Search results for: predicting factors
8520 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach
Authors: Isara Muangthai, Lin Sue Jane
Abstract:
Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption
Procedia PDF Downloads 4828519 Influence of Some Psychological Factors on the Learning Gains of Distance Learners in Mathematics in Ibadan, Nigeria
Authors: Adeola Adejumo, Oluwole David Adebayo, Muraina Kamilu Olanrewaju
Abstract:
The purpose of this study was to investigate the influence of some psychological factors (i.e, school climate, parental involvement and classroom interaction) on the learning gains of university undergraduates in Mathematics in Ibadan, Nigeria. Three hundred undergraduates who are on open distance learning education programme in the University of Ibadan and thirty mathematics lecturers constituted the study’s sample. Both the independent and dependent variables were measured with relevant standardized instruments and the data obtained was analyzed using multiple regression statistical method. The instruments used were school climate scale, parental involvement scale and classroom interaction scale. Three research questions were answered in the study. The result showed that there was significant relationship between the three independent variables (school climate, parental involvement and classroom interaction) on the students’ learning gain in mathematics and that the independent variables both jointly and relatively contributed significantly to the prediction of students’ learning gain in mathematics. On the strength of these findings, the need to enhance the school climate, improve the parents’ involvement in the student’s education and encourage students’ classroom interaction were stressed and advocated.Keywords: school climate, parental involvement, ODL, learning gains, mathematics
Procedia PDF Downloads 5218518 Investigating the Causes of Human Error-Induced Incidents in the Maintenance Operations of Petrochemical Industry by Using Human Factors Analysis and Classification System
Authors: Omid Kalatpour, Mohammadreza Ajdari
Abstract:
This article studied the possible causes of human error-induced incidents in the petrochemical industry maintenance activities by using Human Factors Analysis and Classification System (HFACS). The purpose of the study was anticipating and identifying these causes and proposing corrective and preventive actions. Maintenance department in a petrochemical company was selected for research. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA) technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Analyzing the worksheets of 444 activities in four levels of HFACS showed 37.6% of the causes were at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes were at the level of organizational effects. The HFACS sub-groups showed errors (24.36%) inadequate supervision (14.89%) and violations (13.26%) with the most frequency. According to findings of this study, increasing the training effectiveness of operators and supervision improvement respectively are the most important measures in decreasing the human error-induced incidents in petrochemical industry maintenance.Keywords: human error, petrochemical industry, maintenance, HFACS
Procedia PDF Downloads 2428517 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children
Authors: Dijana Sulejmanović
Abstract:
Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification
Procedia PDF Downloads 3258516 Depressive Symptoms in Children with Epilepsy Attending a Tertiary Care Hospital in Oman
Authors: Hamood Al Kiyumi, Salim Al Huseini, Khalid Al Risi, Hassan Mirza, Amira Al Hosni, Sanjay Jaju, Asaad Al Habsi
Abstract:
Objectives: The aim of this study was to assess the proportion of depressive symptoms along with demographic data in children diagnosed with epilepsy in a tertiary care institution in Oman. Methods: This cross-sectional study was conducted between June 2016 and August 2018. We have included 75 children with age group from five to 12 years old, attending epilepsy clinic at Sultan Qaboos University Hospital who were diagnosed with epilepsy and already on treatment. Patients were excluded if they have mental retardation. Validated Depression Scale for Children (CES-DC) questionnaire was utilized to assess the level of depressive symptoms among children. In addition, we have looked at associated factors including seizure status in the last three months, compliance with antiepileptic medications, type of epilepsy, and number of antiepileptic medications. Results: In this study, we found that depressive symptoms were present in 39 (52%) of patients. We also found that 96% of the patients were compliant to medications. In addition, seizure was present in the last three months in 48% of the sample studies. There was no statistically significant association between any of the studied variables and depression. Conclusions: Although depression is highly prevalent in children with epilepsy, this study did not find any significant association between the CES-DC scores and the studied factors.Keywords: depression, children, epilepsy, Oman
Procedia PDF Downloads 1658515 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network
Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin
Abstract:
The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake
Procedia PDF Downloads 648514 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 408513 Low Back Pain-Related Absenteeism among Healthcare Workers in Kibuli Muslim Hospital, Kampala Uganda
Authors: Aremu Abdulmujeeb Babatunde
Abstract:
Background: Low back pain was not only considered to be the most common reason for functional disability worldwide, but also estimated to have affected 90% of the universal population. This study aimed at determining the prevalence, consequences and socio-demographic factors associated with low back pain. Methods; A cross-sectional survey was employed and a total number of 150 self-structured questionnaire was distributed among healthcare workers and this was used to determine the prevalence of low back pain and work related absenteeism. Data was entered using Epi info soft-ware and analyzed using SPSS. Results; An overall response rate of 84% (n = 140) was achieved. The study established that majority (37%) of the respondents were in the age bracket of 20-39 years, 57% female (n=59) and 64% of them were married. the pint prevalence was 84%, 31% of the respondents took leave from work as a result of low back pain. There was high prevalence of sick leave among nursing staff 45.2%, Chi-square test shows that there was a statistically significant association between the respondents occupations and daily time spent during their work (P value 0.011 and 0.042) respectively. Socio-demographic factors like age, marital status and gender were not statistically significant at P<0.05. Conclusions; The medical and socio-professional consequences of low back pain among healthcare workers was as a result of their occupation designations and the daily time spent in carry out this occupations.Keywords: low back pain, healthcare workers, prevalence, sick leave
Procedia PDF Downloads 3078512 StockTwits Sentiment Analysis on Stock Price Prediction
Authors: Min Chen, Rubi Gupta
Abstract:
Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing
Procedia PDF Downloads 1568511 Prevalence of Positive Serology for Celiac Disease in Children With Autism Spectrum Disorder
Authors: A. Venkatakrishnan, M. Juneja, S. Kapoor
Abstract:
Background: Gastrointestinal dysfunction is an emerging co morbidity seen in autism and may further strengthen the association between autism and celiac disease. This is supported by increased rates (22-70%) of gastrointestinal symptoms like diarrhea, constipation, abdominal discomfort/pain, and gastrointestinal inflammation in children with the etiology of autism is still elusive. In addition to genetic factors, environmental factors such as toxin exposure, intrauterine exposure to certain teratogenic drugs, are being proposed as possible contributing factors in the etiology of Autism Spectrum Disorders (ASD) in cognizance with reports of increased gut permeability and high rates of gastrointestinal symptoms noted in children with ASD, celiac disease has also been proposed as a possible etiological factor. Despite insufficient evidence regarding the benefit of restricted diets in Autism, GFD has been promoted as an alternative treatment for ASD. This study attempts to discern any correlation between ASD and celiac disease. Objective: This cross sectional study aims to determine the proportion of celiac disease in children with ASD. Methods: Study included 155 participants aged 2-12 yrs, diagnosed as ASD as per DSM-5 attending the child development center at a tertiary care hospital in Northern India. Those on gluten free diet or having other autoimmune conditions were excluded. A detailed Performa was filled which included sociodemographic details, history of gastrointestinal symptoms, anthropometry, systemic examination, and pertinent psychological testing was done using was assessed using Developmental Profile-3(DP-3) for Developmental Quotient, Childhood Autism Rating Scale-2 (CARS-2) for severity of ASD, Vineland Adaptive Behavior Scales (VABS) for adaptive behavior, Child Behavior Checklist (CBCL) for behavioral problems and BAMBI (Brief Autism Mealtime Behavior Scales) for feeding problems. Screening for celiac was done by TTG-IgA levels, and total serum IgA levels were measured to exclude IgA deficiency. Those with positive screen were further planned for HLA typing and endoscopic biopsy. Results: A total of 155 cases were included, out of which 5 had low IgA levels and were hence excluded from the study. The rest 150 children had TTG levels below the ULN and normal total serum IgA level. History of Gastrointestinal symptoms was present in 51 (34%) cases abdominal pain was the most frequent complaint (16.6%), followed by constipation (12.6%). Diarrhea was seen in 8 %. Gastrointestinal symptoms were significantly more common in children with ASD above 5 yrs (p-value 0.006) and those who were verbal (p = 0.000). There was no significant association between socio-demographic factors, anthropometric data, or severity of autism with gastrointestinal symptoms. Conclusion: None of the150 patients with ASD had raised TTG levels; hence no association was found between ASD and celiac disease. There is no justification for routine screening for celiac disease in children with ASD. Further studies are warranted to evaluate association of Non Celiac Gluten Sensitivity with ASD and any role of gluten-free diet in such patients.Keywords: autism, celiac, gastrointestinal, gluten
Procedia PDF Downloads 1208510 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram
Authors: Mona Hejazi, Ali Motie Nasrabadi
Abstract:
Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG
Procedia PDF Downloads 4698509 Parental and Peer Influences on Juvenile Delinquency: Case Studies in Malaysia
Authors: Tan Bee Piang
Abstract:
The family is always seen as the most important agent of socialization, therefore, abusive parents and broken family have often been highlighted as two main factors contributing to juvenile delinquency. However, several studies have indicated that the peer group is one of the most powerful socialization agents in adolescent development, the influences of family are insignificant after peer influences are taken. This study aimed to investigate the relative influence of parents and peers on juvenile delinquency in Malaysia. Malaysia is a multicultural society, so different types of traditional values and religions permeate all aspects of Malaysian society, and the influences of family and parents are always seen as the most important agents of socialization. 80 juveniles from a reform school in Malaysia have been selected to participate in this study. Based on the experiences of juveniles in this study, it found that peer groups play an important role when the adolescents try to create their own identities. Adolescents merely make friends with those who have similar life experiences, so adolescents are easily influenced by their friends and the juvenile delinquency is mostly group behavior. This research found that there is no significant relationship between family factors and delinquency. The data shows that a significant percentage of juveniles come from middle-class family and most of them are not from broken family. However, most of them have strained family relationship. This research suggests that we should take a look into other causes, like peer influence, of juvenile delinquency in Malaysia.Keywords: juvenile delinquency, peer influence, group behaviour, family relationship
Procedia PDF Downloads 5108508 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid
Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang
Abstract:
Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal
Procedia PDF Downloads 778507 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels
Authors: Ufaith Qadri, M Marouf Wani
Abstract:
In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.Keywords: AVL Boost, emissions, microemulsions, performance, Spark Ignition (SI) engine
Procedia PDF Downloads 2648506 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.Keywords: ANFIS, MGT, prediction modeling, rail track degradation
Procedia PDF Downloads 3358505 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing
Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang
Abstract:
Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment
Procedia PDF Downloads 1698504 Cultural Boundaries and Mental Health Stigma: A Systemic Review of Interventions to Reduce Opposition of Mental Health Services in Asian American Families
Authors: Tanya L. Patimeteeporn, Murali D. Nair
Abstract:
There is a wide range of literature that suggests the factors that prevent Asian American families from utilizing mental health services. These factors arise from a combination of cultural perceptions of mental illness, and methods of treating them without the use of a mental health professional. Due to the increased awareness of Asian Americans’ stigmatization to mental health, there has been an effort to create culturally competent interventions for Asian American families that would reduce opposition to mental health services. Assessment of the effectiveness of these interventions reveals practices that integrate traditional healing methods with psychoeducation are more likely to promote receptiveness of mental health services by Asian American families. The documentary in this review, demonstrates these traditional healing methods from various ethnic enclaves in Los Angeles. In addition, mental health professionals who provide these interventions to Asian American families need to consider culture-bound syndromes and the various Asian health philosophies and belief systems in order to provide a culturally sensitive holistic treatment for their clients. However, because the literature on these interventions is limited, there is a need for a larger body of evidence to accurately assess the effectiveness of these culturally competent psychoeducation interventions.Keywords: Asian American, cultural boundaries, intervention, mental health stigma, psychoeducation, traditional healing
Procedia PDF Downloads 5488503 Simon Says: What Should I Study?
Authors: Fonteyne Lot
Abstract:
SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.Keywords: academic success, online self-assessment, student retention, vocational choice
Procedia PDF Downloads 4048502 Computational Methods in Official Statistics with an Example on Calculating and Predicting Diabetes Mellitus [DM] Prevalence in Different Age Groups within Australia in Future Years, in Light of the Aging Population
Authors: D. Hilton
Abstract:
An analysis of the Australian Diabetes Screening Study estimated undiagnosed diabetes mellitus [DM] prevalence in a high risk general practice based cohort. DM prevalence varied from 9.4% to 18.1% depending upon the diagnostic criteria utilised with age being a highly significant risk factor. Utilising the gold standard oral glucose tolerance test, the prevalence of DM was 22-23% in those aged >= 70 years and <15% in those aged 40-59 years. Opportunistic screening in Australian general practice potentially can identify many persons with undiagnosed type 2 DM. An Australian Bureau of Statistics document published three years ago, reported the highest rate of DM in men aged 65-74 years [19%] whereas the rate for women was highest in those over 75 years [13%]. If you consider that the Australian Bureau of Statistics report in 2007 found that 13% of the population was over 65 years of age and that this will increase to 23-25% by 2056 with a further projected increase to 25-28% by 2101, obviously this information has to be factored into the equation when age related diabetes prevalence predictions are calculated. This 10-15% proportional increase of elderly persons within the population demographics has dramatic implications for the estimated number of elderly persons with DM in these age groupings. Computational methodology showing the age related demographic changes reported in these official statistical documents will be done showing estimates for 2056 and 2101 for different age groups. This has relevance for future diabetes prevalence rates and shows that along with many countries worldwide Australia is facing an increasing pandemic. In contrast Japan is expected to have a decrease in the next twenty years in the number of persons with diabetes.Keywords: epidemiological methods, aging, prevalence, diabetes mellitus
Procedia PDF Downloads 3748501 An Empirical Investigation of Factors Influencing Construction Project Selection Processes within the Nigeria Public Sector
Authors: Emmanuel U. Unuafe, Oyegoke T. Bukoye, Sandhya Sastry, Yanqing Duan
Abstract:
Globally, there is increasing interest in project management due to a shortage in infrastructure services supply capability. Hence, it is of utmost importance that organisations understand that choosing a particular project over another is an opportunity cost – tying up the organisations resources. In order to devise constructive ways to bring direction, structure, and oversight to the process of project selection has led to the development of tools and techniques by researchers and practitioners. However, despite the development of various frameworks to assist in the appraisal and selection of government projects, failures are still being recorded with government projects. In developing countries, where frameworks are rarely used, the problems are compounded. To improve the situation, this study will investigate the current practice of construction project selection processes within the Nigeria public sector in order to inform theories of decision making from the perspective of developing nations and project management practice. Unlike other research around construction projects in Nigeria this research concentrate on factors influencing the selection process within the Nigeria public sector, which has received limited study. The authors report the findings of semi-structured interviews of top management in the Nigerian public sector and draw conclusions in terms of decision making extant theory and current practice. Preliminary results from the data analysis show that groups make project selection decisions and this forces sub-optimal decisions due to pressure on time, clashes of interest, lack of standardised framework for selecting projects, lack of accountability and poor leadership. Consequently, because decision maker is usually drawn from different fields, religious beliefs, ethnic group and with different languages. The choice of a project by an individual will be greatly influence by experience, political precedence than by realistic investigation as well as his understanding of the desired outcome of the project, in other words, the individual’s ideology and their level of fairness.Keywords: factors influencing project selection, public sector construction project selection, projects portfolio selection, strategic decision-making
Procedia PDF Downloads 3288500 A Longitudinal Study of Psychological Capital, Parent-Child Relationships, and Subjective Well-Beings in Economically Disadvantaged Adolescents
Authors: Chang Li-Yu
Abstract:
Purposes: The present research focuses on exploring the latent growth model of psychological capital in disadvantaged adolescents and assessing its relationship with subjective well-being. Methods: Longitudinal study design was utilized and the data was from Taiwan Database of Children and Youth in Poverty (TDCYP), using the student questionnaires from 2009, 2011, and 2013. Data analysis was conducted using both univariate and multivariate latent growth curve models. Results: This study finds that: (1) The initial state and growth rate of individual factors such as parent-child relationships, psychological capital, and subjective wellbeing in economically disadvantaged adolescents have a predictive impact; (2) There are positive interactive effects in the development among factors like parentchild relationships, psychological capital, and subjective well-being in economically disadvantaged adolescents; and (3) The initial state and growth rate of parent-child relationships and psychological capital in economically disadvantaged adolescents positively affect the initial state and growth rate of their subjective well-being. Recommendations: Based on these findings, this study concretely discusses the significance of psychological capital and family cohesion for the mental health of economically disadvantaged youth and offers suggestions for counseling, psychological therapy, and future research.Keywords: economically disadvantaged adolescents, psychological capital, parent-child relationships, subjective well-beings
Procedia PDF Downloads 578499 Issues in Implementation of Vertical Greenery System on Existing Government Building in Malaysia
Authors: Jamilah Halina Abdul Halim, Norsiah Hassan, Azlina Aziz, Norhayati Mat Wajid, Mohd Saipul Asrafi
Abstract:
There are various types of vertical greenery system (VGS) in Malaysia, but none is installed at government buildings, although the government is looking into energy efficient building design. This is due to lack of technical information that focus on the maintenance and care, issues, and challenges face by vertical greenery system under tropical climate conditions. This research aim to identify issues in implementation of vertical greenery system on existing government building in Malaysia. The methodology used are literature reviews (desktop study), observation on sites, and case studies. Initial findings indicates that design and maintenance issues of vertical greenery system are the main challenges faced mainly by designer, especially those who involved in decision-making process. It can be concluded that orientation, openings, maintenance, performance, longevity, structural load, access, wind resistance, design failure, system failure, and lack of maintenance foresight are the main factors that need to be considered. These factors should be holistically aligned towards the economic cost, effective time, and quality design in implementation of vertical greenery system on existing government building. A comprehensive implementation of vertical greenery system will lead to greater sustainable investment for government buildings and responsive action to climate change.Keywords: issues, government building, maintenance, vertical greenery system
Procedia PDF Downloads 848498 The Impact of Major Accounting Events on Managerial Ability and the Accuracy of Environmental Capital Expenditure Projections of the Environmentally Sensitive Industries
Authors: Jason Chen, Jennifer Chen, Shiyu Li
Abstract:
We examine whether managerial ability (MA), the passing of Sarbanes-Oxley in 2002 (SOX), and corporate operational complexity affect the accuracy of environmental capital expenditure projections of the environmentally sensitive industries (ESI). Prior studies found that firms in the ESI manipulated their projected environmental capital expenditures as a tool to achieve corporate legitimation and suggested that human factors must be examined to determine whether they are part of the determinants. We use MA to proxy for the latent human factors to examine whether MA affects the accuracy of financial disclosures in the ESI. To expand Chen and Chen (2020), we further investigate whether (1) SOX and (2) firms with complex operations and financial reporting in conjunction with MA affect firms’ projection accuracy. We find, overall, that MA is positively correlated with firm’s projection accuracy in the annual 10-Ks. Furthermore, results suggest that SOX has a positive, yet temporary, effect on MA, and that leads to better accuracy. Finally, MA matters for firms with more complex operations and financial reporting to make less projection errors than their less-complex counterparts. These results suggest that MA is a determinant that affects the accuracy of environmental capital expenditure projections for the firms in the ESI.Keywords: managerial ability, environmentally sensitive industries, sox, corporate operational complexity
Procedia PDF Downloads 1458497 Numerical Simulation for a Shallow Braced Excavation of Campus Building
Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu
Abstract:
In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.Keywords: excavation, numerical simulation, RIDO, retaining structure
Procedia PDF Downloads 2628496 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho
Abstract:
We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation
Procedia PDF Downloads 2088495 The Effect of Eight-Week Medium Intensity Interval Training and Curcumin Intake on ICMA-1 and VCAM-1 Levels in Menopausal Fat Rats
Authors: Abdolrasoul Daneshjoo, Fatemeh Akbari Ghara
Abstract:
Background and Purpose: Obesity is an increasing factor in cardiovascular disease and serum levels of cellular adhesion molecule. It plays an important role in predicting risk for coronary artery disease. The purpose of this research was to study the effect of eight weeks moderate intensity interval training and curcumin intake on ICAM-1 & VCAM-1 levels of menopausal fat rats. Materials and methods: in this study, 28 Wistar Menopausal fat rats aged 6-8 weeks with an average weight of 250-300 (gr) were randomly divided into four groups: control, curcumin supplement, moderate intensity interval training and moderate intensity interval training + curcumin supplement. (7 rats each group). The training program was planned as 8 weeks and 3 sessions per week. Each session consisted of 10 one-min sets with 50 percent intensity and the 2-minutes interval between sets in the first week. Subjects started with 14 meters per minute, and 2 (m/min) was added to increase their speed weekly until the speed of 28 (m/min) in the 8th week. Blood samples were taken 48 hours after the last training session, and ICAM-1 A and VCAM-1 levels were measured. SPSS software, one-way analysis of variance (ANOVA) and Pearson correlation coefficient were used to assess the results. Results: The results showed that eight weeks of training and taking curcumin had significant effects on ICAM-1 levels of the rats (p ≤ 0.05). However, it had no significant effect on VCAM-1 levels in menopausal obese rates (p ≥ 0.05). There was no significant correlation between the levels of ICAM-1 and VCAM-1 in eight weeks training and taking curcumin. Conclusion: Implementation of moderate intensity interval training and the use of curcumin decreased ICAM-1 significantly.Keywords: curcumin, interval training , ICMA, VCAM
Procedia PDF Downloads 1928494 Teamwork on Innovation in Young Enterprises: A Qualitative Analysis
Authors: Polina Trusova
Abstract:
The majority of young enterprises is founded and run by teams and develops new, innovative products or services. While problems within the team are considered to be an important reason for the failure of young enterprises, effective teamwork on innovation may be a key success factor. It may require special teamwork design or members’ creativity not needed during work routine. However, little is known about how young enterprises develop innovative solutions in teams, what makes their teamwork special and what influences its effectivity. Extending this knowledge is essential for understanding the success and failure factors for young enterprises. Previous research focused on working on innovation or professional teams in general. Rare studies combining these issues usually concentrate on homogenous groups like IT expert teams in innovation projects of big, well-established firms. The transferability of those studies’ findings to the entrepreneurial context is doubtful because of several reasons why teamwork should differ significantly between big, well-established firms and young enterprises. First, teamwork is conducted by team members, e.g., employees. The personality of employees in young enterprises, in contrast to that of employees in established firms, has been shown to be more similar to the personality of entrepreneurs. As entrepreneurs were found to be more open to experience and show less risk aversion, it may have a positive impact on their teamwork. Persons open to novelty are more likely to develop or accept a creative solution, which is especially important for teamwork on innovation. Secondly, young enterprises are often characterized by a flat hierarchy, so in general, teamwork should be more participative there. It encourages each member (and not only the founder) to produce and discuss innovative ideas, increasing their variety and enabling the team to select the best idea from the larger idea pool. Thirdly, teams in young enterprises are often multidisciplinary. It has some advantages but also increases the risk of internal conflicts making teamwork less effective. Despite the key role of teamwork on innovation and presented barriers for transferring existing evidence to the context of young enterprises, only a few researchers have addressed this issue. In order to close the existing research gap, to explore and understand how innovations are developed in teams of young enterprises and which factors influencing teamwork may be especially relevant for such teams, a qualitative study has been developed. The study consisting of 20 half-structured interviews with (co-)founders of young innovative enterprises in the UK and USA started in September 2017. The interview guide comprises but is not limited to teamwork dimensions discussed in literature like members’ skill or authority differentiation. Data will be evaluated following the rules of qualitative content analysis. First results indicate some factors which may be relevant especially for teamwork in young innovative enterprises. They will enrich the scientific discussion and provide the evidence needed to test a possible causality between identified factors and teamwork effectivity in future research on young innovative enterprises. Results and their discussion can be presented at the conference.Keywords: innovation, qualitative study, teamwork, young enterprises
Procedia PDF Downloads 1988493 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 778492 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors
Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran
Abstract:
Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold
Procedia PDF Downloads 2438491 Income and Factor Analysis of Small Scale Broiler Production in Imo State, Nigeria
Authors: Ubon Asuquo Essien, Okwudili Bismark Ibeagwa, Daberechi Peace Ubabuko
Abstract:
The Broiler Poultry subsector is dominated by small scale production with low aggregate output. The high cost of inputs currently experienced in Nigeria tends to aggravate the situation; hence many broiler farmers struggle to break-even. This study was designed to examine income and input factors in small scale deep liter broiler production in Imo state, Nigeria. Specifically, the study examined; socio-economic characteristics of small scale deep liter broiler producing Poultry farmers; estimate cost and returns of broiler production in the area; analyze input factors in broiler production in the area and examined marketability, age and profitability of the enterprise. A multi-stage sampling technique was adopted in selecting 60 small scale broiler farmers who use deep liter system from 6 communities through the use of structured questionnaire. The socioeconomic characteristics of the broiler farmers and the profitability/ marketability age of the birds were described using descriptive statistical tools such as frequencies, means and percentages. Gross margin analysis was used to analyze the cost and returns to broiler production, while Cobb Douglas production function was employed to analyze input factors in broiler production. The result of the study revealed that the cost of feed (P<0.1), deep liter material (P<0.05) and medication (P<0.05) had a significant positive relationship with the gross return of broiler farmers in the study area, while cost of labour, fuel and day old chicks were not significant. Furthermore, Gross profit margin of the farmers who market their broiler at the 8th week of rearing was 80.7%; and 78.7% and 60.8% for farmers who market at the 10th week and 12th week of rearing, respectively. The business is, therefore, profitable but at varying degree. Government and Development partners should make deliberate efforts to curb the current rise in the prices of poultry feeds, drugs and timber materials used as bedding so as to widen the profit margin and encourage more farmers to go into the business. The farmers equally need more technical assistance from extension agents with regards to timely and profitable marketing.Keywords: broilers, factor analysis, income, small scale
Procedia PDF Downloads 80