Search results for: Design techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18350

Search results for: Design techniques

15290 Design of Reconfigurable and Non-reciprocal Metasurface with Independent Controls of Transmission Gain, Attenuation and Phase

Authors: Shi Yu Wang, Qian Wei Zhang, He Li, Hao Han He, Yun Bo Li

Abstract:

The spatial controls of electromagnetic (EM) waves have always been a research hot spot in recent years. And the rapid development of metasurface-based technologies has provided more freedoms for manipulating the EM waves. Here we propose the design of reconfigurable and non-reciprocal metasurface with independent controls of transmission gain, attenuation and phase. The proposed meta-atom mainly consists of the cascaded textures including the receiving antenna, the middle layer in which the power amplifiers (PAs), programmable attenuator and phase shifter locate, and the transmitting antenna. The programmable attenuator and phase shifter can realize the dynamic controls of transmission amplitude and phase independently, and the PA devices in the meta-atom can actualize the performance of non-reciprocal transmission. The proposed meta-atom is analyzed applying field-circuit co-simulation and a sample of the meta-atom is fabricated and measured under using two standard waveguides. The measured results verify the ability of the independent manipulation for transmission amplitude and phase of the proposed the meta-atom and the design method has been verified very well correspondingly.

Keywords: active circuits, independent controls of multiple electromagnetic features, non-reciprocal electromagnetic transmission, reconfigurable and programmable

Procedia PDF Downloads 84
15289 Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View

Authors: T. Häfele, J. Kaspar, M. Vielhaber, W. Calles, J. Griebsch

Abstract:

The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.

Keywords: additive manufacturing, fiber-reinforced plastics (FRP), hybrid design, lightweight design

Procedia PDF Downloads 300
15288 Young People, the Internet and Inequality: What are the Causes and Consequences of Exclusion?

Authors: Albin Wallace

Abstract:

Part of the provision within educational institutions is the design, commissioning and implementation of ICT facilities to improve teaching and learning. Inevitably, these facilities focus largely on Internet Protocol (IP) based provisions including access to the World Wide Web, email, interactive software and hardware tools. Educators should be committed to the use of ICT to improve learning and teaching as well as to issues relating to the Internet and educational disadvantage, especially with respect to access and exclusion concerns. In this paper I examine some recent research into the issue of inequality and use of the Internet during which I discuss the causes and consequences of exclusion in the context of social inequality, digital literacy and digital inequality, also touching on issues of global inequality.

Keywords: inequality, internet, education, design

Procedia PDF Downloads 492
15287 Numerical Study for Improving Performance of Air Cooled Proton Exchange Membrane Fuel Cell on the Cathode Channel

Authors: Mohamed Hassan Gundu, Jaeseung Lee, Muhammad Faizan Chinannai, Hyunchul Ju

Abstract:

In this study, we present the effects of bipolar plate design to control the temperature of the cell and ensure effective water management under an excessive amount of air flow and low humidification conditions in the proton exchange membrane fuel cell (PEMFC). The PEMFC model developed and applied to consider a three type of bipolar plate that is defined by ratio of inlet channel width to outlet channel width. Simulation results show that the design which has narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width) make the relative humidity and water concentration increase in the channel and the catalyst layer. Therefore, this study clearly demonstrates that the dehydration phenomenon can be decreased by using design of bipolar plate with narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width).

Keywords: PEMFC, air-cooling, relative humidity, water management, water concentration, oxygen concentration

Procedia PDF Downloads 299
15286 Analyzing the Shearing-Layer Concept Applied to Urban Green System

Authors: S. Pushkar, O. Verbitsky

Abstract:

Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities, and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bio-climatic and passive solar aspects.

Keywords: green rating system, urban community, sustainable design, standardization, shearing-layer concept, passive solar architecture

Procedia PDF Downloads 583
15285 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 110
15284 Innovative Housing Construction Technologies in Slum Upgrading

Authors: Edmund M. Muthigani

Abstract:

Innovation in the construction industry has been characterized by new products and processes especially in slum upgrading. The need for low cost housing has motivated stakeholders to think outside the box in coming up with solutions. This paper explored innovative construction technologies that have been used in slum upgrading. The main objectives of the paper was to examine innovations in the construction housing sector and to show how incremental derived demand for decent housing has led to adoption of innovative technologies and materials. Systematic literature review was used to review studies on innovative construction technologies in slum upgrading. The review revealed slow process of innovations in the construction industry due to risk aversion by firms and the hesitance to adopt by firms and individuals. Low profit margins in low cost housing and lack of sufficient political support remain the major hurdles to innovative techniques adoption that can actualize right to decent housing. Conventional construction materials have remained unaffordable to many people and this has negated them decent housing. This has necessitated exploration of innovative materials to realize low cost housing. Stabilized soil blocks and sisal-cement roofing blocks are some of the innovative construction materials that have been utilized in slum upgrading. These innovative materials have not only lowered the cost of production of building elements but also eased costs of transport as the raw materials to produce them are readily available in or within the slum sites. Despite their shortcomings in durability and compressive strength, they have proved worthwhile in slum upgrading. Production of innovative construction materials and use of innovative techniques in slum upgrading also provided employment to the locals.

Keywords: construction, housing, innovation, slum, technology

Procedia PDF Downloads 216
15283 Making of Alloy Steel by Direct Alloying with Mineral Oxides during Electro-Slag Remelting

Authors: Vishwas Goel, Kapil Surve, Somnath Basu

Abstract:

In-situ alloying in steel during the electro-slag remelting (ESR) process has already been achieved by the addition of necessary ferroalloys into the electro-slag remelting mold. However, the use of commercially available ferroalloys during ESR processing is often found to be financially less favorable, in comparison with the conventional alloying techniques. However, a process of alloying steel with elements like chromium and manganese using the electro-slag remelting route is under development without any ferrochrome addition. The process utilizes in-situ reduction of refined mineral chromite (Cr₂O₃) and resultant enrichment of chromium in the steel ingot produced. It was established in course of this work that this process can become more advantageous over conventional alloying techniques, both economically and environmentally, for applications which inherently demand the use of the electro-slag remelting process, such as manufacturing of superalloys. A key advantage is the lower overall CO₂ footprint of this process relative to the conventional route of production, storage, and the addition of ferrochrome. In addition to experimentally validating the feasibility of the envisaged reactions, a mathematical model to simulate the reduction of chromium (III) oxide and transfer to chromium to the molten steel droplets was also developed as part of the current work. The developed model helps to correlate the amount of chromite input and the magnitude of chromium alloying that can be achieved through this process. Experiments are in progress to validate the predictions made by this model and to fine-tune its parameters.

Keywords: alloying element, chromite, electro-slag remelting, ferrochrome

Procedia PDF Downloads 227
15282 Green Roofs and Xeriscape Planting that Contribute to Sustainable Urban Green Space

Authors: Derya Sarı, Banu Karasah

Abstract:

In the recent years, urban green areas decrease dramatically as a result of increasing industrialization and population growth. At the same time, green spaces provide many ecosystem services such as controls of air pollution, noise reduction, prevents flooding and reduces the stress in the urban areas. Therefore, the plants help to these areas to get more livable and active, and also plants are one of the most significant identity elements in these open spaces. Roof gardens comes significant design comprehension as a result of global warming and also they contribute to cities with regard to ecological, economic, visual and recreational aspects. This study is mainly based on evaluation potential of green roofs and xeriscape planting design approach of Artvin (Turkey) known that generally has a remarkable floristic richness. Artvin is located on a sloping terrain, and the amount of green spaces that can be used is very limited in this city. Therefore, green roofs approach should be evaluated to supply urban green space sustainability. This study shows that it is appropriate about 20 perennial plants for green roofs and xeriscape planting design in Artvin city center. Usage of native plant species would be support to sustainable urban green spaces.

Keywords: Artvin, green roofs, urban green spaces, xeriscape planting

Procedia PDF Downloads 476
15281 On the Creep of Concrete Structures

Authors: A. Brahma

Abstract:

Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures.

Keywords: concrete structure, creep, modelling, prediction

Procedia PDF Downloads 299
15280 Journal Bearing with Controllable Radial Clearance, Design and Analysis

Authors: Majid Rashidi, Shahrbanoo Farkhondeh Biabnavi

Abstract:

The hydrodynamic instability phenomenon in a journal bearing may occur by either a reduction in the load carried by journal bearing, by an increase in the journal speed, by change in the lubricant viscosity, or a combination of these factors. The previous research and development work done to overcome the instability issue of journal bearings, operating in hydrodynamic lubricate regime, can be categorized as follows: A) Actively controlling the bearing sleeve by using piezo actuator, b) Inclusion of strategically located and shaped internal grooves within inner surface of the bearing sleeve, c) Actively controlling the bearing sleeve using an electromagnetic actuator, d)Actively and externally pressurizing the lubricant within a journal bearing set, and e)Incorporating tilting pads within the inner surface of the bearing sleeve that assume different equilibrium angular position in response to changes in the bearing design parameter such as speed and load. This work presents an innovative design concept for a 'smart journal bearing' set to operate in a stable hydrodynamic lubrication regime, despite variations in bearing speed, load, and its lubricant viscosity. The proposed bearing design allows adjusting its radial clearance for an attempt to maintain a stable bearing operation under those conditions that may cause instability for a bearing with a fixed radial clearance. The design concept allows adjusting the radial clearance at small increments in the order of 0.00254 mm. This is achieved by axially moving two symmetric conical rigid cavities that are in close contact with the conically shaped outer shell of a sleeve bearing. The proposed work includes a 3D model of the bearing that depicts the structural interactions of the bearing components. The 3D model is employed to conduct finite element Analyses to simulate the mechanical behavior of the bearing from a structural point of view. The concept of controlling of the radial clearance, as presented in this work, is original and has not been proposed and discuss in previous research. A typical journal bearing was analyzed under a set of design parameters, namely r =1.27 cm (journal radius), c = 0.0254 mm (radial clearance), L=1.27 cm (bearing length), w = 445N (bearing load), μ = 0.028 Pascale (lubricant viscosity). A shaft speed as 3600 r.p.m was considered, and the mass supported by the bearing, m, is set to be 4.38kg. The Summerfield Number associated with the above bearing design parameters turn to be, S=0.3. These combinations resulted in stable bearing operation. Subsequently, the speed was postulated to increase from 3600 r.p.mto 7200 r.p.m; the bearing was found to be unstable under the new increased speed. In order to regain stability, the radial clearance was increased from c = 0.0254 mm to0.0358mm. The change in the radial clearance was shown to bring the bearing back to stable an operating condition.

Keywords: adjustable clearance, bearing, hydrodynamic, instability, journal

Procedia PDF Downloads 286
15279 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 194
15278 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant

Authors: Lucero Luciano, Cesar Celis, Jose Ramos

Abstract:

Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.

Keywords: desalination, design and integration, polygeneration systems, renewable energy

Procedia PDF Downloads 129
15277 Rhythm-Reading Success Using Conversational Solfege

Authors: Kelly Jo Hollingsworth

Abstract:

Conversational Solfege, a research-based, 12-step music literacy instructional method using the sound-before-sight approach, was used to teach rhythm-reading to 128-second grade students at a public school in the southeastern United States. For each step, multiple scripted techniques are supplied to teach each skill. Unit one was the focus of this study, which is quarter note and barred eighth note rhythms. During regular weekly music instruction, students completed method steps one through five, which includes aural discrimination, decoding familiar and unfamiliar rhythm patterns, and improvising rhythmic phrases using quarter notes and barred eighth notes. Intact classes were randomly assigned to two treatment groups for teaching steps six through eight, which was the visual presentation and identification of quarter notes and barred eighth notes, visually presenting and decoding familiar patterns, and visually presenting and decoding unfamiliar patterns using said notation. For three weeks, students practiced steps six through eight during regular weekly music class. One group spent five-minutes of class time on steps six through eight technique work, while the other group spends ten-minutes of class time practicing the same techniques. A pretest and posttest were administered, and ANOVA results reveal both the five-minute (p < .001) and ten-minute group (p < .001) reached statistical significance suggesting Conversational Solfege is an efficient, effective approach to teach rhythm-reading to second grade students. After two weeks of no instruction, students were retested to measure retention. Using a repeated-measures ANOVA, both groups reached statistical significance (p < .001) on the second posttest, suggesting both the five-minute and ten-minute group retained rhythm-reading skill after two weeks of no instruction. Statistical significance was not reached between groups (p=.252), suggesting five-minutes is equally as effective as ten-minutes of rhythm-reading practice using Conversational Solfege techniques. Future research includes replicating the study with other grades and units in the text.

Keywords: conversational solfege, length of instructional time, rhythm-reading, rhythm instruction

Procedia PDF Downloads 163
15276 Design of Mobile Teaching for Students Collaborative Learning in Distance Higher Education

Authors: Lisbeth Amhag

Abstract:

The aim of the study is to describe and analyze the design of mobile teaching for students collaborative learning in distance higher education with a focus on mobile technologies as online webinars (web-based seminars or conferencing) by using laptops, smart phones, or tablets. These multimedia tools can provide face-to-face interactions, recorded flipped classroom videos and parallel chat communications. The data collection consists of interviews with 22 students and observations of online face-to-face webinars, as well two surveys. Theoretically, the study joins the research tradition of Computer Supported Collaborative learning, CSCL, as well as Computer Self-Efficacy, CSE concerned with individuals’ media and information literacy. Important conclusions from the study demonstrated mobile interactions increased student centered learning. As the students were appreciating the working methods, they became more engaged and motivated. The mobile technology using among student also contributes to increased flexibility between space and place, as well as media and information literacy.

Keywords: computer self-efficacy, computer supported collaborative learning, distance and open learning, educational design and technologies, media and information literacy, mobile learning

Procedia PDF Downloads 360
15275 A Mixed Method Design to Studying the Effects of Lean Production on Job Satisfaction and Health Work in a French Context

Authors: Gregor Bouville, Celine Schmidt

Abstract:

This article presents a French case study on lean production drawing on a mixed method design which has received little attention in French management research-especially in French human resources research. The purpose is to show that using a mixed method approach in this particular case overstep the limitations of previous studies in lean production studies. The authors use the embedded design as a special articulation of mixed method to analyse and understand the effects of three organizational practices on job satisfaction and workers’ health. Results show that low scheduled autonomy, quality management, time constraint have deleterious effects on job satisfaction. Furthermore, these three practices have ambivalent effects on health work. Interest in the subjects of mixed method has been growing up among French health researchers and practioners, also recently among French management researchers. This study reinforces and refines how mixed methods may offer interesting perspectives in an integrated framework included human resources, management, and health fields. Finally, potentials benefits and limits for those interdisciplinary researches programs are discussed.

Keywords: lean production, mixed method, work organization practices, job satisfaction

Procedia PDF Downloads 361
15274 Iterative Reconstruction Techniques as a Dose Reduction Tool in Pediatric Computed Tomography Imaging: A Phantom Study

Authors: Ajit Brindhaban

Abstract:

Background and Purpose: Computed Tomography (CT) scans have become the largest source of radiation in radiological imaging. The purpose of this study was to compare the quality of pediatric Computed Tomography (CT) images reconstructed using Filtered Back Projection (FBP) with images reconstructed using different strengths of Iterative Reconstruction (IR) technique, and to perform a feasibility study to assess the use of IR techniques as a dose reduction tool. Materials and Methods: An anthropomorphic phantom representing a 5-year old child was scanned, in two stages, using a Siemens Somatom CT unit. In stage one, scans of the head, chest and abdomen were performed using standard protocols recommended by the scanner manufacturer. Images were reconstructed using FBP and 5 different strengths of IR. Contrast-to-Noise Ratios (CNR) were calculated from average CT number and its standard deviation measured in regions of interest created in the lungs, bone, and soft tissues regions of the phantom. Paired t-test and the one-way ANOVA were used to compare the CNR from FBP images with IR images, at p = 0.05 level. The lowest strength value of IR that produced the highest CNR was identified. In the second stage, scans of the head was performed with decreased mA(s) values relative to the increase in CNR compared to the standard FBP protocol. CNR values were compared in this stage using Paired t-test at p = 0.05 level. Results: Images reconstructed using IR technique had higher CNR values (p < 0.01.) in all regions compared to the FBP images, at all strengths of IR. The CNR increased with increasing IR strength of up to 3, in the head and chest images. Increases beyond this strength were insignificant. In abdomen images, CNR continued to increase up to strength 5. The results also indicated that, IR techniques improve CNR by a up to factor of 1.5. Based on the CNR values at strength 3 of IR images and CNR values of FBP images, a reduction in mA(s) of about 20% was identified. The images of the head acquired at 20% reduced mA(s) and reconstructed using IR at strength 3, had similar CNR as FBP images at standard mA(s). In the head scans of the phantom used in this study, it was demonstrated that similar CNR can be achieved even when the mA(s) is reduced by about 20% if IR technique with strength of 3 is used for reconstruction. Conclusions: The IR technique produced better image quality at all strengths of IR in comparison to FBP. IR technique can provide approximately 20% dose reduction in pediatric head CT while maintaining the same image quality as FBP technique.

Keywords: filtered back projection, image quality, iterative reconstruction, pediatric computed tomography imaging

Procedia PDF Downloads 152
15273 Geomatic Techniques to Filter Vegetation from Point Clouds

Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades

Abstract:

More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.

Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud

Procedia PDF Downloads 162
15272 Site Specific Ground Response Estimations for the Vulnerability Assessment of the Buildings of the Third Biggest Mosque in the World, Algeria’s Mosque

Authors: S. Mohamadi, T. Boudina, A. Rouabeh, A. Seridi

Abstract:

Equivalent linear and non-linear ground response analyses are conducted at many representative sites at the mosque of Algeria, to compare the free field acceleration spectra with local code of practice. Spectral Analysis of Surface Waves (SASW) technique was adopted to measure the in-situ shear wave velocity profile at the representative sites. The seismic movement imposed on the rock is the NS component of Keddara station recorded during the earthquake in Boumerdes 21 May 2003. The site-specific elastic design spectra for each site are determined to further obtain site specific non-linear acceleration spectra. As a case study, the results of site-specific evaluations are presented for two building sites (site of minaret and site of the prayer hall) to demonstrate the influence of local geological conditions on ground response at Algerian sites. A comparison of computed response with the standard code of practice being used currently in Algeria for the seismic zone of Algiers indicated that the design spectra is not able to capture site amplification due to local geological conditions.

Keywords: equivalent linear, non-linear, ground response analysis, design response spectrum

Procedia PDF Downloads 451
15271 Analytical Study and Conservation Processes of Scribe Box from Old Kingdom

Authors: Mohamed Moustafa, Medhat Abdallah, Ramy Magdy, Ahmed Abdrabou, Mohamed Badr

Abstract:

The scribe box under study dates back to the old kingdom. It was excavated by the Italian expedition in Qena (1935-1937). The box consists of 2pieces, the lid and the body. The inner side of the lid is decorated with ancient Egyptian inscriptions written with a black pigment. The box was made using several panels assembled together by wooden dowels and secured with plant ropes. The entire box is covered with a red pigment. This study aims to use analytical techniques in order to identify and have deep understanding for the box components. Moreover, the authors were significantly interested in using infrared reflectance transmission imaging (RTI-IR) to improve the hidden inscriptions on the lid. The identification of wood species included in this study. The visual observation and assessment were done to understand the condition of this box. 3Ddimensions and 2D programs were used to illustrate wood joints techniques. Optical microscopy (OM), X-ray diffraction (XRD), X-ray fluorescence portable (XRF) and Fourier Transform Infrared spectroscopy (FTIR) were used in this study in order to identify wood species, remains of insects bodies, red pigment, fibers plant and previous conservation adhesives, also RTI-IR technique was very effective to improve hidden inscriptions. The analysis results proved that wooden panels and dowels were identified as Acacia nilotica, wooden rail was Salix sp. the insects were identified as Lasioderma serricorne and Gibbium psylloids, the red pigment was Hematite, while the fiber plants were linen, previous adhesive was identified as cellulose nitrates. The historical study for the inscriptions proved that it’s a Hieratic writings of a funerary Text. After its transportation from the Egyptian museum storage to the wood conservation laboratory of the Grand Egyptian museum –conservation center (GEM-CC), conservation techniques were applied with high accuracy in order to restore the object including cleaning , consolidating of friable pigments and writings, removal of previous adhesive and reassembly, finally the conservation process that were applied were extremely effective for this box which became ready for display or storage in the grand Egyptian museum.

Keywords: scribe box, hieratic, 3D program, Acacia nilotica, XRD, cellulose nitrate, conservation

Procedia PDF Downloads 275
15270 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 232
15269 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis

Authors: Haider M. Alsaeq

Abstract:

The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.

Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element

Procedia PDF Downloads 394
15268 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 413
15267 An Investigation on Climate Responsive Design Strategies of Apartment Buildings in Athens of the Period 1920-1960s

Authors: Angeliki Chronopoulou, Eleni Alexandrou

Abstract:

This paper thoroughly investigates residential buildings of the period 1920 – 1960 in Athens and evaluates their bioclimatic response and energy performance. A methodology adapted to the specific context of the city is proposed and applied in order to assess and extract results related to the climate analysis of the city of Athens, the general/architectural design and construction characteristics of the apartment buildings constructed during the period 1920 – 1960, the bioclimatic strategies applied on them, and the achieved thermal comfort based on questionnaires answered by their users. The results of the current study indicate that the residential architecture of that period in the city of Athens is adapted to an extend to the local climate with various climate responsive strategies. As an outcome of the analysis, the most frequently applied depending on the period of construction are presented. For this reason, the examined period is divided into 3 sub – periods: 1st period 1920s – 1930s (late neoclassicism & eclecticism), 2nd period 1930s – 1940s (modernism), 3rd period 1940s – 1960s (postwar modernism).

Keywords: Athens, climatic design strategies, residential buildings, middle war and post war architecture, thermal comfort

Procedia PDF Downloads 106
15266 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 402
15265 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 124
15264 Effect of Plasma Treatment on UV Protection Properties of Fabrics

Authors: Sheila Shahidi

Abstract:

UV protection by fabrics has recently become a focus of great interest, particularly in connection with environmental degradation or ozone layer depletion. Fabrics provide simple and convenient protection against UV radiation (UVR), but not all fabrics offer sufficient UV protection. To describe the degree of UVR protection offered by clothing materials, the ultraviolet protection factor (UPF) is commonly used. UV-protective fabric can be generated by application of a chemical finish using normal wet-processing methodologies. However, traditional wet-processing techniques are known to consume large quantities of water and energy and may lead to adverse alterations of the bulk properties of the substrate. Recently, usage of plasmas to generate physicochemical surface modifications of textile substrates has become an intriguing approach to replace or enhance conventional wet-processing techniques. In this research work the effect of plasma treatment on UV protection properties of fabrics was investigated. DC magnetron sputtering was used and the parameters of plasma such as gas type, electrodes, time of exposure, power and, etc. were studied. The morphological and chemical properties of samples were analyzed using Scanning Electron Microscope (SEM) and Furrier Transform Infrared Spectroscopy (FTIR), respectively. The transmittance and UPF values of the original and plasma-treated samples were measured using a Shimadzu UV3101 PC (UV–Vis–NIR scanning spectrophotometer, 190–2, 100 nm range). It was concluded that, plasma which is an echo-friendly, cost effective and dry technique is being used in different branches of the industries, and will conquer textile industry in the near future. Also it is promising method for preparation of UV protection textile.

Keywords: fabric, plasma, textile, UV protection

Procedia PDF Downloads 523
15263 A New Design of Vacuum Membrane Distillation Module for Water Desalination

Authors: Adnan Alhathal Alanezi

Abstract:

The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%.

Keywords: desalination, vacuum membrane distillation, PTFE and PVDF, hydrophobic membranes, O-ring membrane module

Procedia PDF Downloads 93
15262 A Readiness Framework for Digital Innovation in Education: The Context of Academics and Policymakers in Higher Institutions of Learning to Assess the Preparedness of Their Institutions to Adopt and Incorporate Digital Innovation

Authors: Lufungula Osembe

Abstract:

The field of education has witnessed advances in technology and digital transformation. The methods of teaching have undergone significant changes in recent years, resulting in effects on various areas such as pedagogies, curriculum design, personalized teaching, gamification, data analytics, cloud-based learning applications, artificial intelligence tools, advanced plug-ins in LMS, and the emergence of multimedia creation and design. The field of education has not been immune to the changes brought about by digital innovation in recent years, similar to other fields such as engineering, health, science, and technology. There is a need to look at the variables/elements that digital innovation brings to education and develop a framework for higher institutions of learning to assess their readiness to create a viable environment for digital innovation to be successfully adopted. Given the potential benefits of digital innovation in education, it is essential to develop a framework that can assist academics and policymakers in higher institutions of learning to evaluate the effectiveness of adopting and adapting to the evolving landscape of digital innovation in education. The primary research question addressed in this study is to establish the preparedness of higher institutions of learning to adopt and adapt to the evolving landscape of digital innovation. This study follows a Design Science Research (DSR) paradigm to develop a framework for academics and policymakers in higher institutions of learning to evaluate the readiness of their institutions to adopt digital innovation in education. The Design Science Research paradigm is proposed to aid in developing a readiness framework for digital innovation in education. This study intends to follow the Design Science Research (DSR) methodology, which includes problem awareness, suggestion, development, evaluation, and conclusion. One of the major contributions of this study will be the development of the framework for digital innovation in education. Given the various opportunities offered by digital innovation in recent years, the need to create a readiness framework for digital innovation will play a crucial role in guiding academics and policymakers in their quest to align with emerging technologies facilitated by digital innovation in education.

Keywords: digital innovation, DSR, education, opportunities, research

Procedia PDF Downloads 73
15261 Dynamic Modeling of the Exchange Rate in Tunisia: Theoretical and Empirical Study

Authors: Chokri Slim

Abstract:

The relative failure of simultaneous equation models in the seventies has led researchers to turn to other approaches that take into account the dynamics of economic and financial systems. In this paper, we use an approach based on vector autoregressive model that is widely used in recent years. Their popularity is due to their flexible nature and ease of use to produce models with useful descriptive characteristics. It is also easy to use them to test economic hypotheses. The standard econometric techniques assume that the series studied are stable over time (stationary hypothesis). Most economic series do not verify this hypothesis, which assumes, when one wishes to study the relationships that bind them to implement specific techniques. This is cointegration which characterizes non-stationary series (integrated) with a linear combination is stationary, will also be presented in this paper. Since the work of Johansen, this approach is generally presented as part of a multivariate analysis and to specify long-term stable relationships while at the same time analyzing the short-term dynamics of the variables considered. In the empirical part, we have applied these concepts to study the dynamics of of the exchange rate in Tunisia, which is one of the most important economic policy of a country open to the outside. According to the results of the empirical study by the cointegration method, there is a cointegration relationship between the exchange rate and its determinants. This relationship shows that the variables have a significant influence in determining the exchange rate in Tunisia.

Keywords: stationarity, cointegration, dynamic models, causality, VECM models

Procedia PDF Downloads 370