Search results for: extremely drug- resistant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3697

Search results for: extremely drug- resistant

607 Measurement of Intermediate Slip Rate of Sabzpushan Fault Zone in Southwestern Iran, Using Optically Stimulated Luminescence (OSL) Dating

Authors: Iman Nezamzadeh, Ali Faghih, Behnam Oveisi

Abstract:

In order to reduce earthquake hazards in urban areas, it is necessary to perform comprehensive studies to understand the dynamics of the active faults and identify potentially high risk areas. The fault slip-rates in Late Quaternary sediment are critical indicators of seismic hazard and also provide valuable data to recognize young crustal deformations. To measure slip-rates accurately, is needed to displacement of geomorphic markers and ages of quaternary sediment samples of alluvial deposit that deformed by movements on fault. In this study we produced information about Intermediate term slip rate of Sabzpushan Fault Zone (SPF) within the central part of the Zagros Mountains of Iran using OSL dating technique to make better analysis of seismic hazard and seismic risk reduction for Shiraz city. For this purpose identifiable geomorphic fluvial surfaces help us to provide a reference frame to determine differential or absolute horizontal and vertical deformation. Optically stimulated luminescence (OSL) is an alternative and independent method of determining the burial age of mineral grains in Quaternary sediments. Field observation and satellite imagery show geomorphic markers that deformed horizontally along the Sabzpoushan Fault. Here, drag folds is forming because of evaporites material of Miocen Formation. We estimate 2.8±0.5 mm/yr (mm/y) horizontal slip rate along the Sabzpushan fault zone, where ongoing deformation is involve with drug folding. The Soltan synclinal structure, close to the Sabzpushan fault, shows slight uplift rate due to active core-extrousion.

Keywords: slip rate, active tectonics, OSL, geomorphic markers, Sabzpushan Fault Zone, Zagros, Iran

Procedia PDF Downloads 342
606 Nephroprotective Activity of Aqueous Methanolic Extract of Aerva Lanata (Busehri Booti) against Cisplatin Induced Nephrotoxicity in Rats

Authors: Mohd Aslam Aslam

Abstract:

Chronic renal failure is a debilitating condition responsible for high morbidity and mortality. Because of its costs and the complexity of its treatment, proper care is available to very few patients in India. According to researchers, the number of adults aged 30 or older who have chronic kidney disease is projected to increase from 13.2 percent currently, to 14.4 percent in 2020 and 16.7 percent in 2030. The aerial part of Aerva lanata (Busehri booti) have been used in kidney disorders by the Unani physicians. In the present study, the effect of extract of Aerva lanata was investigated on cisplatin-induced nephrotoxicity in rats. The renal effects of this drug was evaluated by monitoring levels of blood urea nitrogen (BUN), serum creatinine, serum uric acid in blood and histopathological examination of kidney. Aerva lanata was evaluated at two different doses (1400 mg/kg and 2800 mg/kg). The effect of higher dose was more pronounced in terms of inhibition in the rise of BUN, serum creatinine and uric acid. Higher dose show greater prevention in the rise of BUN, serum creatinine, and uric acid. The histopathological examination of the kidney tissue of the rats treated with aqueous methanolic extract of Aerva lanata (Higher dose-2800 mg/kg) showed marked inhibition of glomerular congestion, tubular casts, peritubular congestion, epithelial desquamation, blood vessel congestion, interstitial edema and inflammatory cells produced by the cisplatin-induced nephrotoxicity. This finding clearly indicates the protective role of Aerva lanata at higher dose. Present investigation validates the use of Aerva lanata in kidney disorders by Unani physicians.

Keywords: Aerva lanata, Busehri booti, nephroprotective, unani medicine

Procedia PDF Downloads 217
605 Rethinking Gender Roles within the Family: Single Fathers and the Domestic Sphere

Authors: Mohamad Chour

Abstract:

Nowadays, a record number of households are headed by single fathers in most of the European societies. Our research aims to explore how French single fathers experience the domestic sphere, a traditionally feminized field while accomplishing their role of fathers. We adopt a gender role and a parenting role construction theoretical perspectives. Indeed, the interior domestic sphere has been traditionally considered as related to the role of the mother. Moreover, according to the masculine domination theory of Bourdieu, men avoid caregiving and domestic practices that are economically and culturally undervalued. Hence, mothers are considered as more likely to handle the expressive dimension of duties whereas fathers’ role is represented as instrumental, functional and independent. Long interviews have been conducted with twenty French single fathers in order to investigate how the absence of the mother affects the practices of fatherhood. We combined the long interviews with projective techniques method in order to better understand their conception of the family and their family values. Seeking a qualitative diversity, our respondents are from various ages (between 30 and 60); they are coming from different regions in France; living in rural, semi-rural and urban areas. Based on the analysis of 427 pages of data, we identify three main categories of single fathers depending on their strategies to copy and/or delegate the role of the mother. 1) Nurturing fathers completely assume the role of the absent mother as well as her functions. Their discourse is characterized by abnegation and sacrifices reflecting a nurturing role. 2) Juggling fathers are those who take charge of a part of the household duties and delegate the other part to the market or to 'feminine resources' for lacking skills or time. 3) Resistant fathers are the very few respondents who refuse to assume any activities related to the domestic sphere that they perceive as feminine. For lacking competences and even for ideological reasons, they have tendency to delegate all the tasks that were assumed by their ex-spouses. Generally, the majority of fathers seem to experience the domestic sphere differently, and their domestic involvement has been underestimated and even misunderstood. Household duties such as cooking and housekeeping in addition to the nurturing role are experienced by many of the respondents as constructing elements of their fatherhood. Our respondents do not seem to accomplish house holding duties in a functional way. The domestic sphere is managed by those fathers with a strong dimension of abnegation. Thus, our research contributes to illustrating the evolution of gender roles and shows how being simultaneously 'a father and a mother' seems to be an emerging social norm in a French and European cultural context.

Keywords: fathering, gender roles, gender studies, identity construction, single fathers

Procedia PDF Downloads 127
604 Phytochemical Exploration of Plectranthus stocksii Hook. F. for Antioxidant and Cytotoxic Properties

Authors: Kasipandi Muniyandi, Parimelazhagan Thangaraj

Abstract:

Plants are important prospective wealth of a country, combination of local health care information about a specific plant together with data published by several groups of scientists, can help in deciding whether it should be considered acceptable for medicinal use. In the developed countries, too, plant-derived drugs may be of importance. The wide variety of ailments that are being treated with Plectranthus is an indication of the medicinal value of the genus. A number of species are not toxic and so may be taken orally, whilst others are used topically on the skin or as enemas. This study was designed to evaluate the different properties of Plectranthus stocksii and the aerial parts were collected and extracted with petroleum ether, chloroform, ethyl acetate, acetone and methanol by Soxhlet apparatus and finally macerated with hot water. The quantification assays revealed that, leaf methanol extract showed higher total phenolic (415.41 mg GAE/ g extract) and tannin (177.53 mg GAE/ g extract) contents whereas leaf ethyl acetate exhibited higher flavonoids (777.11 mg RE/ g extract) content. The antioxidant efficiency of the extracts was analyzed by various radical scavenging assays. Among the different antioxidant assays, leaf ethyl acetate extract showed higher free radical scavenging activities against DPPH (IC50 = 3.46 µg/mL), ABTS (27417.65 µM TE/ g extract), FRAP (152.17 mM Fe(II)E/ mg extract) NO• radical (21.46%) and Superoxide radical (IC50 = 24.16 µg/mL) assays. All the parts P. stocksii extracts showed significant protection against OH• induced DNA damage at 50 µg concentration. The HPLC analysis of leaf ethyl acetate extract revealed the presence of Quercetin (30.29 µg/mg of extract) was the major compound. Anticancer activity of leaf ethyl acetate extract showed better IC50 values were 48.87 and 36.08 µg/ mL against MCF-7 and Caco-2 respectively. From this study, P. stocksii can act as a potent antioxidant and cytotoxic antimicrobial agent. The scope for drug development from this plant is endless and there is undoubtedly a call for further research in pharmaceutical industries.

Keywords: antioxidant, cytotoxicity, phenolics, plectranthus stocksii

Procedia PDF Downloads 371
603 Healthy Feeding and Drinking Troughs for Profitable Intensive Deep-Litter Poultry Farming

Authors: Godwin Ojochogu Adejo, Evelyn UnekwuOjo Adejo, Sunday UnenwOjo Adejo

Abstract:

The mainstream contemporary approach to controlling the impact of diseases among poultry birds rely largely on curative measures through the administration of drugs to infected birds. Most times as observed in the deep liter poultry farming system, entire flocks including uninfected birds receive the treatment they do not need. As such, unguarded use of chemical drugs and antibiotics has led to wastage and accumulation of chemical residues in poultry products with associated health hazards to humans. However, wanton and frequent drug usage in poultry is avoidable if feeding and drinking equipment are designed to curb infection transmission among birds. Using toxicological assays as guide and with efficiency and simplicity in view, two newly field-tested and recently patented equipments called 'healthy liquid drinking trough (HDT)' and 'healthy feeding trough (HFT)' that systematically eliminate contamination of the feeding and drinking channels, thereby, curbing wide-spread infection and transmission of diseases in the (intensive) deep litter poultry farming system were designed. Upon combined usage, they automatically and drastically reduced both the amount and frequency of antibiotics use in poultry by over > 50%. Additionally, they conferred optimization of feed and water utilization/elimination of wastage by > 80%, reduced labour by > 70%, reduced production cost by about 15%, and reduced chemical residues in poultry meat or eggs by > 85%. These new and cheap technologies which require no energy input are likely to elevate safety of poultry products for consumers' health, increase marketability locally and for export, and increase output and profit especially among poultry farmers and poor people who keep poultry or inevitably utilize poultry products in developing countries.

Keywords: healthy, trough, toxicological, assay-guided, poultry

Procedia PDF Downloads 144
602 Formulation and Evaluation of Metformin Hydrochloride Microparticles via BÜCHI Nano-Spray Dryer B-90

Authors: Tamer Shehata

Abstract:

Recently, nanotechnology acquired a great interest in the field of pharmaceutical production. Several pharmaceutical equipment were introduced into the research field for production of nanoparticles, among them, BÜCHI’ fourth generation nano-spray dryer B-90. B-90 is specialized with single step of production and drying of nano and microparticles. Currently, our research group is investigating several pharmaceutical formulations utilizing BÜCHI Nano-Spray Dryer B-90 technology. One of our projects is the formulation and evaluation of metformin hydrochloride mucoadhesive microparticles for treatment of type 2-diabetis. Several polymers were investigated, among them, gelatin and sodium alginate. The previous polymers are natural polymers with mucoadhesive properties. Preformulation studies such as atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension were performed. Postformulation characters such as particle size, flowability, surface scan and dissolution profile were evaluated. Finally, the pharmacological activity of certain selected formula was evaluated in streptozotocin-induced diabetic rats. B-90’spray head was 7 µm hole heated to 120 with air flow rate 3.5 mL/min. The viscosity of the solution was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Successfully, discrete, non-aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and Sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula showed a significant reduction of blood glucose level over 24 h. In conclusion, mucoadhesive metformin hydrochloride microparticles obtained from B-90 could offer a convenient dosage form with enhanced hypoglycemic activity.

Keywords: mucoadhesive, microparticles, metformin hydrochloride, nano-spray dryer

Procedia PDF Downloads 300
601 A Content Analysis of the Introduction to the Philosophy of Religion Literature Published in the West between 1950-2010 in Terms of Definition, Method and Subjects

Authors: Fatih Topaloğlu

Abstract:

Although philosophy is inherently a theoretical and intellectual activity, it should not be denied that environmental conditions influence the formation and shaping of philosophical thought. In this context, it should be noted that the Philosophy of Religion has been influential in the debates in the West, especially since the beginning of the 20th century, and that this influence has dimensions that cannot be limited to academic or intellectual fields. The issues and problems that fall within the field of interest of Philosophy of Religion are followed with interest by a significant proportion of society through popular publications. Philosophy of Religion has its share in many social, economic, cultural, scientific, political and ethical developments. Philosophy of Religion, in the most general sense, can be defined as a philosophical approach to religion or a philosophical way of thinking and discussing religion. Philosophy of Religion tries to explain the epistemological foundations of concepts such as belief and faith that shape religious life by revealing their meaning for the individual. Thus, Philosophy of Religion tries to evaluate the effect of beliefs on the individual's values, judgments and behaviours with a comprehensive and critical eye. The Philosophy of Religion, which tries to create new solutions and perspectives by applying the methods of philosophy to religious problems, tries to solve these problems not by referring to the holy book or religious teachings but by logical proofs obtained through the possibilities of reason and evidence filtered through the filter of criticism. Although there is no standard method for doing Philosophy of Religion, it can be said that an approach that can be expressed as thinking about religion in a rational, objective, and consistent way is generally accepted. The evaluations made within the scope of Philosophy of Religion have two stages. The first is the definition stage, and the second is the evaluation stage. In the first stage, the data of different scientific disciplines, especially other religious sciences, are utilized to define the issues objectively. In the second stage, philosophical evaluations are made based on this foundation. During these evaluations, the issue of how the relationship between religion and philosophy should be established is extremely sensitive. The main thesis of this paper is that the Philosophy of Religion, as a branch of philosophy, has been affected by the conditions caused by the historical experience through which it has passed and has differentiated its subjects and the methods it uses to realize its philosophical acts over time under the influence of these conditions. This study will attempt to evaluate the validity of this study based on the "Introduction to Philosophy of Religion" literature, which we assume reflects this differentiation. As a result of this examination will aim to reach some factual conclusions about the nature of both philosophical and religious thought, to determine the phases that the Philosophy of Religion as a discipline has gone through since the day it emerged, and to investigate the possibilities of a holistic view of the field.

Keywords: content analysis, culture, history, philosophy of religion, method

Procedia PDF Downloads 49
600 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria

Authors: Lujain Khraiba

Abstract:

Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.

Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces

Procedia PDF Downloads 474
599 PYURF and ZED9 Have a Prominent Role in Association with Molecular Pathways in Bortezomib in Myeloma Cells in Acute Myeloid Leukemia

Authors: Atena Sadat Hosseini, Mohammadhossein Habibi

Abstract:

Acute myeloid leukemia (AML) is the most typically diagnosed leukemia. In older adults, AML imposes a dismal outcome. AML originates with a dominant mutation, then adds collaborative, transformative mutations leading to myeloid transformation and clinical/biological heterogeneity. Several chemotherapeutic drugs are used for this cancer. These drugs are naturally associated with several side effects, and finding a more accurate molecular mechanism of these drugs can have a significant impact on the selection and better candidate of drugs for treatment. In this study, we evaluated bortezomibin myeloma cells using bioinformatics analysis and evaluation of RNA-Seq data. Then investigated the molecular pathways proteins- proteins interactions associated with this chemotherapy drug. A total of 658upregulated genes and 548 downregulated genes were sorted.AUF1 (hnRNP D0) binds and destabilizes mRNA, degradation of GLI2 by the proteasome, the role of GTSE1 in G2/M progression after G2 checkpoint, TCF dependent signaling in response to WNT demonstrated in upregulated genes. Besides insulin resistance, AKT phosphorylates targets in the nucleus, cytosine methylation, Longevity regulating pathway, and Signal Transduction of S1P Receptor were related to low expression genes. With respect to this results, HIST2H2AA3, RP11-96O20.4, ZED9, PRDX1, and DOK2, according to node degrees and betweenness elements candidates from upregulated genes. in the opposite side, PYURF, NRSN1, FGF23, UPK3BL, and STAG3 were a prominent role in downregulated genes. Sum up, Using in silico analysis in the present study, we conducted a precise study ofbortezomib molecular mechanisms in myeloma cells. so that we could take further evaluation to discovermolecular cancer therapy. Naturally, more additional experimental and clinical procedures are needed in this survey.

Keywords: myeloma cells, acute myeloid leukemia, bioinformatics analysis, bortezomib

Procedia PDF Downloads 86
598 Reduction in Hospital Acquire Infections after Intervention of Hand Hygiene and Personal Protective Equipment at COVID Unit Indus Hospital Karachi

Authors: Aisha Maroof

Abstract:

Introduction: Coronavirus Disease 2019 (COVID-19) is spreading rapidly around the world with devastating consequences on patients, health care workers and health systems. Severe 2019 novel coronavirus infectious disease (COVID-19) with pneumonia is associated with high rates of admission to the intensive care unit (ICU) and they are at high risk to obtain the hospital acquire bloodstream infection (HAIs) such as central line associated bloodstream infection (CLABSI), catheter associated urinary tract infections (CAUTI) and laboratory confirm bloodstream infection (LCBSI). The chances of infection transmission increase when healthcare worker’s (HCWs) practice is inappropriate. Risk related to hand hygiene (HH) and personal protective equipment (PPE) as regards multidrug-resistant organism transmission: use of multiple gloving instead of HH and incorrect use of PPE can lead to a significant increase of device-related infections. As it reaches low- and middle-income countries, its effects could be even more, because it will be difficult for them to react aggressively to the pandemic. HAIs are one of the biggest medical concerns, resulting in increased mortality rates. Objective: To assess the effect of intervention on compliance of hand hygiene and PPE among HCWs reduce the rate of HAI in COVID-19 patients. Method: An interventional study was done between July to December, 2020. CLABSI, CAUTI and LCBSI data were collected from the medical record and direct observation. There were total of 50 Nurses, 18 doctors and all patients with laboratory-confirmed severe COVID-19 admitted to the hospital were included in this research study. Respiratory tract specimens were obtained after the first 48 h of ICU admission. Practices were observed after and before intervention. Education was provided based on WHO guidelines. Results: During the six months of study July to December, the rate of CLABSI, CAUTI and LCBSI pre and post intervention was reported. CLABSI rate decreasedd from 22.7 to 0, CAUTI rate was decreased from 1.6 to 0, LCBSI declined from 3.3 to 0 after implementation of intervention. Conclusion: HAIs are an important cause of morbidity and mortality. Most of the device related infections occurs due to lack of correct use of PPE and hand hygiene compliance. Hand hygiene and PPE is the most important measure to protect patients, through education it can be improved the correct use of PPE and hand hygiene compliance and can reduce the bacterial infection in COVID-19 patients.

Keywords: hospital acquire infection, healthcare workers, hand hygiene, personal protective equipment

Procedia PDF Downloads 122
597 Effects of Silver Nanoparticles on in vitro Adventitious Shoot Regeneration of Water Hyssop (Bacopa monnieri L. Wettst.)

Authors: Muhammad Aasim, Mehmet Karataş, Fatih Erci, Şeyma Bakırcı, Ecenur Korkmaz, Burak Kahveci

Abstract:

Water hyssop (Bacopa monnieri L. Wettst.) is an important medicinal aquatic/semi aquatic plant native to India where it is used in traditional medicinal system. The plant contains bioactive compounds mainly Bacosides which are the main ingridient of commercial drug available as memory enhancer tonic. The local name of water hyssop is Brahmi and brahmi based drugs are available against for curing chronic diseases and disorders Alzheimer’s disease, anxiety, asthma, cancer, mental illness, respiratory ailments, and stomach ulcers. The plant is not a cultivated plant and collection of plant from nature make palnt threatened to endangered. On the other hand, low seed viability and availability make it difficult to propagate plant through traditional techniques. In recent years, plant tissue culture techniques have been employed to propagate plant for its conservation and production for continuous availability of secondary metabolites. On the other hand, application of nanoparticles has been reported for increasing biomass, in vitro regeneration and secondary metabolites production. In this study, silver nanoparticles (AgNPs) were applied at the rate of 2, 4, 6, 8 and 10 ppm to Murashihe and Skoog (MS) medium supplemented with 1.0 mg/l Benzylaminopurine (BAP), 3.0% sucrose and 0.7% agar. Leaf explants of water hyssop were cultured on AgNPs containing medium. Shoot induction from leaf explants were relatively slow compared to medium without AgNPs. Multiple shoot induction was recorded after 3-4 weeks of culture comapred to control that occured within 10 days. Regenerated shoots were rooted successfully on MS medium supplemented with 1.0 mg/l IBA and acclimatized in the aquariums for further studies.

Keywords: Water hyssop, Silver nanoparticles, In vitro, Regeneration, Secondary metabolites

Procedia PDF Downloads 177
596 The Impact of CYP2C9 Gene Polymorphisms on Warfarin Dosing

Authors: Weaam Aldeeban, Majd Aljamali, Lama A. Youssef

Abstract:

Background & Objective: Warfarin is considered a problematic drug due to its narrow therapeutic window and wide inter-individual response variations, which are attributed to demographic, environmental, and genetic factors, particularly single nucleotide polymorphism (SNPs) in the genes encoding VKORC1 and CYP2C9 involved in warfarin's mechanism of action and metabolism, respectively. CYP2C9*2rs1799853 and CYP2C9*3rs1057910 alleles are linked to reduced enzyme activity, as carriers of either or both alleles are classified as moderate or slow metabolizers, and therefore exhibit higher sensitivity of warfarin compared with wild type (CYP2C9*1*1). Our study aimed to assess the frequency of *1, *2, and *3 alleles in the CYP2C9 gene in a cohort of Syrian patients receiving a maintenance dose of warfarin for different indications, the impact of genotypes on warfarin dosing, and the frequency of adverse effects (i.e., bleedings). Subjects & Methods: This retrospective cohort study encompassed 94 patients treated with warfarin. Patients’ genotypes were identified by sequencing the polymerase chain reaction (PCR) specific products of the gene encoding CYP2C9, and the effects on warfarin therapeutic outcomes were investigated. Results: Sequencing revealed that 43.6% of the study population has the *2 and/or *3 SNPs. The mean weekly maintenance dose of warfarin was 37.42 ± 15.5 mg for patients with the wild-type allele (CYP2C9*1*1), whereas patients with one or both variants (*2 and/or *3) demanded a significantly lower dose (28.59 ±11.58 mg) of warfarin, (P= 0.015). A higher percentage (40.7%) of patients with allele *2 and/or *3 experienced hemorrhagic accidents compared with only 17.9% of patients with the wild type *1*1, (P = 0.04). Conclusions: Our study proves an association between *2 and *3 genotypes and higher sensitivity to warfarin and a tendency to bleed, which necessitates lowering the dose. These findings emphasize the significance of CYP2C9 genotyping prior to commencing warfarin therapy in order to achieve optimal and faster dose control and to ensure effectiveness and safety.

Keywords: warfarin, CYP2C9, polymorphisms, Syrian, hemorrhage

Procedia PDF Downloads 138
595 The Cleavage of DNA by the Anti-Tumor Drug Bleomycin at the Transcription Start Sites of Human Genes Using Genome-Wide Techniques

Authors: Vincent Murray

Abstract:

The glycopeptide bleomycin is used in the treatment of testicular cancer, Hodgkin's lymphoma, and squamous cell carcinoma. Bleomycin damages and cleaves DNA in human cells, and this is considered to be the main mode of action for bleomycin's anti-tumor activity. In particular, double-strand breaks are thought to be the main mechanism for the cellular toxicity of bleomycin. Using Illumina next-generation DNA sequencing techniques, the genome-wide sequence specificity of bleomycin-induced double-strand breaks was determined in human cells. The degree of bleomycin cleavage was also assessed at the transcription start sites (TSSs) of actively transcribed genes and compared with non-transcribed genes. It was observed that bleomycin preferentially cleaved at the TSSs of actively transcribed human genes. There was a correlation between the degree of this enhanced cleavage at TSSs and the level of transcriptional activity. Bleomycin cleavage is also affected by chromatin structure and at TSSs, the peaks of bleomycin cleavage were approximately 200 bp apart. This indicated that bleomycin was able to detect phased nucleosomes at the TSSs of actively transcribed human genes. The genome-wide cleavage pattern of the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin was also investigated in human cells. As found for bleomycin, these bleomycin analogues also preferentially cleaved at the TSSs of actively transcribed human genes. The cytotoxicity (IC₅₀ values) of these bleomycin analogues was determined. It was found that the degree of enhanced cleavage at TSSs was inversely correlated with the IC₅₀ values of the bleomycin analogues. This suggested that the level of cleavage at the TSSs of actively transcribed human genes was important for the cytotoxicity of bleomycin and analogues. Hence this study provided a deeper understanding of the cellular processes involved in the cancer chemotherapeutic activity of bleomycin.

Keywords: anti-tumour activity, bleomycin analogues, chromatin structure, genome-wide study, Illumina DNA sequencing

Procedia PDF Downloads 109
594 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 116
593 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems

Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick

Abstract:

This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.

Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms

Procedia PDF Downloads 222
592 Specific Earthquake Ground Motion Levels That Would Affect Medium-To-High Rise Buildings

Authors: Rhommel Grutas, Ishmael Narag, Harley Lacbawan

Abstract:

Construction of high-rise buildings is a means to address the increasing population in Metro Manila, Philippines. The existence of the Valley Fault System within the metropolis and other nearby active faults poses threats to a densely populated city. The distant, shallow and large magnitude earthquakes have the potential to generate slow and long-period vibrations that would affect medium-to-high rise buildings. Heavy damage and building collapse are consequences of prolonged shaking of the structure. If the ground and the building have almost the same period, there would be a resonance effect which would cause the prolonged shaking of the building. Microzoning the long-period ground response would aid in the seismic design of medium to high-rise structures. The shear-wave velocity structure of the subsurface is an important parameter in order to evaluate ground response. Borehole drilling is one of the conventional methods of determining shear-wave velocity structure however, it is an expensive approach. As an alternative geophysical exploration, microtremor array measurements can be used to infer the structure of the subsurface. Microtremor array measurement system was used to survey fifty sites around Metro Manila including some municipalities of Rizal and Cavite. Measurements were carried out during the day under good weather conditions. The team was composed of six persons for the deployment and simultaneous recording of the microtremor array sensors. The instruments were laid down on the ground away from sewage systems and leveled using the adjustment legs and bubble level. A total of four sensors were deployed for each site, three at the vertices of an equilateral triangle with one sensor at the centre. The circular arrays were set up with a maximum side length of approximately four kilometers and the shortest side length for the smallest array is approximately at 700 meters. Each recording lasted twenty to sixty minutes. From the recorded data, f-k analysis was applied to obtain phase velocity curves. Inversion technique is applied to construct the shear-wave velocity structure. This project provided a microzonation map of the metropolis and a profile showing the long-period response of the deep sedimentary basin underlying Metro Manila which would be suitable for local administrators in their land use planning and earthquake resistant design of medium to high-rise buildings.

Keywords: earthquake, ground motion, microtremor, seismic microzonation

Procedia PDF Downloads 463
591 Strategic Interventions to Combat Socio-economic Impacts of Drought in Thar - A Case Study of Nagarparkar

Authors: Anila Hayat

Abstract:

Pakistan is one of those developing countries that are least involved in emissions but has the most vulnerable environmental conditions. Pakistan is ranked 8th in most affected countries by climate change on the climate risk index 1992-2011. Pakistan is facing severe water shortages and flooding as a result of changes in rainfall patterns, specifically in the least developed areas such as Tharparkar. Nagarparkar, once an attractive tourist spot located in Tharparkar because of its tropical desert climate, is now facing severe drought conditions for the last few decades. This study investigates the present socio-economic situation of local communities, major impacts of droughts and their underlying causes and current mitigation strategies adopted by local communities. The study uses both secondary (quantitative in nature) and primary (qualitative in nature) methods to understand the impacts and explore causes on the socio-economic life of local communities of the study area. The relevant data has been collected through household surveys using structured questionnaires, focus groups and in-depth interviews of key personnel from local and international NGOs to explore the sensitivity of impacts and adaptation to droughts in the study area. This investigation is limited to four rural communities of union council Pilu of Nagarparkar district, including Bheel, BhojaBhoon, Mohd Rahan Ji Dhani and Yaqub Ji Dhani villages. The results indicate that drought has caused significant economic and social hardships for the local communities as more than 60% of the overall population is dependent on rainfall which has been disturbed by irregular rainfall patterns. The decline in Crop yields has forced the local community to migrate to nearby areas in search of livelihood opportunities. Communities have not undertaken any appropriate adaptive actions to counteract the adverse effect of drought; they are completely dependent on support from the government and external aid for survival. Respondents also reported that poverty is a major cause of their vulnerability to drought. An increase in population, limited livelihood opportunities, caste system, lack of interest from the government sector, unawareness shaped their vulnerability to drought and other social issues. Based on the findings of this study, it is recommended that the local authorities shall create awareness about drought hazards and improve the resilience of communities against drought. It is further suggested to develop, introduce and implement water harvesting practices at the community level to promote drought-resistant crops.

Keywords: migration, vulnerability, awareness, Drought

Procedia PDF Downloads 124
590 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana

Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor

Abstract:

Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.

Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution

Procedia PDF Downloads 289
589 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach

Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola

Abstract:

Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.

Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy

Procedia PDF Downloads 108
588 Ballistic Performance of Magnesia Panels and Modular Wall Systems

Authors: Khin Thandar Soe, Mark Stephen Pulham

Abstract:

Ballistic building materials play a crucial role in ensuring the safety of the occupants within protective structures. Traditional options like Ordinary Portland Cement (OPC)-based walls, including reinforced concrete walls, precast concrete walls, masonry walls, and concrete blocks, are frequently employed for ballistic protection, but they have several drawbacks such as being thick, heavy, costly, and challenging to construct. On the other hand, glass and composite materials offer lightweight and easier construction alternatives, but they come with a high price tag. There has been no reported test data on magnesium-based ballistic wall panels or modular wall systems so far. This paper presents groundbreaking small arms test data related to the development of the world’s first magnesia cement ballistic wall panels and modular wall system. Non-hydraulic magnesia cement exhibits several superior properties, such as lighter weight, flexibility, acoustics, and fire performance, compared to the traditional Portland Cement. However, magnesia cement is hydrophilic and may degrade in prolonged contact with water. In this research, modified magnesia cement for water resistant and durability from UBIQ Technology is applied. The specimens are made of a modified magnesia cement formula and prepared in the Laboratory of UBIQ Technology Pty Ltd. The specimens vary in thickness, and the tests cover various small arms threats in compliance with standards AS/NZS2343 and UL752 and are performed up to the maximum threat level of Classification R2 (NATO) and UL-Level 8(NATO) by the Accredited Test Centre, BMT (Ballistic and Mechanical Testing, VIC, Australia). In addition, the results of the test conducted on the specimens subjected to the small 12mm diameter steel ball projectile impact generated by a gas gun are also presented and discussed in this paper. Gas gun tests were performed in UNSW@ADFA, Canberra, Australia. The tested results of the magnesia panels and wall systems are compared with one of concrete and other wall panels documented in the literature. The conclusion drawn is that magnesia panels and wall systems exhibit several advantages over traditional OPC-based wall systems, and they include being lighter, thinner, and easier to construct, all while providing equivalent protection against threats. This makes magnesia cement-based materials a compelling choice of application where efficiency and performance are critical to create a protective environment.

Keywords: ballistics, small arms, gas gun, projectile, impact, wall panels, modular, magnesia cement

Procedia PDF Downloads 59
587 The Impact of Online Visit Practice by Midwifery Students on Child-Rearing Midwives during The COVID-19 Pandemic: A Qualitative Descriptive Study

Authors: Mari Murakami, Hiromi Kawasaki, Saori Fujimoto, Yoko Ueno

Abstract:

Background: In Japan, one of the goals of midwifery education is the development of one’s ability to comprehensively support the child-rearing generation in collaboration with professionals from other disciplines. However, in order to prevent the spread of Covid-19, it has become extremely difficult to provide face-to-face support for mothers and children. Early on in the pandemic, we sought help from three parenting midwives as an alternative and attempted an online visit. Since midwives who are raising children respond to the training as both mothers who are care recipients and midwives as care providers. Therefore, we attempted to verify the usefulness of midwives experiencing training as mothers by clarifying the effects on those midwives who are raising children and who have experienced online visit training by students. Methods: The online visitations were conducted in June 2020. The collaborators were three midwives who were devoted to childcare. During the online visit training, we used the feedback records of their questions given by the collaborators (with their permission) to the students. The verbatim record was created from the records. Qualitative descriptive analysis was used, and subcategories and categories were extracted. This study was approved by the Ethical Committee for Epidemiology of Hiroshima University. Results: The average age of the three midwives was 36.3 years, with an average of 12.3 years of experience after graduation. They were each raising multiple children (ranging between a minimum of 2 and a maximum of 4 children). Their youngest infants were 6.7 months old on average for all. Five categories that emerged were: contributing to the development of midwifery students as a senior; the joy of accepting the efforts of a mother while raising children; recalling the humility of beginners through the integrity of midwifery students; learning opportunities about the benefits of online visits; and suggesting further challenges for online visits. Conclusion: The online visit training was an opportunity for midwives who are raising their own children to reinforce an honest and humble approach based on the attitude of the students, for self-improvement, and to reflect on the practice of midwifery from another person’s viewpoint. It was also noted that the midwives contributed to the education of midwifery students. Furthermore, they also agreed with the use of online visitations and considered the advantages and disadvantages of its use from the perspective of mothers and midwives. Online visits were seen to empower midwives on childcare leave, as their child-rearing was accepted and admired. Online visits by students were considered to be an opportunity to not only provide a sense of fulfillment as a recipient of care but also to think concretely about career advancement, during childcare leave, regarding the ideal way for midwifery training and teaching.

Keywords: child-rearing midwife, COVID-19 pandemic, online visit practice, qualitive descriptive study

Procedia PDF Downloads 132
586 Platelet Transfusion Thresholds for Pediatrics; A Retrospective Study

Authors: Hessah Alsulami, Majedah Aldosari

Abstract:

Introduction: Platelet threshold of 10x109 /L is recommended for clinically stable thrombocytopenic pediatric patients. Transfusions at a higher level (given the absence of research evidence, as determined by clinical circumstances, generally at threshold of 40x109 /L) may be required for patients with signs of bleeding, high fever, hyper-leukocytosis, rapid fall in platelet count, concomitant coagulation abnormality, critically ill patients, and those with impaired platelet function (including drug induced). Transfusions at a higher level may be also required for patients undergoing invasive procedures. Method: This study is a retrospective observational analysis of platelet transfusion thresholds in a single secondary pediatric hospital in Riyadh. From the blood bank database, the list of the patients who received platelet transfusions in the second half of 2018 was retrieved. Patients were divided into two groups; group A, those belong to the category of high platelet level for transfusion (such as those with bleeding, high fever, rapid fall in platelet count, impaired platelet function or undergoing invasive procedures) and group B, those who were not. Then we looked at the pre and post transfusion platelet levels for each group. The data was analyzed using GraphPad software and the data expressed as Mean ± SD. Result: A total of 112 of transfusion episodes in 61 patients (38% female) were analyzed. The age ranged from 24 days to 8 years. The distribution of platelet transfusion episodes was 64% (n=72) for group A and 36% (n= 40) for group B. The mean pre-transfusion platelet count was 46x103 ± (11x 103) for group A and 28x103 ± (6x103) for group B. the post-transfusion mean platelet count was 61 x 103 ± (14 x 103) and 60 x103 ± (24 x 103) for group A and B respectively. Among the groups the rise in the mean platelet count after transfusion was significant among stable patients (group B) compared to unstable patients (group A) (P < 0.001). Conclusion: The platelet count threshold for transfusion varied with the clinical condition and is higher among unstable patients’ group which is expected. For stable patients the threshold was higher than what it should be which means that the clinicians don’t follow the guidelines in this regard. The rise of platelet count after transfusion was higher among stable patients.

Keywords: platelet, transfusion, threshold, pediatric

Procedia PDF Downloads 60
585 The Influence of Polysaccharide Isolated from Morinda citrifolia Fruit to the Growth of Vero, He-La and T47D Cell Lines against Doxorubicin in vitro

Authors: Ediati Budi Cahyono, Triana Hertiani, Nauval Arrazy Asawimanda, Wahyu Puji Pratomo

Abstract:

Background: Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause macrophage dysfunction and decreasing proliferation of lymphocyte. Noni (Morinda citrifolia) fruit which has rich of polysaccharide content has potential as antitumor and immunostimulant effect. The isolation of polysaccharide from Noni fruit has been optimized according to four different methods based on macrophage and lymphocyte activities. We found the highest polysaccharide content from one of the four methods isolation. A method of polysaccharide isolation which has the highest immunostimulant effect was used for further observation as co-chemotherapy. The aim of the study: was to evaluate the isolated polysaccharide from the method of choice as co-chemotherapy of doxorubicin for the growth of Vero, He-La, and T47D cell lines in vitro. The method: in vitro growth assay of Vero, He-La, and T47D cell lines was done using MTT-reduction method, and apoptosis test was done by double staining method to evaluate the induction apoptotic effect of the combination. Every group was treated with doxorubicin and isolated polysaccharide from method of choice with 4 variances of concentrations (25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml) a long with negative control (doxorubicin only) and normal control (without doxorubicin or polysaccharide administration). Results: The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin against He-La and T47D cell lines influenced the highest cytotoxic effect by suppressing cell viability comparing with doxorubicin only. The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin-induced apoptotic effect the He-La cell line comparing with doxorubicin only. The result of the study: it can be concluded that the combination of polysaccharide fraction and doxorubicin effect more selective toward He-La and T47D cell lines than to Vero cell line. It can be suggested isolated polysaccharide from the method of choice has co-chemotherapy activity against doxorubicin.

Keywords: polysaccharide, noni fruit, doxorubicin, cancer cell lines, vero cell line

Procedia PDF Downloads 244
584 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 125
583 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 136
582 EverPro as the Missing Piece in the Plant Protein Portfolio to Aid the Transformation to Sustainable Food Systems

Authors: Aylin W Sahin, Alice Jaeger, Laura Nyhan, Gregory Belt, Steffen Münch, Elke K. Arendt

Abstract:

Our current food systems cause an increase in malnutrition resulting in more people being overweight or obese in the Western World. Additionally, our natural resources are under enormous pressure and the greenhouse gas emission increases yearly with a significant contribution to climate change. Hence, transforming our food systems is of highest priority. Plant-based food products have a lower environmental impact compared to their animal-based counterpart, representing a more sustainable protein source. However, most plant-based protein ingredients, such as soy and pea, are lacking indispensable amino acids and extremely limited in their functionality and, thus, in their food application potential. They are known to have a low solubility in water and change their properties during processing. The low solubility displays the biggest challenge in the development of milk alternatives leading to inferior protein content and protein quality in dairy alternatives on the market. Moreover, plant-based protein ingredients often possess an off-flavour, which makes them less attractive to consumers. EverPro, a plant-protein isolate originated from Brewer’s Spent Grain, the most abundant by-product in the brewing industry, represents the missing piece in the plant protein portfolio. With a protein content of >85%, it is of high nutritional value, including all indispensable amino acids which allows closing the protein quality gap of plant proteins. Moreover, it possesses high techno-functional properties. It is fully soluble in water (101.7 ± 2.9%), has a high fat absorption capacity (182.4 ± 1.9%), and a foaming capacity which is superior to soy protein or pea protein. This makes EverPro suitable for a vast range of food applications. Furthermore, it does not cause changes in viscosity during heating and cooling of dispersions, such as beverages. Besides its outstanding nutritional and functional characteristics, the production of EverPro has a much lower environmental impact compared to dairy or other plant protein ingredients. Life cycle assessment analysis showed that EverPro has the lowest impact on global warming compared to soy protein isolate, pea protein isolate, whey protein isolate, and egg white powder. It also contributes significantly less to freshwater eutrophication, marine eutrophication and land use compared the protein sources mentioned above. EverPro is the prime example of sustainable ingredients, and the type of plant protein the food industry was waiting for: nutritious, multi-functional, and environmentally friendly.

Keywords: plant-based protein, upcycled, brewers' spent grain, low environmental impact, highly functional ingredient

Procedia PDF Downloads 75
581 Ultra-Sensitive Point-Of-Care Detection of PSA Using an Enzyme- and Equipment-Free Microfluidic Platform

Authors: Ying Li, Rui Hu, Shizhen Chen, Xin Zhou, Yunhuang Yang

Abstract:

Prostate cancer is one of the leading causes of cancer-related death among men. Prostate-specific antigen (PSA), a specific product of prostatic epithelial cells, is an important indicator of prostate cancer. Though PSA is not a specific serum biomarker for the screening of prostate cancer, it is recognized as an indicator for prostate cancer recurrence and response to therapy for patient’s post-prostatectomy. Since radical prostatectomy eliminates the source of PSA production, serum PSA levels fall below 50 pg/mL, and may be below the detection limit of clinical immunoassays (current clinical immunoassay lower limit of detection is around 10 pg/mL). Many clinical studies have shown that intervention at low PSA levels was able to improve patient outcomes significantly. Therefore, ultra-sensitive and precise assays that can accurately quantify extremely low levels of PSA (below 1-10 pg/mL) will facilitate the assessment of patients for the possibility of early adjuvant or salvage treatment. Currently, the commercially available ultra-sensitive ELISA kit (not used clinically) can only reach a detection limit of 3-10 pg/mL. Other platforms developed by different research groups could achieve a detection limit as low as 0.33 pg/mL, but they relied on sophisticated instruments to get the final readout. Herein we report a microfluidic platform for point-of-care (POC) detection of PSA with a detection limit of 0.5 pg/mL and without the assistance of any equipment. This platform is based on a previously reported volumetric-bar-chart chip (V-Chip), which applies platinum nanoparticles (PtNPs) as the ELISA probe to convert the biomarker concentration to the volume of oxygen gas that further pushes the red ink to form a visualized bar-chart. The length of each bar is used to quantify the biomarker concentration of each sample. We devised a long reading channel V-Chip (LV-Chip) in this work to achieve a wide detection window. In addition, LV-Chip employed a unique enzyme-free ELISA probe that enriched PtNPs significantly and owned 500-fold enhanced catalytic ability over that of previous V-Chip, resulting in a significantly improved detection limit. LV-Chip is able to complete a PSA assay for five samples in 20 min. The device was applied to detect PSA in 50 patient serum samples, and the on-chip results demonstrated good correlation with conventional immunoassay. In addition, the PSA levels in finger-prick whole blood samples from healthy volunteers were successfully measured on the device. This completely stand-alone LV-Chip platform enables convenient POC testing for patient follow-up in the physician’s office and is also useful in resource-constrained settings.

Keywords: point-of-care detection, microfluidics, PSA, ultra-sensitive

Procedia PDF Downloads 103
580 Effect of Surfactant Level of Microemulsions and Nanoemulsions on Cell Viability

Authors: Sonal Gupta, Rakhi Bansal, Javed Ali, Reema Gabrani, Shweta Dang

Abstract:

Nanoemulsions (NEs) and microemulsions (MEs) have been an attractive tool for encapsulation of both hydrophilic and lipophillic actives. Both these systems are composed of oil phase, surfactant, co-surfactant and aqueous phase. Depending upon the application and intended use, both oil-in-water and water-in-oil emulsions can be designed. NEs are fabricated using high energy methods employing less percentage of surfactant as compared to MEs which are self assembled drug delivery systems. Owing to the nanometric size of the droplets these systems have been widely used to enhance solubility and bioavailability of natural as well as synthetic molecules. The aim of the present study is to assess the effect of % age of surfactants on cell viability of Vero cells (African Green Monkeys’ Kidney epithelial cells) via MTT assay. Green tea catechin (Polyphenon 60) loaded ME employing low energy vortexing and NE employing high energy ultrasonication were prepared using same excipients (labrasol as oil, cremophor EL as surfactant and glycerol as co-surfactant) however, the % age of oil and surfactant needed to prepare the ME was higher as compared to NE. These formulations along with their excipients (oilME=13.3%, SmixME=26.67%; oilNE=10%, SmixNE=13.52%) were added to Vero cells for 24 hrs. The tetrazolium dye, 3-(4,5-dimethylthia/ol-2-yl)-2,5-diphi-iiyltclrazolium bromide (MTT), is reduced by live cells and this reaction is used as the end point to evaluate the cytoxicity level of a test formulation. Results of MTT assay indicated that oil at different percentages exhibited almost equal cell viability (oilME ≅ oilNE) while surfactant mixture had a significant difference in the cell viability values (SmixME < SmixNE). Polyphenon 60 loaded ME and its PlaceboME showed higher toxicity as compared to Polyphenon 60 loaded NE and its PlaceboNE that can be attributed to the higher concentration of surfactants present in MEs. Another probable reason for high % cell viability of Polyphenon 60 loaded NE might be due to the effective release of Polyphenon 60 from NE formulation that helps in the sustenance of Vero cells.

Keywords: cell viability, microemulsion, MTT, nanoemulsion, surfactants, ultrasonication

Procedia PDF Downloads 421
579 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 150
578 Drugstore Control System Design and Realization Based on Programmable Logic Controller (PLC)

Authors: Muhammad Faheem Khakhi, Jian Yu Wang, Salman Muhammad, Muhammad Faisal Shabir

Abstract:

Population growth and Chinese two-child policy will boost pharmaceutical market, and it will continue to maintain the growth for a period of time in the future, the traditional pharmacy dispensary has been unable to meet the growing medical needs of the peoples. Under the strong support of the national policy, the automatic transformation of traditional pharmacies is the inclination of the Times, the new type of intelligent pharmacy system will continue to promote the development of the pharmaceutical industry. Under this background, based on PLC control, the paper proposed an intelligent storage and automatic drug delivery system; complete design of the lower computer's control system and the host computer's software system has been present. The system can be applied to dispensing work for Chinese herbal medicinal and Western medicines. Firstly, the essential of intelligent control system for pharmacy is discussed. After the analysis of the requirements, the overall scheme of the system design is presented. Secondly, introduces the software and hardware design of the lower computer's control system, including the selection of PLC and the selection of motion control system, the problem of the human-computer interaction module and the communication between PC and PLC solves, the program design and development of the PLC control system is completed. The design of the upper computer software management system is described in detail. By analyzing of E-R diagram, built the establish data, the communication protocol between systems is customize, C++ Builder is adopted to realize interface module, supply module, main control module, etc. The paper also gives the implementations of the multi-threaded system and communication method. Lastly, each module of the lower computer control system is tested. Then, after building a test environment, the function test of the upper computer software management system is completed. On this basis, the entire control system accepts the overall test.

Keywords: automatic pharmacy, PLC, control system, management system, communication

Procedia PDF Downloads 296