Search results for: artificial stock markets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3726

Search results for: artificial stock markets

666 The Effect of Artificial Intelligence on Food and Beverages

Authors: Remon Karam Zakry Kelada

Abstract:

This survey research ambitions to examine the usual of carrier quality of meals and beverage provider staffs in lodge business by way of studying the carrier fashionable of 3 pattern inns, Siam Kempinski lodge Bangkok, four Seasons lodge Chiang Mai, and Banyan Tree Phuket. as a way to locate the international provider general of food and beverage provider, triangular research, i.e. quantitative, qualitative, and survey were hired. on this research, questionnaires and in-depth interview have been used for getting the statistics on the sequences and method of services. There had been three components of modified questionnaires to degree carrier pleasant and visitor’s satisfaction inclusive of carrier facilities, attentiveness, obligation, reliability, and circumspection. This observe used pattern random sampling to derive topics with the go back fee of the questionnaires changed into 70% or 280. information have been analyzed via SPSS to find mathematics mean, SD, percent, and comparison by using t-take a look at and One-manner ANOVA. The outcomes revealed that the service first-rate of the three lodges have been in the worldwide stage that could create excessive pride to the international clients. hints for studies implementations have been to hold the area of precise carrier satisfactory, and to enhance some dimensions of service fine together with reliability. training in service fashionable, product expertise, and new generation for employees must be provided. furthermore, for you to develop the provider pleasant of the enterprise, training collaboration among inn corporation and academic institutions in food and beverage carrier should be considered.

Keywords: food and beverage staff, food poisoning, food production, hygiene knowledge BPA, health, regulations, toxicity service standard, food and beverage department, sequence of service, service method

Procedia PDF Downloads 32
665 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59
664 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method

Authors: Berker Bayazit, Gulgun Kayakutlu

Abstract:

The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.

Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy

Procedia PDF Downloads 242
663 Identifying Large-Scale Photovoltaic and Concentrated Solar Power Hot Spots: Multi-Criteria Decision-Making Framework

Authors: Ayat-Allah Bouramdane

Abstract:

Solar Photovoltaic (PV) and Concentrated Solar Power (CSP) do not burn fossil fuels and, therefore, could meet the world's needs for low-carbon power generation as they do not release greenhouse gases into the atmosphere as they generate electricity. The power output of the solar PV module and CSP collector is proportional to the temperature and the amount of solar radiation received by their surface. Hence, the determination of the most convenient locations of PV and CSP systems is crucial to maximizing their output power. This study aims to provide a hands-on and plausible approach to the multi-criteria evaluation of site suitability of PV and CSP plants using a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP). Applying the GRI-based AHP approach is meant to specify the criteria and sub-criteria, to identify the unsuitable areas, the low-, moderate-, high- and very high suitable areas for each layer of GRI, to perform the pairwise comparison matrix at each level of the hierarchy structure based on experts' knowledge, and calculate the weights using AHP to create the final map of solar PV and CSP plants suitability in Morocco with a particular focus on the Dakhla city. The results recognize that solar irradiation is the main decision factor for the integration of these technologies on energy policy goals of Morocco but explicitly account for other factors that cannot only limit the potential of certain locations but can even exclude the Dakhla city classified as unsuitable area. We discuss the sensitivity of the PV and CSP site suitability to different aspects, such as the methodology, the climate conditions, and the technology used in each source, and provide the final recommendations to the Moroccan energy strategy by analyzing if actual Morocco's PV and CSP installations are located within areas deemed suitable and by discussing several cases to provide mutual benefits across the Food-Energy-Water nexus. The adapted methodology and conducted suitability map could be used by researchers or engineers to provide helpful information for decision-makers in terms of sites selection, design, and planning of future solar plants, especially in areas suffering from energy shortages, such as the Dakhla city, which is now one of Africa's most promising investment hubs and it is especially attractive to investors looking to root their operations in Africa and import to European markets.

Keywords: analytic hierarchy process, concentrated solar power, dakhla, geographic referenced information, Morocco, multi-criteria decision-making, photovoltaic, site suitability

Procedia PDF Downloads 172
662 Anyword: A Digital Marketing Tool to Increase Productivity in Newly Launching Businesses

Authors: Jana Atteah, Wid Jan, Yara AlHibshi, Rahaf AlRougi

Abstract:

Anyword is an AI copywriting tool that helps marketers create effective campaigns for specific audiences. It offers a wide range of templates for various platforms, brand voice guidelines, and valuable analytics insights. Anyword is used by top global companies and has been recognized as one of the "Fastest Growing Products" in the 2023 software awards. A recent study examined the utilization and impact of AI-powered writing tools, specifically focusing on the adoption of AI in writing pursuits and the use of the Anyword platform. The results indicate that a majority of respondents (52.17%) had not previously used Anyword, but those who had were generally satisfied with the platform. Notable productivity improvements were observed among 13% of the participants, while an additional 34.8% reported a slight increase in productivity. A majority (47.8%) maintained a neutral stance, suggesting that their productivity remained unaffected. Only a minimal percentage (4.3%) claimed that their productivity did not improve with the usage of Anyword AI. In terms of the quality of written content generated, the participants responded positively. Approximately 91% of participants gave Anyword AI a score of 5 or higher, with roughly 17% giving it a perfect score. A small percentage (approximately 9%) gave a low score between 0-2. The mode result was a score of 7, indicating a generally positive perception of the quality of content generated using Anyword AI. These findings suggest that AI can contribute to increased productivity and positively influence the quality of written content. Further research and exploration of AI tools in writing pursuits are warranted to fully understand their potential and limitations.

Keywords: artificial intelligence, marketing platforms, productivity, user interface

Procedia PDF Downloads 62
661 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 65
660 Working Conditions and Occupational Health: Analyzing the Stressing Factors in Outsourced Employees

Authors: Cledinaldo A. Dias, Isabela C. Santos, Marcus V. S. Siqueira

Abstract:

In the contemporary globalization, the competitiveness generated in the search of new markets aiming at the growth of productivity and, consequently, of profits, implies the redefinition of productive processes and new forms of work organization. As a result of this structuring, unemployment, labor force turnover and the increase in outsourcing and informal work occur. Considering the different relationships and working conditions of outsourced employees, this study aims to identify the most present stressors among outsourced service providers from a Federal Institution of Higher Education in Brazil. To reach this objective, a descriptive exploratory study with a quantitative approach was carried out. The qualitative approach was chosen to provide an in-depth analysis of the occupational conditions of outsourced workers since this method seeks to focus on the social as a world of investigated meanings and the language or speech of each subject as the object of this approach. The survey was conducted in the city of Montes Claros - Minas Gerais (Brazil) and involved eighty workers from companies hired by the institution, including armed security guards, porters, cleaners, drivers, gardeners, and administrative assistants. The choice of professionals obeyed non-probabilistic criteria for convenience or accessibility. Data collection was performed by means of a structured questionnaire composed of sixty questions, in a Likert-type frequency interval scale format, in order to identify potential organizational stressors. The results obtained evidence that the stress factors pointed out by the workers are, in most cases, a determining factor due to the low productive performance at work. Amongst the factors associated with stress, the ones that stood out most were those related to organizational communication failures, the incentive to competition, lack of expectations of professional growth, insecurity and job instability. Based on the results, the need for greater concern and organizational responsibility with the well-being and mental health of the outsourced worker and the recognition of their physical and psychological limitations, and care that goes beyond the functional capacity for the work. Specifically for the preservation of mental health, physical and quality of life, it is concluded that it is necessary for the professional to be inserted in the external world that favors it internally since this set is complemented so that the individual remains in balance and obtain satisfaction in your work.

Keywords: occupational health, outsourced, organizational studies, stressors

Procedia PDF Downloads 103
659 Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry

Authors: Fangyan Li, Lin Min Lee, Hui Zhu Peh, Shoet Harn Chan

Abstract:

Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food.

Keywords: advantame, food, LC-MS/MS, sweetener

Procedia PDF Downloads 474
658 Effect of Ease of Doing Business to Economic Growth among Selected Countries in Asia

Authors: Teodorica G. Ani

Abstract:

Economic activity requires an encouraging regulatory environment and effective rules that are transparent and accessible to all. The World Bank has been publishing the annual Doing Business reports since 2004 to investigate the scope and manner of regulations that enhance business activity and those that constrain it. A streamlined business environment supporting the development of competitive small and medium enterprises (SMEs) may expand employment opportunities and improve the living conditions of low income households. Asia has emerged as one of the most attractive markets in the world. Economies in East Asia and the Pacific were among the most active in making it easier for local firms to do business. The study aimed to describe the ease of doing business and its effect to economic growth among selected economies in Asia for the year 2014. The study covered 29 economies in East Asia, Southeast Asia, South Asia and Middle Asia. Ease of doing business is measured by the Doing Business indicators (DBI) of the World Bank. The indicators cover ten aspects of the ease of doing business such as starting a business, dealing with construction permits, getting electricity, registering property, getting credit, protecting investors, paying taxes, trading across borders, enforcing contracts and resolving insolvency. In the study, Gross Domestic Product (GDP) was used as the proxy variable for economic growth. Descriptive research was the research design used. Graphical analysis was used to describe the income and doing business among selected economies. In addition, multiple regression was used to determine the effect of doing business to economic growth. The study presented the income among selected economies. The graph showed China has the highest income while Maldives produces the lowest and that observation were supported by gathered literatures. The study also presented the status of the ten indicators of doing business among selected economies. The graphs showed varying trends on how easy to start a business, deal with construction permits and to register property. Starting a business is easiest in Singapore followed by Hong Kong. The study found out that the variations in ease of doing business is explained by starting a business, dealing with construction permits and registering property. Moreover, an explanation of the regression result implies that a day increase in the average number of days it takes to complete a procedure will decrease the value of GDP in general. The research proposed inputs to policy which may increase the awareness of local government units of different economies on the simplification of the policies of the different components used in measuring doing business.

Keywords: doing business, economic growth, gross domestic product, Asia

Procedia PDF Downloads 378
657 Economic Efficiency of Cassava Production in Nimba County, Liberia: An Output-Oriented Approach

Authors: Kollie B. Dogba, Willis Oluoch-Kosura, Chepchumba Chumo

Abstract:

In Liberia, many of the agricultural households cultivate cassava for either sustenance purposes, or to generate farm income. Many of the concentrated cassava farmers reside in Nimba, a north-eastern County that borders two other economies: the Republics of Cote D’Ivoire and Guinea. With a high demand for cassava output and products in emerging Asian markets coupled with an objective of the Liberia agriculture policies to increase the competitiveness of valued agriculture crops; there is a need to examine the level of resource-use efficiency for many agriculture crops. However, there is a scarcity of information on the efficiency of many agriculture crops, including cassava. Hence the study applying an output-oriented method seeks to assess the economic efficiency of cassava farmers in Nimba County, Liberia. A multi-stage sampling technique was employed to generate a sample for the study. From 216 cassava farmers, data related to on-farm attributes, socio-economic and institutional factors were collected. The stochastic frontier models, using the Translog functional forms, of production and revenue, were used to determine the level of revenue efficiency and its determinants. The result showed that most of the cassava farmers are male (60%). Many of the farmers are either married, engaged or living together with a spouse (83%), with a mean household size of nine persons. Farmland is prevalently obtained by inheritance (95%), average farm size is 1.34 hectares, and most cassava farmers did not access agriculture credits (76%) and extension services (91%). The mean cassava output per hectare is 1,506.02 kg, which estimates average revenue of L$23,551.16 (Liberian dollars). Empirical results showed that the revenue efficiency of cassava farmers varies from 0.1% to 73.5%; with the mean revenue efficiency of 12.9%. This indicates that on average, there is a vast potential of 87.1% to increase the economic efficiency of cassava farmers in Nimba by improving technical and allocative efficiencies. For the significant determinants of revenue efficiency, age and group membership had negative effects on revenue efficiency of cassava production; while farming experience, access to extension, formal education, and average wage rate have positive effects. The study recommends the setting-up and incentivizing of farmer field schools for cassava farmers to primarily share their farming experiences with others and to learn robust cultivation techniques of sustainable agriculture. Also, farm managers and farmers should consider a fix wage rate in labor contracts for all stages of cassava farming.

Keywords: economic efficiency, frontier production and revenue functions, Nimba County, Liberia, output-oriented approach, revenue efficiency, sustainable agriculture

Procedia PDF Downloads 123
656 Low Impact Development Strategies Applied in the Water System Planning in the Coastal Eco-Green Campus

Authors: Ying Li, Zaisheng Hong, Weihong Wang

Abstract:

With the rapid enlargement of the size of Chinese universities, newly built campuses are springing up everywhere in recent years. It is urged to build eco-green campus because the role of higher education institutions in the transition to a more sustainable society has been highlighted for almost three decades. On condition that a new campus is usually built on an undeveloped site, where the basic infrastructure is not completed, finding proper strategies in planning and design of the campus becomes a primary concern. Low Impact Development (LID) options have been proposed as an alternative approach to make better use of rainwater in planning and design of an undeveloped site. On the basis of analyzing the natural circumstance, geographic condition, and other relative information, four main LID approaches are coordinated in this study of Hebei Union University, which are ‘Storage’, ‘Retaining’, ‘Infiltration’ and ‘Purification’. ‘Storage’ refers to a big central lake in the campus for rainwater harvesting. ‘Retaining’ means rainwater gardens scattered in the campus, also being known as bioretention areas which mimic the naturally created pools of water, to decrease surface flow runoff. ‘Infiltration’ is designed of grassed swales, which also play a part of floodway channel. ‘Purification’ is known as either natural or artificial wetland to reduce pollutants such as nitrogen and phosphorous in the waterbody. With above mentioned measures dealing with the synthetic use of rainwater in the acid & alkali area in the coastal district, an eco-green campus construction and an ecological sustainability will be realized, which will give us more enlightenment and reference.

Keywords: newly built campus, low impact development, planning design, rainwater reuse

Procedia PDF Downloads 247
655 Analysis of Unconditional Conservatism and Earnings Quality before and after the IFRS Adoption

Authors: Monica Santi, Evita Puspitasari

Abstract:

International Financial Reporting Standard (IFRS) has developed the principle based accounting standard. Based on this, IASB then eliminated the conservatism concept within accounting framework. Conservatism concept represents a prudent reaction to uncertainty to try to ensure that uncertainties and risk inherent in business situations are adequately considered. The conservatism concept has two ingredients: conditional conservatism or ex-post (news depending prudence) and unconditional conservatism or ex-ante (news-independent prudence). IFRS in substance disregards the unconditional conservatism because the unconditional conservatism can cause the understatement assets or overstated liabilities, and eventually the financial statement would be irrelevance since the information does not represent the real fact. Therefore, the IASB eliminate the conservatism concept. However, it does not decrease the practice of unconditional conservatism in the financial statement reporting. Therefore, we expected the earnings quality would be affected because of this situation, even though the IFRS implementation was expected to increase the earnings quality. The objective of this study was to provide empirical findings about the unconditional conservatism and the earnings quality before and after the IFRS adoption. The earnings per accrual measure were used as the proxy for the unconditional conservatism. If the earnings per accrual were negative (positive), it meant the company was classified as the conservative (not conservative). The earnings quality was defined as the ability of the earnings in reflecting the future earnings by considering the earnings persistence and stability. We used the earnings response coefficient (ERC) as the proxy for the earnings quality. ERC measured the extant of a security’s abnormal market return in response to the unexpected component of reporting earning of the firm issuing that security. The higher ERC indicated the higher earnings quality. The manufacturing companies listed in the Indonesian Stock Exchange (IDX) were used as the sample companies, and the 2009-2010 period was used to represent the condition before the IFRS adoption, and 2011-2013 was used to represent the condition after the IFRS adoption. Data was analyzed using the Mann-Whitney test and regression analysis. We used the firm size as the control variable with the consideration the firm size would affect the earnings quality of the company. This study had proved that the unconditional conservatism had not changed, either before and after the IFRS adoption period. However, we found the different findings for the earnings quality. The earnings quality had decreased after the IFRS adoption period. This empirical results implied that the earnings quality before the IFRS adoption was higher. This study also had found that the unconditional conservatism positively influenced the earnings quality insignificantly. The findings implied that the implementation of the IFRS had not decreased the unconditional conservatism practice and has not altered the earnings quality of the manufacturing company. Further, we found that the unconditional conservatism did not affect the earnings quality. Eventhough the empirical result shows that the unconditional conservatism gave positive influence to the earnings quality, but the influence was not significant. Thus, we concluded that the implementation of the IFRS did not increase the earnings quality.

Keywords: earnings quality, earnings response coefficient, IFRS Adoption, unconditional conservatism

Procedia PDF Downloads 257
654 Enhancement of Biomass and Bioactive Compounds in Kale Subjected to UV-A LED Lights

Authors: Jin-Hui Lee, Myung-Min Oh

Abstract:

The application of temporary abiotic stresses before crop harvest is a potential strategy to enhance phytochemical content. The objective of this study was to determine the effect of various UV-A LED lights on the growth and content of bioactive compounds in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were cultivated in a plant factory with artificial lighting (air temperature of 20℃, relative humidity of 60%, photosynthesis photon flux density (PPFD) of 125 µmol·m⁻²·s⁻¹) for 3 weeks. Kale plants were irradiated by four types of UV-A LEDs (peak wavelength; 365, 375, 385, and 395 nm) with 30 W/m² for 7 days. As a result, image chlorophyll fluorescence (Fv/Fm) value of kale leaves was lower as the UV-A LEDs peak wavelength was shorter. Fresh and dry weights of shoots and roots of kale plants were significantly higher in the plants under UV-A than the control at 7 days of treatment. In particular, the growth was significantly increased with a longer peak wavelength of the UV-A LEDs. The results of leaf area and specific leaf weight showed a similar pattern with those of growth characteristics. Chlorophyll content was highest in kale leaves subjected to UV-A LEDs with the peak wavelength of 395 nm at 3 days of treatment compared with the control. Total phenolic contents of UV-A LEDs with the peak wavelength of 395 nm at 5 and 6 days of treatment were 44% and 47% higher than those of the control, respectively. Antioxidant capacity showed almost the same pattern as the results of total phenol content. The activity of phenylalanine ammonia-lyase was approximately 11% and 8% higher in the UV-A LEDs with the peak wavelength of 395 nm compared to the control at 5 and 6 days of treatment, respectively. Our results imply that the UV-A LEDs with relative longer peak wavelength were effective to improve growth as well as the content of bioactive compounds of kale plants.

Keywords: bioactive compounds, growth, Kale, UV-A LEDs

Procedia PDF Downloads 141
653 The Superior Performance of Investment Bank-Affiliated Mutual Funds

Authors: Michelo Obrey

Abstract:

Traditionally, mutual funds have long been esteemed as stand-alone entities in the U.S. However, the prevalence of the fund families’ affiliation to financial conglomerates is eroding this striking feature. Mutual fund families' affiliation with financial conglomerates can potentially be an important source of superior performance or cost to the affiliated mutual fund investors. On the one hand, financial conglomerates affiliation offers the mutual funds access to abundant resources, better research quality, private material information, and business connections within the financial group. On the other hand, conflict of interest is bound to arise between the financial conglomerate relationship and fund management. Using a sample of U.S. domestic equity mutual funds from 1994 to 2017, this paper examines whether fund family affiliation to an investment bank help the affiliated mutual funds deliver superior performance through private material information advantage possessed by the investment banks or it costs affiliated mutual fund shareholders due to the conflict of interest. Robust to alternative risk adjustments and cross-section regression methodologies, this paper finds that the investment bank-affiliated mutual funds significantly outperform those of the mutual funds that are not affiliated with an investment bank. Interestingly the paper finds that the outperformance is confined to holding return, a return measure that captures the investment talent that is uninfluenced by transaction costs, fees, and other expenses. Further analysis shows that the investment bank-affiliated mutual funds specialize in hard-to-value stocks, which are not more likely to be held by unaffiliated funds. Consistent with the information advantage hypothesis, the paper finds that affiliated funds holding covered stocks outperform affiliated funds without covered stocks lending no support to the hypothesis that affiliated mutual funds attract superior stock-picking talent. Overall, the paper findings are consistent with the idea that investment banks maximize fee income by monopolistically exploiting their private information, thus strategically transferring performance to their affiliated mutual funds. This paper contributes to the extant literature on the agency problem in mutual fund families. It adds to this stream of research by showing that the agency problem is not only prevalent in fund families but also in financial organizations such as investment banks that have affiliated mutual fund families. The results show evidence of exploitation of synergies such as private material information sharing that benefit mutual fund investors due to affiliation with a financial conglomerate. However, this research has a normative dimension, allowing such incestuous behavior of insider trading and exploitation of superior information not only negatively affect the unaffiliated fund investors but also led to an unfair and unleveled playing field in the financial market.

Keywords: mutual fund performance, conflicts of interest, informational advantage, investment bank

Procedia PDF Downloads 187
652 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 127
651 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 356
650 Governing Ecosystem Services for Poverty Reduction: Empirical Evidences from Purulia District, India

Authors: Soma Sarkar

Abstract:

A number of authors have recently argued that there are strong links between ecosystem services and sustainable development, particularly development efforts that aim to reduce rural poverty. We see two distinct routes by which the science of ecosystem services can contribute to both nature conservation and sustainable development. First, a thorough accounting of ecosystem services and a better understanding of how and at what rates ecosystems produce these services can be used to motivate payment for nature conservation. At least part of the generated funds can be used to compensate people who suffer lost economic opportunities to protect these services. For example, if rural poor are asked to take actions that reduce farm productivity to protect and regulate water supply, those farmers could be compensated for the reduced productivity they experience. When the benefits of natural ecosystems are explicitly quantified, those benefits are more valued both by the people who directly interact with the ecosystems and the governmental and other agencies that would have to pay for substitute sources of these services if these ecosystems should become impaired. Appreciating the value of ecosystem services can motivate increased conservation investment to prevent having to pay for substitutes later. This approach could be characterized as a ‘‘government investment’’ approach because the payments will generally come from beneficiaries outside of the local area, and a governmental or other agency is typically responsible for collecting and redistributing the funds. Second, a focus on the conservation of ecosystem services could improve the success of projects that attempt to both conserve nature and improve the welfare of the rural poor by fostering markets for the goods and services that local people produce or extract from ecosystems. These projects could be characterized as more ‘‘community based’’ because the goal is to foster the more organic, or grassroots, development of cottage industries, such as ecotourism, or the production of non-timber forest products, that are enhanced by better protection of local ecosystems. Using this framework, we discuss the factors that may have contributed to failure or success for several projects in the district of Purulia, one of the most backward districts of India and inhabited by indigenous group of people. A large majority of people in this district are dependent on environment based incomes for their sustenance. The erosion of natural resource base owing to poor governance in the district has led to the reductions in the household incomes of these people. The scale of our analysis is local or project level. The plight of poor has little to do with the production functions of ecosystem services. But for rural poor, at the local level, the status of ecosystem services can make a big difference in their daily lives.

Keywords: ecosystem services, governance, rural poor, community based natural resource management

Procedia PDF Downloads 372
649 Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India

Authors: Chakraborty Sudipta, A. R. Kambekar, Sarma Arnab

Abstract:

Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-à-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model.

Keywords: climate change, Coastal Vulnerability Index, global warming, sea level rise

Procedia PDF Downloads 130
648 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization

Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller

Abstract:

The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.

Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization

Procedia PDF Downloads 32
647 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 31
646 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok

Authors: Noriyuki Suyama

Abstract:

The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.

Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior

Procedia PDF Downloads 88
645 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 276
644 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 48
643 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality

Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya

Abstract:

Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.

Keywords: augmented reality, data analytics, catch room, marketing and sales

Procedia PDF Downloads 236
642 Option Pricing Theory Applied to the Service Sector

Authors: Luke Miller

Abstract:

This paper develops an options pricing methodology to value strategic pricing strategies in the services sector. More specifically, this study provides a unifying taxonomy of current service sector pricing practices, frames these pricing decisions as strategic real options, demonstrates accepted option valuation techniques to assess service sector pricing decisions, and suggests future research areas where pricing decisions and real options overlap. Enhancing revenue in the service sector requires proactive decision making in a world of uncertainty. In an effort to strategically price service products, revenue enhancement necessitates a careful study of the service costs, customer base, competition, legalities, and shared economies with the market. Pricing decisions involve the quality of inputs, manpower, and best practices to maintain superior service. These decisions further hinge on identifying relevant pricing strategies and understanding how these strategies impact a firm’s value. A relatively new area of research applies option pricing theory to investments in real assets and is commonly known as real options. The real options approach is based on the premise that many corporate decisions to invest or divest in assets are simply an option wherein the firm has the right to make an investment without any obligation to act. The decision maker, therefore, has more flexibility and the value of this operating flexibility should be taken into consideration. The real options framework has already been applied to numerous areas including manufacturing, inventory, natural resources, research and development, strategic decisions, technology, and stock valuation. Additionally, numerous surveys have identified a growing need for the real options decision framework within all areas of corporate decision-making. Despite the wide applicability of real options, no study has been carried out linking service sector pricing decisions and real options. This is surprising given the service sector comprises 80% of the US employment and Gross Domestic Product (GDP). Identifying real options as a practical tool to value different service sector pricing strategies is believed to have a significant impact on firm decisions. This paper identifies and discusses four distinct pricing strategies available to the service sector from an options’ perspective: (1) Cost-based profit margin, (2) Increased customer base, (3) Platform pricing, and (4) Buffet pricing. Within each strategy lie several pricing tactics available to the service firm. These tactics can be viewed as options the decision maker has to best manage a strategic position in the market. To demonstrate the effectiveness of including flexibility in the pricing decision, a series of pricing strategies were developed and valued using a real options binomial lattice structure. The options pricing approach discussed in this study allows service firms to directly incorporate market-driven perspectives into the decision process and thus synchronizing service operations with organizational economic goals.

Keywords: option pricing theory, real options, service sector, valuation

Procedia PDF Downloads 354
641 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 80
640 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 136
639 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 209
638 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 62
637 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study

Authors: Nejoud Alostad, Anup Bora, Prashant Dhote

Abstract:

Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.

Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation

Procedia PDF Downloads 196