Search results for: driver drowsiness detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3902

Search results for: driver drowsiness detection

842 Report of Candida Auris: An Emerging Fungal Pathogen in a Tertiary Healthcare Facility in Ekiti State, Nigeria

Authors: David Oluwole Moses, Odeyemi Adebowale Toba, Olawale Adetunji Kola

Abstract:

Candida auris, an emerging fungus, has been reported in more than 30 countries around the world since its first detection in 2009. Due to its several virulence factors, resistance to antifungals, and persistence in hospital settings, Candida auris has been reported to cause treatment-failure infections. This study was therefore carried out to determine the incidence of Candida auris in a tertiary hospital in Ekiti State, Nigeria. In this study, a total of 115 samples were screened for Candida species using cultural and molecular methods. The carriage of virulence factors and antifungal resistance among C. auris was detected using standard microbiological methods. Candida species isolated from the samples were 15 (30.0%) in clinical samples and 22 (33.85%) in hospital equipment screened. Non-albicans Candida accounted for 3 (20%) and 8 (36.36%) among the isolates from the clinical samples and equipment, respectively. Only five of the non-albicans Candida isolates were C. auris. All the isolates produced biofilm, gelatinase, and hemolysin, while none produced germ tubes. Two of the isolates were resistant to all the antifungals tested. Also, all the isolates were resistant to fluconazole and itraconazole. Nystatin appeared to be the most effective among the tested antifungals. The isolation of Candida auris is being reported for the second time in Nigeria, further confirming that the fungus has spread beyond Lagos and Ibadan, where it was first reported. The extent of the spread of the nosocomial fungus needed to be further investigated and curtailed in Nigeria before its outbreak in healthcare facilities.

Keywords: candida auris, virulence factors, antifungals, pathogen, hospital, infection

Procedia PDF Downloads 43
841 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles

Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab

Abstract:

Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.

Keywords: chitosan, magnetite, water, treatment

Procedia PDF Downloads 401
840 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 152
839 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 460
838 Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing

Authors: Beng Yew Low, Cher Liang Cha, Cheng Yong Teoh

Abstract:

Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model.

Keywords: continual assessment, predictive analytics, random forest, student psychological profile

Procedia PDF Downloads 133
837 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines

Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh

Abstract:

The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.

Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method

Procedia PDF Downloads 265
836 Study of Cathodic Protection for Trunk Pipeline of Al-Garraf Oil Field

Authors: Maysoon Khalil Askar

Abstract:

The delineation of possible areas of corrosion along the external face of an underground oil pipeline in Trunk line of Al- Garraf oil field was investigated using the horizontal electrical resistivity profiling technique and study the contribution of pH, Moisture Content in Soil and Presence chlorides, sulfates and total dissolve salts in soil and water. The test sites represent a physical and chemical properties of soils. The hydrogen-ion concentration of soil and groundwater range from 7.2 to 9.6, and the resistivity values of the soil along the pipeline were obtained using the YH302B model resistivity meter having values between 1588 and 720 Ohm-cm. the chloride concentration in soil and groundwater is high (more than 1000 ppm), total soulable salt is more than 5000 ppm, and sulphate range from 0.17% and 0.98% in soil and more than 600 ppm in groundwater. The soil is poor aeration, the soil texture is fine (clay and silt soil), the water content is high (the groundwater is close to surface), the chloride and sulphate is high in the soil and groundwater, the total soulable salt is high in ground water and finally the soil electric resistivity is low that the soil is very corrosive and there is the possibility of the pipeline failure. These methods applied in the study are quick, economic and efficient for detecting along buried pipelines which need to be protected. Routine electrical geophysical investigations along buried oil pipelines should be undertaken for the early detection and prevention of pipeline failure with its attendant environmental, human and economic consequences.

Keywords: soil resistivity, corrosion, cathodic protection, chloride concentration, water content

Procedia PDF Downloads 436
835 Molecular Profiles of Microbial Etiologic Agents Forming Biofilm in Urinary Tract Infections of Pregnant Women by RTPCR Assay

Authors: B. Nageshwar Rao

Abstract:

Urinary tract infection (UTI) represents the most commonly acquired bacterial infection worldwide, with substantial morbidity, mortality, and economic burden. The objective of the study is to characterize the microbial profiles of uropathogenic in the obstetric population by RTPCR. Study design: An observational cross-sectional study was performed at a single tertiary health care hospital among 50 pregnant women with UTIs, including asymptomatic and symptomatic patients attending the outpatient department and inpatient department of Obstetrics and Gynaecology.Methods: Serotyping and genes detection of various uropathogens were studied using RTPCR. Pulse filed gel electrophoresis methods were used to determine the various genetic profiles. Results: The present study shows that CsgD protein, involved in biofilm formation in Escherichia coli, VIM1, IMP1 genes for Klebsiella were identified by using the RTPCR method. Our results showed that the prevalence of VIM1 and IMP1 genes and CsgD protein in E.coli showed a significant relationship between strong biofilm formation, and this may be due to the prevalence of specific genes. Finally, the genetic identification of RTPCR results for both bacteria was correlated with each other and concluded that the above uropathogens were common isolates in producing Biofilm in the pregnant woman suffering from urinary tract infection in our hospital observational study.

Keywords: biofilms, Klebsiella, E.coli, urinary tract infection

Procedia PDF Downloads 125
834 A Sui Generis Technique to Detect Pathogens in Post-Partum Breast Milk Using Image Processing Techniques

Authors: Yogesh Karunakar, Praveen Kandaswamy

Abstract:

Mother’s milk provides the most superior source of nutrition to a child. There is no other substitute to the mother’s milk. Postpartum secretions like breast milk can be analyzed on the go for testing the presence of any harmful pathogen before a mother can feed the child or donate the milk for the milk bank. Since breast feeding is one of the main causes for transmission of diseases to the newborn, it is mandatory to test the secretions. In this paper, we describe the detection of pathogens like E-coli, Human Immunodeficiency Virus (HIV), Hepatitis B (HBV), Hepatitis C (HCV), Cytomegalovirus (CMV), Zika and Ebola virus through an innovative method, in which we are developing a unique chip for testing the mother’s milk sample. The chip will contain an antibody specific to the target pathogen that will show a color change if there are enough pathogens present in the fluid that will be considered dangerous. A smart-phone camera will then be acquiring the image of the strip and using various image processing techniques we will detect the color development due to antigen antibody interaction within 5 minutes, thereby not adding to any delay, before the newborn is fed or prior to the collection of the milk for the milk bank. If the target pathogen comes positive through this method, then the health care provider can provide adequate treatment to bring down the number of pathogens. This will reduce the postpartum related mortality and morbidity which arises due to feeding infectious breast milk to own child.

Keywords: postpartum, fluids, camera, HIV, HCV, CMV, Zika, Ebola, smart-phones, breast milk, pathogens, image processing techniques

Procedia PDF Downloads 221
833 Using Cyclic Structure to Improve Inference on Network Community Structure

Authors: Behnaz Moradijamei, Michael Higgins

Abstract:

Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.

Keywords: hypothesis testing, RNBRW, network inference, community structure

Procedia PDF Downloads 150
832 Non-Destructive Testing of Selective Laser Melting Products

Authors: Luca Collini, Michele Antolotti, Diego Schiavi

Abstract:

At present, complex geometries within production time shrinkage, rapidly increasing demand, and high-quality standard requirement make the non-destructive (ND) control of additively manufactured components indispensable means. On the other hand, a technology gap and the lack of standards regulating the methods and the acceptance criteria indicate the NDT of these components a stimulating field to be still fully explored. Up to date, penetrant testing, acoustic wave, tomography, radiography, and semi-automated ultrasound methods have been tested on metal powder based products so far. External defects, distortion, surface porosity, roughness, texture, internal porosity, and inclusions are the typical defects in the focus of testing. Detection of density and layers compactness are also been tried on stainless steels by the ultrasonic scattering method. In this work, the authors want to present and discuss the radiographic and the ultrasound ND testing on additively manufactured Ti₆Al₄V and inconel parts obtained by the selective laser melting (SLM) technology. In order to test the possibilities given by the radiographic method, both X-Rays and γ-Rays are tried on a set of specifically designed specimens realized by the SLM. The specimens contain a family of defectology, which represent the most commonly found, as cracks and lack of fusion. The tests are also applied to real parts of various complexity and thickness. A set of practical indications and of acceptance criteria is finally drawn.

Keywords: non-destructive testing, selective laser melting, radiography, UT method

Procedia PDF Downloads 145
831 A Straightforward Method for Determining Inorganic Selenium Speciations by Graphite Furnace Atomic Absorption Spectroscopy in Water Samples

Authors: Sahar Ehsani, David James, Vernon Hodge

Abstract:

In this experimental study, total selenium in solution was measured with Graphite Furnace Atomic Absorption Spectroscopy, GFAAS, then chemical reactions with sodium borohydride were used to reduce selenite to hydrogen selenide. Hydrogen selenide was then stripped from the solution by purging the solution with nitrogen gas. Since the two main speciations in oxic waters are usually selenite, Se(IV) and selenate, Se(VI), it was assumed that after Se(IV) is removed, the remaining total selenium was Se(VI). Total selenium measured after stripping gave Se(VI) concentration, and the difference of total selenium measured before and after stripping gave Se(IV) concentration. An additional step of reducing Se(VI) to Se(IV) was performed by boiling the stripped solution under acidic conditions, then removing Se(IV) by a chemical reaction with sodium borohydride. This additional procedure of removing Se(VI) from the solution is useful in rare cases where the water sample is reducing and contains selenide speciation. In this study, once Se(IV) and Se(VI) were both removed from the water sample, the remaining total selenium concentration was zero. The method was tested to determine Se(IV) and Se(VI) in both purified water and synthetic irrigation water spiked with Se(IV) and Se(VI). Average recovery of spiked samples of diluted synthetic irrigation water was 99% for Se(IV) and 97% for Se(VI). Detection limits of the method were 0.11 µg L⁻¹ and 0.32 µg L⁻¹ for Se(IV) and Se(VI), respectively.

Keywords: Analytical Method, Graphite Furnace Atomic Absorption Spectroscopy, Selenate, Selenite, Selenium Speciations

Procedia PDF Downloads 141
830 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 331
829 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 197
828 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices

Authors: Mst Ilme Faridatul, Bo Wu

Abstract:

Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.

Keywords: land cover, mapping, multi-temporal, spectral indices

Procedia PDF Downloads 151
827 Evaluation of Brca1/2 Mutational Status among Algerian Familial Breast Cancer

Authors: Arab M., Ait Abdallah M., Zeraoulia N., Boumaza H., Aoutia M., Griene L., Ait Abdelkader B.,

Abstract:

breast and ovarian cancer are respectively the first and fourth leading causes of cancer among women in Algeria. A family story of cancer in the most important risk factor, and in most cases of families with breast and /or ovarian cancer, the pattern of cancer family can be attributed to mutation in BRCA1/2genes. objectibes: the aim of our study in to investigate the spectrum of BRCA1/2 germiline mutation in familial breast and /or ovarian cancer and to determine the prevalence and the nature of BRCA1/2mutation in Algeria methods: we deremined the prevalence of BRCA1/2 mutation within a cohort of 161 probands selected according the eisinger score double stranded sanger sequencing of all coding exons of BRCA1/2including flanking intronic region were performed results: we identified a total of 23 distinct deleterious mutations (class5) 12 differents mutations in BRCA1(52%) and 11 in BRCA2(48%). 78% (18/23) were protein truncating and 22%(5/23) missens mutations.3 novel deleterious mutations have been identified, which have not been described in public mutation database. one new mutation were found in two unrelated patients. the overall mutation detection rate in our study is 28,5%(46/161).more over, an UVS c7783 located in BRCA2 is found in two unrelated probands and segregate in the 02 families/ conclusion: our results sugget of large spectrum of BRCA1/2 mutation in Algerian breast/ovarian cancer family. The nature and prevalence of BRCA1/2mutation in algerian families are ongoing in a larger study, 80 probands are to day under investigation. This study which may therefore identify the genetic particularity of Algerian breast /ovarian cancer.

Keywords: BRCA1/2 mutations, hereditary breast cancer, algerian women, prvalence

Procedia PDF Downloads 174
826 Stability-Indicating High-Performance Thin-Layer Chromatography Method for Estimation of Naftopidil

Authors: P. S. Jain, K. D. Bobade, S. J. Surana

Abstract:

A simple, selective, precise and Stability-indicating High-performance thin-layer chromatographic method for analysis of Naftopidil both in a bulk and in pharmaceutical formulation has been developed and validated. The method employed, HPTLC aluminium plates precoated with silica gel as the stationary phase. The solvent system consisted of hexane: ethyl acetate: glacial acetic acid (4:4:2 v/v). The system was found to give compact spot for Naftopidil (Rf value of 0.43±0.02). Densitometric analysis of Naftopidil was carried out in the absorbance mode at 253 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.0001 with respect to peak area in the concentration range 200-1200 ng per spot. The method was validated for precision, recovery and robustness. The limits of detection and quantification were 20.35 and 61.68 ng per spot, respectively. Naftopidil was subjected to acid and alkali hydrolysis, oxidation and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and thermal conditions. This indicates that the drug is susceptible to acid, base, oxidation and thermal conditions. The degraded product was well resolved from the pure drug with significantly different Rf value. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of investigated drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Naftopidil in bulk drug and pharmaceutical formulation.

Keywords: naftopidil, HPTLC, validation, stability, degradation

Procedia PDF Downloads 396
825 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 193
824 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema

Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy

Abstract:

Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.

Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet

Procedia PDF Downloads 310
823 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique

Authors: Jaturong Som-ard

Abstract:

The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.

Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings

Procedia PDF Downloads 190
822 Detection and Distribution Pattern of Prevelant Genotypes of Hepatitis C in a Tertiary Care Hospital of Western India

Authors: Upasana Bhumbla

Abstract:

Background: Hepatitis C virus is a major cause of chronic hepatitis, which can further lead to cirrhosis of the liver and hepatocellular carcinoma. Worldwide the burden of Hepatitis C infection has become a serious threat to the human race. Hepatitis C virus (HCV) has population-specific genotypes and provides valuable epidemiological and therapeutic information. Genotyping and assessment of viral load in HCV patients are important for planning the therapeutic strategies. The aim of the study is to study the changing trends of prevalence and genotypic distribution of hepatitis C virus in a tertiary care hospital in Western India. Methods: It is a retrospective study; blood samples were collected and tested for anti HCV antibodies by ELISA in Dept. of Microbiology. In seropositive Hepatitis C patients, quantification of HCV-RNA was done by real-time PCR and in HCV-RNA positive samples, genotyping was conducted. Results: A total of 114 patients who were seropositive for Anti HCV were recruited in the study, out of which 79 (69.29%) were HCV-RNA positive. Out of these positive samples, 54 were further subjected to genotype determination using real-time PCR. Genotype was not detected in 24 samples due to low viral load; 30 samples were positive for genotype. Conclusion: Knowledge of genotype is crucial for the management of HCV infection and prediction of prognosis. Patients infected with HCV genotype 1 and 4 will have to receive Interferon and Ribavirin for 48 weeks. Patients with these genotypes show a poor sustained viral response when tested 24 weeks after completion of therapy. On the contrary, patients infected with HCV genotype 2 and 3 are reported to have a better response to therapy.

Keywords: hepatocellular, genotype, ribavarin, seropositive

Procedia PDF Downloads 126
821 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter

Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri

Abstract:

Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.

Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion

Procedia PDF Downloads 693
820 The Confiscation of Ill-Gotten Gains in Pollution: The Taiwan Experience and the Interaction between Economic Analysis of Law and Environmental Economics Perspectives

Authors: Chiang-Lead Woo

Abstract:

In reply to serious environmental problems, the Taiwan government quickly adjusted some articles to suit the needs of environmental protection recently, such as the amendment to article 190-1 of the Taiwan Criminal Code. The transfer of legislation comes as an improvement which canceled the limitation of ‘endangering public safety’. At the same time, the article 190-1 goes from accumulative concrete offense to abstract crime of danger. Thus, the public looks forward to whether environmental crime following the imposition of fines or penalties works efficiently in anti-pollution by the deterrent effects. However, according to the addition to article 38-2 of the Taiwan Criminal Code, the confiscation system seems controversial legislation to restrain ill-gotten gains. Most prior studies focused on comparisons with the Administrative Penalty Law and the Criminal Code in environmental issue in Taiwan; recently, more and more studies emphasize calculations on ill-gotten gains. Hence, this paper try to examine the deterrent effect in environmental crime by economic analysis of law and environmental economics perspective. This analysis shows that only if there is an extremely high probability (equal to 100 percent) of an environmental crime case being prosecuted criminally by Taiwan Environmental Protection Agency, the deterrent effects will work. Therefore, this paper suggests deliberating the confiscation system from supplementing the System of Environmental and Economic Accounting, reasonable deterrent fines, input management, real-time system for detection of pollution, and whistleblower system, environmental education, and modernization of law.

Keywords: confiscation, ecosystem services, environmental crime, ill-gotten gains, the deterrent effect, the system of environmental and economic accounting

Procedia PDF Downloads 167
819 Comparison of Several Diagnostic Methods for Detecting Bovine Viral Diarrhea Virus Infection in Cattle

Authors: Azizollah Khodakaram- Tafti, Ali Mohammadi, Ghasem Farjanikish

Abstract:

Bovine viral diarrhea virus (BVDV) is one of the most important viral pathogens of cattle worldwide caused by Pestivirus genus, Flaviviridae family.The aim of the present study was to comparison several diagnostic methods and determine the prevalence of BVDV infection for the first time in dairy herds of Fars province, Iran. For initial screening, a total of 400 blood samples were randomly collected from 12 industrial dairy herds and analyzed using reverse transcription (RT)-PCR on the buffy coat. In the second step, blood samples and also ear notch biopsies were collected from 100 cattle of infected farms and tested by antigen capture ELISA (ACE), RT-PCR and immunohistochemistry (IHC). The results of nested RT-PCR (outer primers 0I100/1400R and inner primers BD1/BD2) was successful in 16 out of 400 buffy coat samples (4%) as acute infection in initial screening. Also, 8 out of 100 samples (2%) were positive as persistent infection (PI) by all of the diagnostic tests similarly including RT-PCR, ACE and IHC on buffy coat, serum and skin samples, respectively. Immunoreactivity for bovine BVDV antigen as brown, coarsely to finely granular was observed within the cytoplasm of epithelial cells of epidermis and hair follicles and also subcutaneous stromal cells. These findings confirm the importance of monitoring BVDV infection in cattle of this region and suggest detection and elimination of PI calves for controlling and eradication of this disease.

Keywords: antigen capture ELISA, bovine viral diarrhea virus, immunohistochemistry, RT-PCR, cattle

Procedia PDF Downloads 363
818 Contribution of Automated Early Warning Score Usage to Patient Safety

Authors: Phang Moon Leng

Abstract:

Automated Early Warning Scores is a newly developed clinical decision tool that is used to streamline and improve the process of obtaining a patient’s vital signs so a clinical decision can be made at an earlier stage to prevent the patient from further deterioration. This technology provides immediate update on the score and clinical decision to be taken based on the outcome. This paper aims to study the use of an automated early warning score system on whether the technology has assisted the hospital in early detection and escalation of clinical condition and improve patient outcome. The hospital adopted the Modified Early Warning Scores (MEWS) Scoring System and MEWS Clinical Response into Philips IntelliVue Guardian Automated Early Warning Score equipment and studied whether the process has been leaned, whether the use of technology improved the usage & experience of the nurses, and whether the technology has improved patient care and outcome. It was found the steps required to obtain vital signs has been significantly reduced and is used more frequently to obtain patient vital signs. The number of deaths, and length of stay has significantly decreased as clinical decisions can be made and escalated more quickly with the Automated EWS. The automated early warning score equipment has helped improve work efficiency by removing the need for documenting into patient’s EMR. The technology streamlines clinical decision-making and allows faster care and intervention to be carried out and improves overall patient outcome which translates to better care for patient.

Keywords: automated early warning score, clinical quality and safety, patient safety, medical technology

Procedia PDF Downloads 176
817 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 154
816 Early Diagnosis and Treatment of Cancer Using Synthetic Cationic Peptide

Authors: D. J. Kalita

Abstract:

Cancer is one of the prime causes of early death worldwide. Mutation of the gene involve in DNA repair and damage, like BRCA2 (Breast cancer gene two) genes, can be detected efficiently by PCR-RFLP to early breast cancer diagnosis and adopt the suitable method of treatment. Host Defense Peptide can be used as blueprint for the design and synthesis of novel anticancer drugs to avoid the side effect of conventional chemotherapy and chemo resistance. The change at nucleotide position 392 of a -› c in the cancer sample of dog mammary tumour at BRCA2 (exon 7) gene lead the creation of a new restriction site for SsiI restriction enzyme. This SNP may be a marker for detection of canine mammary tumour. Support vector machine (SVM) algorithm was used to design and predict the anticancer peptide from the mature functional peptide. MTT assay of MCF-7 cell line after 48 hours of post treatment showed an increase in the number of rounded cells when compared with untreated control cells. The ability of the synthesized peptide to induce apoptosis in MCF-7 cells was further investigated by staining the cells with the fluorescent dye Hoechst stain solution, which allows the evaluation of the nuclear morphology. Numerous cells with dense, pyknotic nuclei (the brighter fluorescence) were observed in treated but not in control MCF-7 cells when viewed using an inverted phase-contrast microscope. Thus, PCR-RFLP is one of the attractive approach for early diagnosis, and synthetic cationic peptide can be used for the treatment of canine mammary tumour.

Keywords: cancer, cationic peptide, host defense peptides, Breast cancer genes

Procedia PDF Downloads 88
815 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, 1 Abdelazim Negm2, Eid Ashour3, Mohamed Elsahabi4

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 0
814 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts

Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti

Abstract:

Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.

Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization

Procedia PDF Downloads 62
813 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations

Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri

Abstract:

Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.

Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size

Procedia PDF Downloads 223