Search results for: Statistical Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17300

Search results for: Statistical Approach

14180 Understanding Loc Trade in Kashmir: References of Global Episodes in Arena of Economy and Confidence Building Measure

Authors: Aarushi Baloria, Joshina Jamwal

Abstract:

The paper attempts to understand the genesis of the Kashmir conflict, the LoC trade, and the various challenges which impede LoC trade. The paper further understands how this trade assists in mitigating tension between the countries and act as a conference building measure (CBM). The paper discusses later on the positive aspects of LoC trade with the help of statistical data like increase in state's economy along with negatives like smuggling of arms, drugs, swapping and interchanging of Hawala money and other unconstitutional activities like terrorism that took place on trade points across LoC. Moreover, the paper also mentioned in the international context; the episodes of Ireland of Europe, Palestine of Middle East, Uganda of Africa not only as transaction step but also as a peace channel between the fragmented parts. Thus, the paper, in a nutshell, reflects how the trade across LoC benefited in various psychological, economic, and political reasons, and it is worth taking risk, taking its overall positive things into consideration.

Keywords: drugs, economy, international, peace, psychological, trade

Procedia PDF Downloads 138
14179 The Effect of Tacit Knowledge for Intelligence Cycle

Authors: Bahadir Aydin

Abstract:

It is difficult to access accurate knowledge because of mass data. This huge data make environment more and more caotic. Data are main piller of intelligence. The affiliation between intelligence and knowledge is quite significant to understand underlying truths. The data gathered from different sources can be modified, interpreted and classified by using intelligence cycle process. This process is applied in order to progress to wisdom as well as intelligence. Within this process the effect of tacit knowledge is crucial. Knowledge which is classified as explicit and tacit knowledge is the key element for any purpose. Tacit knowledge can be seen as "the tip of the iceberg”. This tacit knowledge accounts for much more than we guess in all intelligence cycle. If the concept of intelligence cycle is scrutinized, it can be seen that it contains risks, threats as well as success. The main purpose of all organizations is to be successful by eliminating risks and threats. Therefore, there is a need to connect or fuse existing information and the processes which can be used to develop it. Thanks to this process the decision-makers can be presented with a clear holistic understanding, as early as possible in the decision making process. Altering from the current traditional reactive approach to a proactive intelligence cycle approach would reduce extensive duplication of work in the organization. Applying new result-oriented cycle and tacit knowledge intelligence can be procured and utilized more effectively and timely.

Keywords: information, intelligence cycle, knowledge, tacit Knowledge

Procedia PDF Downloads 515
14178 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 260
14177 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 309
14176 A Needs-Based Top-Down Approach for a Tailor-Made Smart City Roadmap

Authors: Mustafa Eruyar, Ersoy Pehlivan, Fatih Kafalı, Fatih Gundogan

Abstract:

All megacities are not only under the pressure of common urbanization and growth problems but also dealing with different challenges according to their specific circumstances. However, the majority of cities focuses mainly on popular smart city projects, which are usually driven by strong private sector, regardless of their characteristics, each city needs to develop customized projects within a tailor-made smart city roadmap to be able to solve its own challenges. Smart city manifest, helps citizens to feel the action better than good reading smart city vision statements, which consists of five elements; namely purpose, values, mission, vision, and strategy. This study designs a methodology for smart city roadmap based on a top-down approach, breaking down of smart city manifest to feasible projects for a systematic smart city transformation. This methodology was implemented in Istanbul smart city transformation program which includes smart city literature review, current state analysis, roadmap, and architecture projects, respectively. Istanbul smart city roadmap project followed an extensive literature review of certain leading smart cities around the world and benchmarking of the city’s current state using well known smart city indices. In the project, needs of citizens and service providers of the city were identified via stakeholder, persona and social media analysis. The project aimed to develop smart city projects targeting fulfilling related needs by implementing a gap analysis between current state and foreseen plans. As a result, in 11 smart city domains and enablers; 24 strategic objectives, 50 programs, and 101 projects were developed with the support of 183 smart city stakeholder entities and based on 125 citizen persona profiles and last one-year social media analysis. In conclusion, the followed methodology helps cities to identify and prioritize their needs and plan for long-term sustainable development, despite limited resources.

Keywords: needs-based, manifest, roadmap, smart city, top-down approach

Procedia PDF Downloads 216
14175 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks

Procedia PDF Downloads 339
14174 Human Resources and Business Result: An Empirical Approach Based on RBV Theory

Authors: Xhevrie Mamaqi

Abstract:

Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspects explaining the variation in business results.

Keywords: business results, human and social capital resources, training, RBV theory, SEM

Procedia PDF Downloads 301
14173 Integrated Information System on Human Resource Management in Project-Based Organizations

Authors: Akbar Farahani, Afsaneh Hassani, Peyman M. Farkhondeh

Abstract:

Human Resource Management as one of the core processes of the project-based companies, despite its key role in the success and competitive advantage, is relatively unknown. In the project-based companies, due to the accelerated movement of knowledge in the work activities and the temporary nature of the project, the need to develop mechanisms for achieving optimal management of this issues is very challenging. Approach to human resource management in these companies evolves with goals, strategies, and operational processes. Therefore, the need for appropriate tools to facilitate implementation of the optimized human resource management in the project is more than before,Which currently with the development of information technology and modern communication, appropriate to address the optimal approach for dynamic management of human resources in the project have been provided.This is done by using the referral system implemented in Mahab GCE that provides 1: the ability to use humans in projects without geographic limitation and 2:information on the activities and outcomes of referrals.Furthermore, by using this system, recording the lessons learned after any particular activity on projects,accessing quantitative information, procedures, documentation of learned practices that have been stored in the data base as well as using them in future projects is provided.

Keywords: human resource management, project base company, ERP, referrals system

Procedia PDF Downloads 479
14172 A Practical Approach Towards Disinfection Challenges in Sterile Manufacturing Area

Authors: Doris Lacej, Eni Bushi

Abstract:

Cleaning and disinfection procedures are essential for maintaining the cleanliness status of the pharmaceutical manufacturing environment particularly of the cleanrooms and sterile unit area. The Good Manufacturing Practice (GMP) Annex 1 recommendation highly requires the implementation of the standard and validated cleaning and disinfection protocols. However, environmental monitoring has shown that even a validated cleaning method with certified agents may result in the presence of atypical microorganisms’ colony that exceeds GMP limits for a specific cleanroom area. In response to this issue, this case study aims to arrive at the root cause of the microbial contamination observed in the sterile production environment in Profarma pharmaceutical industry in Albania through applying a problem-solving practical approach that ensures the appropriate sterility grade. The guidelines and literature emphasize the importance of several factors in the prevention of possible microbial contamination occurring in cleanrooms, grade A and C. These factors are integrated into a practical framework, to identify the root cause of the presence of Aspergillus Niger colony in the sterile production environment in Profarma pharmaceutical industry in Albania. In addition, the application of a semi-automatic disinfecting system such as H2O2 FOG into sterile grade A and grade C cleanrooms has been an effective solution in eliminating the atypical colony of Aspergillus Niger. Selecting the appropriate detergents and disinfectants at the right concentration, frequency, and combination; the presence of updated and standardized guidelines for cleaning and disinfection as well as continuous training of operators on these practices in accordance with the updated GMP guidelines are some of the identified factors that influence the success of achieving sterility grade. However, to ensure environmental sustainability it is important to be prepared for identifying the source of contamination and making the appropriate decision. The proposed case-based practical approach may help pharmaceutical companies to achieve sterile production and cleanliness environmental sustainability in challenging situations. Apart from the integration of valid agents and standardized cleaning and disinfection protocols according to GMP Annex 1, pharmaceutical companies must be careful and investigate the source and all the steps that can influence the results of an abnormal situation. Subsequently apart from identifying the root cause it is important to solve the problem with a successful alternative approach.

Keywords: cleanrooms, disinfectants, environmental monitoring, GMP Annex 1

Procedia PDF Downloads 218
14171 Comparison of Methods for Detecting and Quantifying Amplitude Modulation of Wind Farm Noise

Authors: Phuc D. Nguyen, Kristy L. Hansen, Branko Zajamsek

Abstract:

The existence of special characteristics of wind farm noise such as amplitude modulation (AM) contributes significantly to annoyance, which could ultimately result in sleep disturbance and other adverse health effects for residents living near wind farms. In order to detect and quantify this phenomenon, several methods have been developed which can be separated into three types: time-domain, frequency-domain and hybrid methods. However, due to a lack of systematic validation of these methods, it is still difficult to select the best method for identifying AM. Furthermore, previous comparisons between AM methods have been predominantly qualitative or based on synthesised signals, which are not representative of the actual noise. In this study, a comparison between methods for detecting and quantifying AM has been carried out. The results are based on analysis of real noise data which were measured at a wind farm in South Australia. In order to evaluate the performance of these methods in terms of detecting AM, an approach has been developed to select the most successful method of AM detection. This approach uses a receiver operating characteristic (ROC) curve which is based on detection of AM in audio files by experts.

Keywords: amplitude modulation, wind farm noise, ROC curve

Procedia PDF Downloads 147
14170 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia

Authors: Suzana Ramli, Wardah Tahir

Abstract:

Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.

Keywords: surface runoff, geographic information system, curve number method, environment

Procedia PDF Downloads 285
14169 An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature

Authors: Smriti, Ajeet Kumar

Abstract:

We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures.

Keywords: thermoelasticity, molecular dynamics, one dimensional nanostructures, nanotube buckling

Procedia PDF Downloads 128
14168 Identify and Prioritize the Sustainable Development of Sports Venues Using New and Degradable Energies with a Hierarchical Analysis Approach

Authors: Mahsaossadat Pourrahmati Khelejan

Abstract:

The purpose of this research was to identify and prioritize the sustainable development of sports venues using new and degradable energies with using the AHP Hierarchical Analysis approach. The research method is a descriptive strategy with regard to the direction of implementation and is a hierarchical research with a practical purpose. In this study, 30 experts (physical education faculty members, geography professors, accredited sports venues managers, and renewable energy engineers) were selected using purposeful sampling method as the research population. The research tool was a researcher-made questionnaire on the factors affecting the sustainable development of sports venues by using new technologies and degradable energy. Finally, the research questionnaire was designed with four components and 21 items. All steps were performed by using Expert Choice software. The importance of indicators that influence the sustainable development of sports venues is highlighted by the use of clean and degradable energy, for example: 1. Economic factor, weighing 0.420 2. Environmental index, weighing 0. 320 3. Physical index, weighing 0.148 4. Social index, weighing 0.122.

Keywords: Sports Venues, Sustainable Development, Degradable Energies, Prioritize

Procedia PDF Downloads 137
14167 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems

Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi

Abstract:

There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.

Keywords: knowledge management systems, ontologies, semantic web, open educational resources

Procedia PDF Downloads 500
14166 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data

Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif

Abstract:

Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.

Keywords: field data, local scour, scour equation, wide piers

Procedia PDF Downloads 416
14165 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme

Authors: Cavidan Yakupoglu, Kurt Rohloff

Abstract:

In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.

Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE

Procedia PDF Downloads 166
14164 The Combined Use of L-Arginine and Progesterone During the Post-breeding Period in Female Rabbits Increases the Weight of Their Fetuses

Authors: Diego F. Carrillo-González, Milena Osorio, Natalia M. Cerro, Yasser Y. Lenis

Abstract:

Introduction: mortality during the implantation and early embryonic development periods reach around 30% in different mammalian species. It has been described that progesterone (P4) and Arginine (Arg) play a beneficial role in establishing and maintaining early pregnancy in mammals. The combined effect between Arg and P4 on reproductive parameters in the rabbit species is not yet elucidated, to our best knowledge. Objective: to assess the effect of L-arginine and progesterone during the post-breeding period in female rabbits on the composition of the amniotic fluid, the placental structure, and the bone growth in their fetuses. Methods: crossbred female rabbits (n=16) were randomly distributed into four experimental groups (Ctrl, Arg, P4, and Arg+P4). In the control group, 0.9% saline solution was administered as a placebo, the Arg group was administered arginine (50 mg/kg BW) from day 4.5 to day 19 post-breeding, the P4 group was administered progesterone (Gestavec®, 1.5 mg/kg BW) from 24 hours to day 4 post-breeding and for the Arg+P4 group, an administration was performed under the same time and dose guidelines as the Arg and P4 treatments. Four females were sacrificed, and the amniotic fluid was collected and analyzed with rapid urine test strips, while the placenta and fetuses were processed in the laboratory to obtain histological plates. The percentage of deciduous, labyrinthine, and junctional zones was determined, and the length of the femur for each fetus was measured as an indicator of growth. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, A one-way analysis of variance (ANOVA) was performed, and a comparison of means was conducted by Tukey's test. Results: a higher density (p<0.05) was observed in the amniotic fluid for fetuses in the control group (1022±2.5g/mL) compared to the P4 (1015±5.3g/mL) and Arg+P4 (1016±4,9g/mL) groups. Additionally, the density of amniotic fluid in the Arg group (1021±2.5g/mL) was higher (p<0.05) than in the P4 group. The concentration of protein, glucose, and ascorbic acid had no statistical difference between treatments (p>0.05). The histological analysis of the uteroplacental regions, a statistical difference (p<0,05) in the proportion of deciduous zone was found between the P4 group (9.6±2.6%) when compared with the Ctrl (28.15±12.3%), and Arg+P4 (26.3±4.9) groups. In the analysis of the fetuses, the weight was higher for the Arg group (2.69±0.18), compared to the other groups (p<0.05), while a shorter length was observed (p<0.05) in the fetuses for the Arg+P4 group (25.97±1.17). However, no difference (p>0.05) was found when comparing the length of the developing femurs between the experimental groups. Conclusion: the combination of L-arginine and progesterone allows a reduction in the density of amniotic fluid, without affecting the protein, energy, and antioxidant components. However, the use of L-arginine stimulates weight gain in fetuses, without affecting size, which could be used to improve production parameters in rabbit production systems. In addition, the modification in the deciduous zone could show a placental adaptation based on the fetal growth process, however more specific studies on the placentation process are required.

Keywords: arginine, progesterone, rabbits, reproduction

Procedia PDF Downloads 94
14163 Improving Search Engine Performance by Removing Indexes to Malicious URLs

Authors: Durga Toshniwal, Lokesh Agrawal

Abstract:

As the web continues to play an increasing role in information exchange, and conducting daily activities, computer users have become the target of miscreants which infects hosts with malware or adware for financial gains. Unfortunately, even a single visit to compromised web site enables the attacker to detect vulnerabilities in the user’s applications and force the downloading of multitude of malware binaries. We provide an approach to effectively scan the so-called drive-by downloads on the Internet. Drive-by downloads are result of URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. To scan the web for malicious pages, the first step is to use a crawler to collect URLs that live on the Internet, and then to apply fast prefiltering techniques to reduce the amount of pages that are needed to be examined by precise, but slower, analysis tools (such as honey clients or antivirus programs). Although the technique is effective, it requires a substantial amount of resources. A main reason is that the crawler encounters many pages on the web that are legitimate and needs to be filtered. In this paper, to characterize the nature of this rising threat, we present implementation of a web crawler on Python, an approach to search the web more efficiently for pages that are likely to be malicious, filtering benign pages and passing remaining pages to antivirus program for detection of malwares. Our approaches starts from an initial seed of known, malicious web pages. Using these seeds, our system generates search engines queries to identify other malicious pages that are similar to the ones in the initial seed. By doing so, it leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. The results shows that this guided approach is able to identify malicious web pages more efficiently when compared to random crawling-based approaches.

Keywords: web crawler, malwares, seeds, drive-by-downloads, security

Procedia PDF Downloads 231
14162 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 394
14161 Neurodiversity in Post Graduate Medical Education: A Rapid Solution to Faculty Development

Authors: Sana Fatima, Paul Sadler, Jon Cooper, David Mendel, Ayesha Jameel

Abstract:

Background: Neurodiversity refers to intrinsic differences between human minds and encompasses dyspraxia, dyslexia, attention deficit hyperactivity disorder, dyscalculia, autism spectrum disorder, and Tourette syndrome. There is increasing recognition of neurodiversity in relation to disability/diversity in medical education and the associated impact on training, career progression, and personal and professional wellbeing. In addition, documented and anecdotal evidence suggests that medical educators and training providers in all four nations (UK) are increasingly concerned about understanding neurodiversity and identifying and providing support for neurodivergent trainees. Summary of Work: A national Neurodiversity Task and Finish group were established to survey Health Education England local office Professional Support teams about insights into infrastructure, training for educators, triggers for assessment, resources, and intervention protocols. This group drew from educational leadership, professional and personal neurodiverse expertise, occupational medicine, employer human resource, and trainees. An online, exploratory survey was conducted to gather insights from supervisors and trainers across England using the Professional Support Units' platform. Summary of Results: This survey highlighted marked heterogeneity in the identification, assessment, and approaches to support and management of neurodivergent trainees and highlighted a 'deficit' approach to neurodiversity. It also demonstrated a paucity of educational and protocol resources for educators and supervisors in supporting neurodivergent trainees. Discussions and Conclusions: In phase one, we focused on faculty development. An educational repository for all supervising trainees using a thematic approach was formalised. This was guided by our survey findings specific for neurodiversity and took a triple 'A' approach: awareness, assessment, and action. This is further supported by video material incorporating stories in training as well as mobile workshops for trainers for more immersive learning. The subtle theme from both the survey and Task and finish group suggested a move away from deficit-focused methods toward a positive holistic, interdisciplinary approach within a biopsychosocial framework. Contributions: 1. Faculty Knowledge and basic understanding of neurodiversity are key to supporting trainees with known or underlying Neurodiverse conditions. This is further complicated by challenges around non-disclosure, varied presentations, stigma, and intersectionality. 2. There is national (and international) inconsistency in the approach to how trainees are managed once a neurodiverse condition is suspected or diagnosed. 3. A carefully constituted and focussed Task and Finish group can rapidly identify national inconsistencies in neurodiversity and implement rapid educational interventions. 4. Nuanced findings from surveys and discussion can reframe the approach to neurodiversity; from a medical model to a more comprehensive, asset-based, biopsychosocial model of support, fostering a cultural shift, accepting 'diversity' in all its manifestations, visible and hidden.

Keywords: neurodiversity, professional support, human considerations, workplace wellbeing

Procedia PDF Downloads 92
14160 Consequences of Sentence on Children's Socialization: Exploratory Study of Criminal Women of Punjab, Pakistan

Authors: Muhammad Shabbir

Abstract:

This paper inspects the effects of the sentenced criminal women upon the socialization of their children, in the Pakistani context. The objectives of the study are to find out the socio-psychological and cultural effects of the jail environment on the children and behavior of sentenced women towards their children as well as analyze the facilities provided by the jail authorities for the socialization of the women. Quantitative variables and qualitative thematic variables caused by the opinions through open-ended questionnaire were collected and analyze by applying statistical measures, e.g. Social Sciences Package for Social Sciences (SPSS), to reflect out the results. It was found that the sentence of women shatters the socialization process of their children which commonly leads them to criminality. The government should review the ongoing sentence policies for an improvement and betterment. For this purpose, the idea of socialization centers would be a healthy initiative.

Keywords: socialization, criminal women, sentence, socio-psychological and cultural

Procedia PDF Downloads 222
14159 The Effects of Aging on the Cost of Operating and Support: An Empirical Study Applied to Weapon Systems

Authors: Byungchae Kim, Jiwoo Nam

Abstract:

Aging of weapon systems can cause the failure and degeneration of components which results in increase of operating and support costs. However, whether this aging effect is significantly strong and it influences a lot on national defense spending due to the rapid increase in operating and support (O&S) costs is questionable. To figure out this, we conduct a literature review analyzing the aging effect of US weapon systems. We also conduct an empirical research using a maintenance database of Korean weapon systems, Defense Logistics Integrated Information System (DAIIS). We run regression of various types of O&S cost on weapon system age to investigate the statistical significance of aging effect and use generalized linear model to find relations between the failure of different priced components and the age. Our major finding is although aging effect exists, its impacts on weapon system cost seem to be not too large considering several characteristics of O&S cost elements not relying on the age.

Keywords: O&S cost, aging effect, weapon system, GLM

Procedia PDF Downloads 144
14158 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 43
14157 Procedure for Monitoring the Process of Behavior of Thermal Cracking in Concrete Gravity Dams: A Case Study

Authors: Adriana de Paula Lacerda Santos, Bruna Godke, Mauro Lacerda Santos Filho

Abstract:

Several dams in the world have already collapsed, causing environmental, social and economic damage. The concern to avoid future disasters has stimulated the creation of a great number of laws and rules in many countries. In Brazil, Law 12.334/2010 was created, which establishes the National Policy on Dam Safety. Overall, this policy requires the dam owners to invest in the maintenance of their structures and to improve its monitoring systems in order to provide faster and straightforward responses in the case of an increase of risks. As monitoring tools, visual inspections has provides comprehensive assessment of the structures performance, while auscultation’s instrumentation has added specific information on operational or behavioral changes, providing an alarm when a performance indicator exceeds the acceptable limits. These limits can be set using statistical methods based on the relationship between instruments measures and other variables, such as reservoir level, time of the year or others instruments measuring. Besides the design parameters (uplift of the foundation, displacements, etc.) the dam instrumentation can also be used to monitor the behavior of defects and damage manifestations. Specifically in concrete gravity dams, one of the main causes for the appearance of cracks, are the concrete volumetric changes generated by the thermal origin phenomena, which are associated with the construction process of these structures. Based on this, the goal of this research is to propose a monitoring process of the thermal cracking behavior in concrete gravity dams, through the instrumentation data analysis and the establishment of control values. Therefore, as a case study was selected the Block B-11 of José Richa Governor Dam Power Plant, that presents a cracking process, which was identified even before filling the reservoir in August’ 1998, and where crack meters and surface thermometers were installed for its monitoring. Although these instruments were installed in May 2004, the research was restricted to study the last 4.5 years (June 2010 to November 2014), when all the instruments were calibrated and producing reliable data. The adopted method is based on simple linear correlations procedures to understand the interactions among the instruments time series, verifying the response times between them. The scatter plots were drafted from the best correlations, which supported the definition of the limit control values. Among the conclusions, it is shown that there is a strong or very strong correlation between ambient temperature and the crack meters and flowmeters measurements. Based on the results of the statistical analysis, it was possible to develop a tool for monitoring the behavior of the case study cracks. Thus it was fulfilled the goal of the research to develop a proposal for a monitoring process of the behavior of thermal cracking in concrete gravity dams.

Keywords: concrete gravity dam, dams safety, instrumentation, simple linear correlation

Procedia PDF Downloads 294
14156 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission

Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola

Abstract:

The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.

Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering

Procedia PDF Downloads 328
14155 Krembo Wings Youth Movement for Children with and without Disabilities: An Inclusive Model from an Educational Perspective to a Professional Approach

Authors: Claudia Koby, Merav Boaz, Meirav Zaiger Kober

Abstract:

Krembo Wings is an all-inclusive youth movement which brings children and youth with any disability together with their able-bodied peers (counselors) for weekly fun and educational social activities. Krembo Wings utilizes a socio-educational framework to create and lead social change through members with and without disabilities. All the work that Krembo Wings engages in stems from its central goal of promoting inclusion and integration using social and psychological theories to develop its unique model and approach. The key to Krembo Wings' approach in promoting inclusion is active participation – each member, with and without disabilities, is enabled to participate to their fullest capacity in the youth movement and its activities. In order for this to be achieved, all activities are adjustable and are modified to fit the abilities of each member. Additionally, youth counselors – most of whom are members without disabilities – go through extensive training in order to act as 'intermediaries' for their partner with disabilities, enabling and facilitating their partner's participation in a way that allows them to be as independent and active as possible. The relationship is one of friendship and not of caretaking. There is always a nurse on-hand to tend to any caretaking needs. Two essential elements of Krembo Wings' model is the broadening of concepts – shifting and changing the understanding of certain concepts such as what it means to be 'independent' or 'able' – and the development of a unique language – creating a language which both reflects and shapes reality. These elements of Krembo Wings' model foster the development of the values of acceptance and appreciation of those who are 'different'. It instills in members and counselors a new way of perceiving the world, one in which inclusion and integration are achievable and natural. Krembo Wings is certain that implementation of this model will promote the participation and inclusion of individuals with disabilities in society while promoting diversity. This model can serve as a platform which can be replicated and adjusted to suit any environment.

Keywords: innovative model for inclusion, socio-educational movement, youth leadership, youth with and without disabilities

Procedia PDF Downloads 128
14154 In vitro Antimicrobial Resistance Pattern of Bovine Mastitis Bacteria in Ethiopia

Authors: Befekadu Urga Wakayo

Abstract:

Introduction: Bacterial infections represent major human and animal health problems in Ethiopia. In the face of poor antibiotic regulatory mechanisms, development of antimicrobial resistance (AMR) to commonly used drugs has become a growing health and livelihood threat in the country. Monitoring and control of AMR demand close coloration between human and veterinary services as well as other relevant stakeholders. However, risk of AMR transfer from animal to human population’s remains poorly explored in Ethiopia. This systematic research literature review attempted to give an overview on AMR challenges of bovine mastitis bacteria in Ethiopia. Methodology: A web based research literature search and analysis strategy was used. Databases are considered including; PubMed, Google Scholar, Ethiopian Veterinary Association (EVA) and Ethiopian Society of Animal Production (ESAP). The key search terms and phrases were; Ethiopia, dairy, cattle, mastitis, bacteria isolation, antibiotic sensitivity and antimicrobial resistance. Ultimately, 15 research reports were used for the current analysis. Data extraction was performed using a structured Microsoft Excel format. Frequency AMR prevalence (%) was registered directly or calculated from reported values. Statistical analysis was performed on SPSS – 16. Variables were summarized by giving frequencies (n or %), Mean ± SE and demonstrative box plots. One way ANOVA and independent t test were used to evaluate variations in AMR prevalence estimates (Ln transformed). Statistical significance was determined at p < 0.050). Results: AMR in bovine mastitis bacteria was investigated in a total of 592 in vitro antibiotic sensitivity trials involving 12 different mastitis bacteria (including 1126 Gram positive and 77 Gram negative isolates) and 14 antibiotics. Bovine mastitis bacteria exhibited AMR to most of the antibiotics tested. Gentamycin had the lowest average AMR in both Gram positive (2%) and negative (1.8%) bacteria. Gram negative mastitis bacteria showed higher mean in vitro resistance levels to; Erythromycin (72.6%), Tetracycline (56.65%), Amoxicillin (49.6%), Ampicillin (47.6%), Clindamycin (47.2%) and Penicillin (40.6%). Among Gram positive mastitis bacteria higher mean in vitro resistance was observed in; Ampicillin (32.8%), Amoxicillin (32.6%), Penicillin (24.9%), Streptomycin (20.2%), Penicillinase Resistant Penicillin’s (15.4%) and Tetracycline (14.9%). More specifically, S. aurues exhibited high mean AMR against Penicillin (76.3%) and Ampicillin (70.3%) followed by Amoxicillin (45%), Streptomycin (40.6%), Tetracycline (24.5%) and Clindamycin (23.5%). E. coli showed high mean AMR to Erythromycin (78.7%), Tetracycline (51.5%), Ampicillin (49.25%), Amoxicillin (43.3%), Clindamycin (38.4%) and Penicillin (33.8%). Streptococcus spp. demonstrated higher (p =0.005) mean AMR against Kanamycin (> 20%) and full sensitivity (100%) to Clindamycin. Overall, mean Tetracycline (p = 0.013), Gentamycin (p = 0.001), Polymixin (p = 0.034), Erythromycin (p = 0.011) and Ampicillin (p = 0.009) resistance increased from the 2010’s than the 2000’s. Conclusion; the review indicated a rising AMR challenge among bovine mastitis bacteria in Ethiopia. Corresponding, public health implications demand a deeper, integrated investigation.

Keywords: antimicrobial resistance, dairy cattle, Ethiopia, Mastitis bacteria

Procedia PDF Downloads 249
14153 Empowering Learners: From Augmented Reality to Shared Leadership

Authors: Vilma Zydziunaite, Monika Kelpsiene

Abstract:

In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.

Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education

Procedia PDF Downloads 45
14152 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 412
14151 Contribution Spending on Intellectual Capital in the Performance of Industrial Enterprise Case study: Sonatrach

Authors: Dahmani Aziz, Mekdad Yousra

Abstract:

The intellectual capital is an important source of profitability and the main supporter of the competitive where this study examines the contribution of expenditure on intellectual capital in the performance of industrial enterprises Algerian, and through a case study Sonatrach as the most important industrial enterprises in Algeria and the driving force of the Algerian economy. It has been the use of value-added intellectual coefficient (VAIC) in measuring the contribution of intellectual capital and analyzing data Sonatrach during the period from the year 2001 until the year 2012, and test the validity of hypotheses using Stepwise Regression model through the SPSS statistical software, and the study has proved the existence of a positive relationship between spending on human capital and financial performance and a stronger degree relationship between the structural capital and economic performance.

Keywords: industrial enterprise, intellectual capital, performance, economy of Algeria, spending

Procedia PDF Downloads 385