Search results for: human concept learning
14834 Women Entrepreneurs in Haryana, India: Issues and Challenges
Authors: Neerja Ahlawat
Abstract:
In Indian society, women have always been an active part of the production process. Be it agriculture, dairy, or other home-based industries, Indian women have been competent and enterprising engaged in multiple economic activities. In recent times, women across the country have started establishing business enterprise and managing and working very hard. Despite their skills and capabilities, however, women are faced with varied problems and challenges. Women entrepreneurs in Haryana face a double challenge – a gender bias against women denies them the education and the opportunities available to their male counterparts and the lack of such learning and skills development inhibits any entrepreneurial ambitions. In many parts of the state, women venturing out of the household domain face much opposition and criticism. The present paper highlights the various problems and challenges faced by the women entrepreneurs while running the enterprises in the present competitive world in Haryana. An attempt has been made to investigate women entrepreneurs about the specific issues such as working capital, distribution channel, sales promotion, electricity, human resources and competition with other industries. The present empirical study was carried out in Rohtak city of Haryana using Interview schedule and Case study method. The study revealed the nature of problems women entrepreneurs face while dealing with issues of labour, market, and bureaucracy. The study categorically pointed out the difficulties women are confronted with while keeping a balance between domestic responsibilities and workplace challenges. The study concluded that women entrepreneurs are redefining their identities and priorities in the male dominant society.Keywords: entrepreneur, gender bias, capital, human resource
Procedia PDF Downloads 18914833 Positive Impact of Cartoon Movies on Adults
Authors: Yacoub Aljaffery
Abstract:
As much as we think negatively about social media such as TV and smart phones, there are many positive benefits our society can get from it. Cartoons, for example, are made specifically for children. However, in this paper, we will prove how cartoon videos can have a positive impact on adults, especially college students. Since cartoons are meant to be a good learning tool for children, as well as adults, we will show our audience how they can use cartoon in teaching critical thinking and other language skills.Keywords: social media, TV, teaching, learning, cartoon movies
Procedia PDF Downloads 32614832 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization
Procedia PDF Downloads 17414831 Integrating Human Rights into Countering Violent Extremism: A Comparative Analysis of Women Without Borders and Hedayah Initiatives
Authors: Portia Muehlbauer
Abstract:
This paper examines the evolving landscape of preventing and countering violent extremism (PCVE) by delving into the growing importance of integrating human rights principles into violence prevention strategies on the local, community level. This study sheds light on the underlying theoretical frameworks of violent extremism and the influence of gender while investigating the intersection between human rights preservation and violent extremism prevention. To gain practical insight, the research focuses on two prominent international non-governmental organizations, Women without Borders (WwB) and Hedayah, and their distinct PCVE initiatives. WwB adopts a gender-sensitive approach, implementing parental education programs that empower mothers in at-risk communities to prevent the spread of violent extremism. In contrast, Hedayah takes an indirect route, employing capacity building programs that enhance the capabilities of educators, social workers, and psychologists in early intervention, rehabilitation and reintegration efforts. Qualitative data for this comparative analysis was collected through an extensive four-month internship at WwB during the fall of 2020, a three-month internship at Hedayah in the spring of 2021, a thought-provoking semi-structured interview with the executive director of WwB, personal field notes, and a comprehensive discourse analysis of the prevailing literature on human rights considerations in PCVE practices. This study examines the merits and challenges of integrating human rights into PCVE programming through the lens of both organizations, WwB and Hedayah. The findings of this study will inform policymakers, practitioners, and researchers on the intricate relationship between human rights protection and effective PCVE strategies.Keywords: preventing and countering violent extremism, human rights, counterterrorism, peacebuilding, capacity building programs, gender studies
Procedia PDF Downloads 6614830 The Power House of Mind: Determination of Action
Authors: Sheetla Prasad
Abstract:
The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche
Procedia PDF Downloads 45514829 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education
Procedia PDF Downloads 13714828 A Literature Review Evaluating the Use of Online Problem-Based Learning and Case-Based Learning Within Dental Education
Authors: Thomas Turner
Abstract:
Due to the Covid-19 pandemic alternative ways of delivering dental education were required. As a result, many institutions moved teaching online. The impact of this is poorly understood. Is online problem-based learning (PBL) and case-based learning (CBL) effective and is it suitable in the post-pandemic era? PBL and CBL are both types of interactive, group-based learning which are growing in popularity within many dental schools. PBL was first introduced in the 1960’s and can be defined as learning which occurs from collaborative work to resolve a problem. Whereas CBL encourages learning from clinical cases, encourages application of knowledge and helps prepare learners for clinical practice. To evaluate the use of online PBL and CBL. A literature search was conducted using the CINAHL, Embase, PubMed and Web of Science databases. Literature was also identified from reference lists. Studies were only included from dental education. Seven suitable studies were identified. One of the studies found a high learner and facilitator satisfaction rate with online CBL. Interestingly one study found learners preferred CBL over PBL within an online format. A study also found, that within the context of distance learning, learners preferred a hybrid curriculum including PBL over a traditional approach. A further study pointed to the limitations of PBL within an online format, such as reduced interaction, potentially hindering the development of communication skills and the increased time and technology support required. An audience response system was also developed for use within CBL and had a high satisfaction rate. Interestingly one study found achievement of learning outcomes was correlated with the number of student and staff inputs within an online format. Whereas another study found the quantity of learner interactions were important to group performance, however the quantity of facilitator interactions was not. This review identified generally favourable evidence for the benefits of online PBL and CBL. However, there is limited high quality evidence evaluating these teaching methods within dental education and there appears to be limited evidence comparing online and faceto-face versions of these sessions. The importance of the quantity of learner interactions is evident, however the importance of the quantity of facilitator interactions appears to be questionable. An element to this may be down to the quality of interactions, rather than just quantity. Limitations of online learning regarding technological issues and time required for a session are also highlighted, however as learners and facilitators get familiar with online formats, these may become less of an issue. It is also important learners are encouraged to interact and communicate during these sessions, to allow for the development of communication skills. Interestingly CBL appeared to be preferred to PBL in an online format. This may reflect the simpler nature of CBL, however further research is required to explore this finding. Online CBL and PBL appear promising, however further research is required before online formats of these sessions are widely adopted in the post-pandemic era.Keywords: case-based learning, online, problem-based learning, remote, virtual
Procedia PDF Downloads 8214827 Program of Health/Safety Integration and the Total Worker Health Concept in the Improvement of Absenteeism of the Work Accommodation Management
Authors: L. R. Ferreira, R. Biscaro, C. C. Danziger, C. M. Galhardi, L. C. Biscaro, R. C. Biscaro, I. S. Vasconcelos, L. C. R. Ferreira, R. Reis, L. H. Oliveira
Abstract:
Introduction: There is a worldwide trend for the employer to be aware of investing in health promotion that goes beyond occupational hygiene approaches with the implementation of a comprehensive program with integration between occupational health and safety, and social/psychosocial responsibility in the workplace. Work accommodation is a necessity in most companies as it allows the worker to return to its function respecting its physical limitations. This study had the objective to verify if the integration of health and safety in the companies, with the inclusion of the concept of TWH promoted by an occupational health service has impacted in the management of absenteeism of workers in work accommodation. Method: A retrospective and paired cohort study was used, in which the impact of the implementation of the Program for the Health/Safety Integration and Total Worker Health Concept (PHSITWHC) was evaluated using the indices of absenteeism, health attestations, days and hours of sick leave of workers that underwent job accommodation/rehabilitation. This was a cohort study and the data were collected from January to September of 2017, prior to the initiation of the integration program, and compared with the data obtained from January to September of 2018, after the implementation of the program. For the statistical analysis, the student's t-test was used, with statistically significant differences being made at p < 0.05. Results: The results showed a 35% reduction in the number of absenteeism rate in 2018 compared to the same period in 2017. There was also a significant reduction in the total numbers of days of attestations/absences (mean of 2,8) as well as days of attestations, absence and sick leaves (mean of 5,2) in 2018 data after the implementation of PHSITWHC compared to 2017 data, means of 4,3 and 25,1, respectively, prior to the program. Conclusion: It can be concluded that the inclusion of the PHSITWHC was associated with a reduction in the rate of absenteeism of workers that underwent job accommodation. It was observed that, once health and safety were approached and integrated with the inclusion of the TWH concept, it was possible to reduce absenteeism, and improve worker’s quality of life and wellness, and work accommodation management.Keywords: absenteeism, health/safety integration, work accommodation management, total worker health
Procedia PDF Downloads 16314826 Recognizing Human Actions by Multi-Layer Growing Grid Architecture
Authors: Z. Gharaee
Abstract:
Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance
Procedia PDF Downloads 15914825 Challenges in Promoting Software Usability and Applying Principles of Usage-Centred Design in Saudi Arabia
Authors: Kholod J. Alotaibi, Andrew M. Gravell
Abstract:
A study was conducted in which 212 software developers in higher education institutions in Saudi Arabia were surveyed to gather an indication of their understanding of the concept of usability, their acceptance of its importance, and to see how well its principles are applied. Interviews were then held with 20 of these developers, and a demonstration of Usage-Centred Design was attempted, a highly usability focused software development methodology, at one select institution for its redesign of an e-learning exam system interface during the requirements gathering phase. The study confirms the need to raise awareness of usability and its importance, and for Usage-Centred Design to be applied in its entirety, also need to encourage greater consultation with potential end-users of software and collaborative practices. The demonstration of Usage-Centred Design confirmed its ability to capture usability requirements more completely and precisely than would otherwise be the case, and hence its usefulness for developers concerned with improving software usability. The concluding discussion delves on the challenges for promoting usability and Usage-Centred Design in light of the research results and findings and recommendations are made for the same.Keywords: usability, usage-centred, applying principles of usage-centred, Saudi Arabia
Procedia PDF Downloads 39714824 Nature, Elixir of Architecture: A Contemplation on Human, Nature and Architecture in Islam
Authors: A. Kabiri-Samani, M. J. Seddighi
Abstract:
There is no doubt that a key factor in the manifestation of architecture is the interaction of human and nature. Explaining the type of relationship defined by “the architect” between architecture and nature opens a window towards understanding the theoretical conceptions of the architect as the creator of “architecture”. Now, if these theoretical foundations are put under scrutiny from the viewpoint of Islam, and an architect considers the relationship of human and nature within the context of Islam, he would let nature to manifest itself in architecture. The reasons for such a relationship is explicable in terms of the degree and nature of knowledge of the architect about nature; while the way it comes to existence is explained by defining the force of nature – ruling the entire nature – and its acts. It is by the scientific command of the architect and his mastery in the hermetic force of nature that the material bodies of buildings evolve from artificial to natural. Additionally, the presence of nature creates hermetic architectural spaces for the spiritual development of humans while serving for living at different levels.Keywords: nature, Islam, cognition, science, presence, elixir
Procedia PDF Downloads 49314823 A Development of Online Lessons to Strengthen the Learning Process of Master's Degree Students Majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University
Authors: Chaiwat Waree
Abstract:
The purposes of the research were to develop online lessons to strengthen the learning process of Master's degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University; to achieve the efficiency criteria of 80/80; and to study the satisfaction of students who use online lessons to strengthen the learning process of Master’s degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University. The sample consisted of 40 University students studying in semester 1, academic year 2012. The sample was determined by Purposive Sampling. Selected students were from the class which the researcher was the homeroom tutor. The tutor was responsible for the teaching of learning process. Tools used in the study were online lessons, 60-point performance test, and evaluation test of satisfaction of students on online lessons. Data analysis yielded the following results; 83.66/88.29 efficiency of online lessons measured against the criteria; the comparison of performance before and after taking online lessons using t-test yielded 29.67. The statistical significance was at 0.05; the average satisfaction level of forty students on online lessons was 4.46 with standard deviation of 0.68.Keywords: online, lessons, curriculum, instruction
Procedia PDF Downloads 22514822 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 47114821 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 61914820 Promoting Child Rights in Africa: The Untold Positive Aspect of the African Culture and Tradition
Authors: Seraphina Bakta
Abstract:
On many occasions, the link between human rights and culture in Africa is tainted with speculations that African traditions and culture impede human rights. Seemingly also, literature from Africa highly supports the approach of cultural relativism instead of the universalism approach to human rights. This approach has been regarded by many as an unwillingness to accept human rights as universal. While it has to be appreciated that in different communities, there are positive and negative elements of culture, including in Africa, the positive aspect is hardly seen in African culture. This paper, employed documentary review and interviews to collect data. Various documents were reviewed including international and domestic legal materials and literature. Data from documentary review were verified through interviews in Morogoro and Shinyanga regions in Tanzania. Qualitative approach was used to analyse such data where a thematic content analysis was used. The study found that there are positive aspects of African tradition and culture including those promoting child work (as opposed to child labour); some aspects on child protection which should be embraced. However, still some aspects such as child marriage and inconsistent with child rights. It is pivotal that therefore that measures are be adopted to address them.Keywords: child rights, customs, tradition, Africa
Procedia PDF Downloads 4114819 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 16714818 Effects of Poor Job Performance Practices on the Job Satisfaction of Workers
Authors: Prakash Singh, Thembinkosi Twalo
Abstract:
The sustainability of the Buffalo City Metropolitan Municipality (BCMM), in South Africa, is being threatened by the reported cases of poor administration, weak management of resources, inappropriate job performance, and inappropriate job behaviour of some of the workers. Since the structural-functionalists assume that formal education is a solution to societal challenges, it therefore means that the BCMM should not be experiencing this threat since many of its workers have various levels of formal education. Consequently, this study using the mixed method research approach, set out to investigate the paradoxical co-existence of inappropriate job behaviour and performance with formal education at the BCMM. Considering the impact of human factors in the labour process, this study draws attention to the divergent objectives of skill and skill bearer, with the application of knowledge subject to the knowledge bearer’s motives, will, attitudes, ethics and values. Consequently, inappropriate job behaviour and performance practices could be due to numerous factors such as lack of the necessary capabilities or refusal to apply what has been learnt due to racial or other prejudices. The role of the human factor in the labour process is a serious omission in human capital theory, which regards schooling as the only factor contributing to the ability to do a job. For this reason this study’s theoretical framework is an amalgamation of the four theories - human capital, social capital, cultural capital, and reputation capital – in an effort to obtain a broader view of the factors that shape job behaviour and performance. Since it has been established that human nature plays a crucial role in how workers undertake their responsibilities, it is important that this be taken into consideration in the BCMM’s monitoring and evaluation of the workers’ job performance practices. Hence, this exploratory study brings to the fore, the effects of poor job performance practices on the job satisfaction of workers.Keywords: human capital, poor job performance practices, service delivery, workers’ job satisfaction
Procedia PDF Downloads 30414817 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing
Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule
Abstract:
Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing
Procedia PDF Downloads 14414816 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 8214815 The Relationship between Confidence, Accuracy, and Decision Making in a Mobile Review Program
Authors: Carla Van De Sande, Jana Vandenberg
Abstract:
Just like physical skills, cognitive skills grow rusty over time unless they are regularly used and practiced, so academic breaks can have negative consequences on student learning and success. The Keeping in School Shape (KiSS) program is an engaging, accessible, and cost-effective intervention that harnesses the benefits of retrieval practice by using technology to help students maintain proficiency over breaks from school by delivering a daily review problem via text message or email. A growth mindset is promoted through feedback messages encouraging students to try again if they get a problem wrong and to take on a challenging problem if they get a problem correct. This paper reports on the relationship between confidence, accuracy, and decision-making during the implementation of the KiSS Program at a large university during winter break for students enrolled in an engineering introductory Calculus course sequence.Keywords: growth mindset, learning loss, on-the-go learning, retrieval practice
Procedia PDF Downloads 21214814 Impact of Glycation on Proteomics of Human Serum Albumin: Relevance to Diabetes Associated Pathologies
Authors: Alok Raghav, Jamal Ahmad
Abstract:
Background: Serum albumin glycation and advanced glycation end products (AGE) formation correlates in diabetes and its associated complications. Extensive modified human serum albumin is used to study the biochemical, electrochemical and functional properties in hyperglycemic environment with relevance to diabetes. We evaluate Spectroscopic, side chain modifications, amino acid analysis, biochemical and functional group properties in four glucose modified samples. Methods: A series four human serum albumin samples modified with glucose was characterized in terms of amino acid analysis, spectroscopic properties and side chain modifications. The diagnostic technique employed incorporates UV Spectroscopy, Fluorescence Spectroscopy, biochemical assays for side chain modifications, amino acid estimations, electrochemical and optical characterstic of glycated albumin. Conclusion: Glucose modified human serum albumin confers AGEs formation alters biochemical, electrochemical, optical, and functional property that depend on the reactivity of glucose and its concentration used for in-vitro glycation. A biochemical, electrochemical, optical, and functional characterization of modified albumin in-vitro produced AGE product that will be useful to interpret the complications and pathophysiological significance in diabetes.Keywords: human serum albumin, glycated albumin, adavanced glycation end products, associated pathologies
Procedia PDF Downloads 40614813 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 39214812 Human Rights in Cross-Border Surrogacy: An Exploratory Study Applied to Surrogacy Facilitators
Authors: Yingyi Luo
Abstract:
Cross-border commercial surrogacy, where Australians travel overseas to access reproduction through a surrogate mother, is an increasing phenomenon. This paper focuses on the role of Australian surrogacy facilitators, including lawyers, non-for-profit agents, fertility counselors, who act as intermediaries managing cross-border surrogacy arrangements in Australia. It explores the extent to which surrogacy facilitators are concerned with the human rights of children born through cross-border surrogacy, surrogate mothers in developing countries, and intended parents. Commercial surrogacy is a matter that is often cast in the language of human rights. This paper will contribute to an in-depth understanding of the dynamics between intended parents, surrogates, and surrogacy facilitators by adopting a human rights framework to inform data analysis regarding the role of facilitators. The purpose of this research is to inform debate and discussion on law reform related to surrogacy. This paper presented here centers on interviews with surrogacy facilitators in Australia and non-participant observations in Australia to generate thick, empirical data about the fertility industry. The data showed that the process of facilitating surrogacy arrangements had prompted facilitators to form a view on human rights as they applied to their works. Although facilitators claimed that the right of intended parents, surrogate mothers, and children were all taken into consideration, the researcher observed that the commercial surrogacy contracts described by these facilitators favored the interests of intended parents with the baby acting as their unique selling point. The interests and needs of surrogate mothers were not prioritized in the views or actions of facilitators. The result was a commercial transaction that entailed the purchase, through cross-border surrogacy, of a child, as a commodity, by relatively affluent intended parents from disadvantaged surrogate mothers through unfair contracts.Keywords: cross-border surrogacy, facilitators, human rights, surrogacy
Procedia PDF Downloads 12014811 The Concept of Accounting in Islamic Transactions
Authors: Ahmad Abdulkadir Ibrahim
Abstract:
The Islamic law of transactions laid down the methods and instruments of accounting and analyzed its basic assumptions in the modern world. There is a need to examine the implications of accounting initiatives in the Muslim world and attempt to outline the important characteristics of Islamic accounting and how Islamic accounting resolves the problem of measuring the cost of Murabaha goods in case of exchange rate variation. The research tends to discuss an analytical approach to the Islamic accounting concept as well as elaborating the jurisprudential matter and practical aspects of accounting in Islamic financial transactions. It also aims to alert the practitioners of accounting in the Islamic world to be aware of the concept of accounting in Islamic jurisprudence and its historical development. The methodology adopted in this research is the qualitative method through the consultation of relevant literature, which focuses on the thematic study of the subject matter. This is followed by an analysis and discussion of the contents of the materials used. It is concluded that Islamic accounting is unique in its norms as it has been characterized by fairness, accuracy in measuring tools, truthfulness, mutual trust, moderation in making a profit, and tolerance. It was also qualified by capacity and flexibility in terms of the tools and terminology used and invented by Islamic jurisprudence in the accounting system, which indicates its validity and consistency anytime and anywhere. An important conclusion of the research also lies in the refutation of the popular idea that an Italian writer known as Luca Pacilio was the first writer who developed the basis of double-entry due to the presented proofs by Muslim scholars of critical accounting developments, which cannot be ignored. It concludes further that Islamic jurisprudence draws the accounting system codified in the foundations of a market that is far from usury, fraud, cheating, and unfair competition in all areas.Keywords: accounting, Islamic accounting, Islamic transactions, Islamic jurisprudence, double entry, murabaha, characteristics
Procedia PDF Downloads 6714810 Teaching the Tacit Nuances of Japanese Onomatopoeia through an E-Learning System: An Evaluation Approach of Narrative Interpretation
Authors: Xiao-Yan Li, Takashi Hashimoto, Guanhong Li, Shuo Yang
Abstract:
In Japanese, onomatopoeia is an important element in the lively expression of feelings and experiences. It is very difficult for students of Japanese to acquire onomatopoeia, especially, its nuances. In this paper, based on traditional L2 learning theories, we propose a new method to improve the efficiency of teaching the nuances – both explicit and tacit - to non-native speakers of Japanese. The method for teaching the tacit nuances of onomatopoeia consists of three elements. First is to teach the formal rules representing the explicit nuances of onomatopoeic words. Second is to have the students create new onomatopoeic words by utilizing those formal rules. The last element is to provide feedback by evaluating the onomatopoeias created. Our previous study used five-grade relative estimation. However students were confused about the five-grade system, because they could not understand the evaluation criteria only based on a figure. In this new system, then, we built an evaluation database through native speakers’ narrative interpretation. We asked Japanese native speakers to describe their awareness of the nuances of onomatopoeia in writing. Then they voted on site and defined priorities for showing to learners on the system. To verify the effectiveness of the proposed method and the learning system, we conducted a preliminary experiment involving two groups of subjects. While Group A got feedback about the appropriateness of their onomatopoeic constructions from the native speakers’ narrative interpretation, Group B got feedback just in the form of the five-grade relative estimation. A questionnaire survey administered to all of the learners clarified our learning system availability and also identified areas that should be improved. Repetitive learning of word-formation rules, creating new onomatopoeias and gaining new awareness from narrative interpretation is the total process used to teach the explicit and tacit nuances of onomatopoeia.Keywords: onomatopoeia, tacit nuance, narrative interpretation, e-learning system, second language teaching
Procedia PDF Downloads 40014809 Evaluating the Learning Outcomes of Physical Therapy Clinical Fieldwork Course
Authors: Hui-Yi Wang, Shu-Mei Chen, Mei-Fang Liu
Abstract:
Background and purpose: Providing clinical experience in medical education is an important discipline method where students can gradually apply their academic knowledge to clinical situations. The purpose of this study was to establish self-assessment questionnaires for students to assess their learning outcomes for two fields of physical therapy, orthopedic physical therapy, and pediatric physical therapy, in a clinical fieldwork course. Methods: The questionnaires were developed based on the core competence dimensions of the course. The content validity of the questionnaires was evaluated and established by expert meetings. Among the third-year undergraduate students who took the clinical fieldwork course, there were 49 students participated in this study. Teachers arranged for the students to study two professional fields, and each professional field conducted a three-week clinical lesson. The students filled out the self-assessment questionnaires before and after each three-week lesson. Results: The self-assessment questionnaires were established by expert meetings that there were six core competency dimensions in each of the two fields, with 20 and 21 item-questions, respectively. After each three-week clinical fieldwork, the self-rating scores in each core competency dimension were higher when compared to those before the course, indicating having better clinical abilities after the lessons. The best self-rating scores were the dimension of attitude and humanistic literacy, and the two lower scores were the dimensions of professional knowledge and skills and problem-solving critical thinking. Conclusions: This study developed questionnaires for clinical fieldwork courses to reflect students' learning outcomes, including the performance of professional knowledge, practice skills, and professional attitudes. The use of self-assessment of learning performance can help students build up their reflective competencies. Teachers can guide students to pay attention to the performance of abilities in each core dimension to enhance the effectiveness of learning through self-reflection and improvement.Keywords: physical therapy, clinical fieldwork course, learning outcomes assessment, medical education, self-reflection ability
Procedia PDF Downloads 12314808 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI
Procedia PDF Downloads 12614807 Individual Differences and Language Learning Strategies
Authors: Nilgun Karatas, Bihter Sakin
Abstract:
In this study, the relationships between the use of language learning strategies and English language exit exam success were investigated in the university EFL learners’ context. The study was conducted at Fatih University Prep School. To collect data 3 classes from the A1 module in English language classes completed a questionnaire known as the English Language Learning Strategy Inventory or ELLSI. The data for the present study were collected from the preparatory class students who are studying English as a second language at the School of Foreign Languages. The students were placed into four different levels of English, namely A1, A2, B1, and B2 level of English competency according to European Union Language Proficiency Standard, by means of their English placement test results. The Placement test was conveyed at the beginning of the spring semester in 2014-2015.The ELLSI consists of 30 strategy items which students are asked to rate from 1 (low frequency) to 5 (high frequency) according to how often they use them. The questionnaire and exit exam results were entered onto SPSS and analyzed for mean frequencies and statistical differences. Spearman and Pearson correlation were used in a detailed way. There were no statistically significant results between the frequency of strategy use and exit exam results. However, most questions correlate at a significant level with some of the questions.Keywords: individual differences, language learning strategies, Fatih University, English language
Procedia PDF Downloads 49614806 Advancements in AI Training and Education for a Future-Ready Healthcare System
Authors: Shamie Kumar
Abstract:
Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.Keywords: artificial intelligence, training, radiology, education, learning
Procedia PDF Downloads 9214805 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 111