a circle using conformal mapping technique of Joukowsky transformation. Then the circle is divided into panels of equal length and the co-ordinates were remapped into physical domain of the air-foil. With this method the leading edge and the trailing edge of the air-foil is panelled with a high density of panels and the rest of the body is panelled with low density of panels. The high density of panels in the leading edge and the trailing edge will increase the accuracy of the solutions obtained from panel methods where the fluid flow at the leading and trailing edges are complex.Keywords: conformal mapping, Joukowsky transformation, physical domain, computational domain
Procedia PDF Downloads 3804760 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 1644759 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 1664758 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 784757 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1054756 Timely Palliative Screening and Interventions in Oncology
Authors: Jaci Marie Mastrandrea, Rosario Haro
Abstract:
Background: The National Comprehensive Cancer Network (NCCN) recommends that healthcare institutions have established processes for integrating palliative care (PC) into cancer treatment and that all cancer patients be screened for PC needs upon initial diagnosis as well as throughout the entire continuum of care (National Comprehensive Cancer Network, 2021). Early PC screening and intervention is directly associated with improved patient outcomes. The Sky Lakes Cancer Treatment Center (SLCTC) is an institution that has access to PC services yet does not have protocols in place for identifying patients with palliative needs or a standardized referral process. The aim of this quality improvement project was to improve early access to PC services by establishing a standardized screening and referral process for outpatient oncology patients. Method: The sample population included all adult patients with an oncology diagnosis who presented to the SLCTC for treatment during the project timeline. The “Palliative and Supportive Needs Assessment'' (PSNA) screening tool was developed from validated, evidence-based PC referral criteria. The tool was initially implemented using paper forms, and data was collected over a period of eight weeks. Patients were screened by nurses on the SLCTC oncology treatment team. Nurses responsible for screening patients received an educational inservice prior to implementation. Patients with a PSNA score of three or higher received an educational handout on the topic of PC and education about PC and symptom management. A score of five or higher indicates that PC referral is strongly recommended, and the patient’s EHR is flagged for the oncology provider to review orders for PC referral. The PSNA tool was approved by Sky Lakes administration for full integration into Epic-Beacon. The project lead collaborated with the Sky Lakes’ information systems team and representatives from Epic on the tool’s aesthetic and functionality within the Epic system. SLCTC nurses and physicians were educated on how to document the PSNA within Epic and where to view results. Results: Prior to the implementation of the PSNA screening tool, the SLCTC had zero referrals to PC in the past year, excluding referrals to hospice. Data was collected from the completed screening assessments of 100 patients under active treatment at the SLCTC. Seventy-three percent of patients met criteria for PC referral with a score greater than or equal to three. Of those patients who met referral criteria, 53.4% (39 patients) were referred for a palliative and supportive care consultation. Patients that were not referred to PC upon meeting criteria were flagged in EPIC for re-screening within one to three months. Patients with lung cancer, chronic hematologic malignancies, breast cancer, and gastrointestinal malignancy most frequently met the criteria for PC referral and scored highest overall on the scale of 0-12. Conclusion: The implementation of a standardized PC screening tool at the SLCTC significantly increased awareness of PC needs among cancer patients in the outpatient setting. Additionally, data derived from this quality improvement project supports the national recommendation for PC to be an integral component of cancer treatment across the entire continuum of care.Keywords: oncology, palliative and supportive care, symptom management, outpatient oncology, palliative screening tool
Procedia PDF Downloads 1164755 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 244754 Improving Cyber Resilience in Mobile Field Hospitals: Towards an Assessment Model
Authors: Nasir Baba Ahmed, Nicolas Daclin, Marc Olivaux, Gilles Dusserre
Abstract:
The Mobile field hospital is critical in terms of managing emergencies in crisis. It is a sub-section of the main hospitals and the health sector, tasked with delivering responsive, immediate, and efficient medical services during a crisis. With the aim to prevent further crisis, the assessment of the cyber assets follows different methods, to distinguish its strengths and weaknesses, and in turn achieve cyber resiliency. The work focuses on assessments of cyber resilience in field hospitals with trends growing in both the field hospital and the health sector in general. This creates opportunities for the adverse attackers and the response improvement objectives for attaining cyber resilience, as the assessments allow users and stakeholders to know the level of risks with regards to its cyber assets. Thus, the purpose is to show the possible threat vectors which open up opportunities, with contrast to current trends in the assessment of the mobile field hospitals’ cyber assets.Keywords: assessment framework, cyber resilience, cyber security, mobile field hospital
Procedia PDF Downloads 1634753 The Comparison of Community Home-Based Care for the Aged in Kishiwada, Japan and Hangzhou, China
Authors: Zijiao Chai, Wangming Li
Abstract:
Hangzhou is one of the cities with the most serious aging in China. Community home-based care for the aged is an important solution to old-age care in aging society. In this aspect, Europe, the United States and Japan are on the top in the world. As an East Asian country, Japan has similar cultural traditions in pension with China. So, there is much enlightenment China can get from Japan in the mode of community home-based care for the aged. This paper introduces the mode of community home-based care for the aged in Kishiwada, Japan and Hangzhou, China. Then compare the two modes in the aspects of insurance system for the aged, community service and facilities, support system and so on. Thereby the success experience of Kishiwada and weaknesses of Hangzhou are summarized. At last, the improvement strategy of facility plan and service mode of community home-based care for the aged in China are also proposed.Keywords: community, comparison, elderly-oriented, home-based care for the aged, support system
Procedia PDF Downloads 5174752 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 754751 Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain
Authors: Kazım Kaba, Erdem Erdi, M. Akif Erdoğan, H. Mustafa Kandırmaz
Abstract:
Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly.Keywords: meteosat, radar, rainfall, rain-gauge, Turkey
Procedia PDF Downloads 3294750 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: phase locked loop, PLL, notch filter, fuzzy logic control, grid connected inverters
Procedia PDF Downloads 1534749 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering
Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli
Abstract:
Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model
Procedia PDF Downloads 5174748 Electric Field Effect on the Rise of Single Bubbles during Boiling
Authors: N. Masoudnia, M. Fatahi
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single bubbles, electric field, boiling, effect
Procedia PDF Downloads 279