Search results for: treatment based on acceptance and commitment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 35508

Search results for: treatment based on acceptance and commitment

4758 Impact of Ventilation Systems on Indoor Air Quality in Swedish Primary School Classrooms

Authors: Sarka Langer, Despoina Teli, Blanka Cabovska, Jan-Olof Dalenbäck, Lars Ekberg, Gabriel Bekö, Pawel Wargocki, Natalia Giraldo Vasquez

Abstract:

The aim of the study was to investigate the impact of various ventilation systems on indoor climate, air pollution, chemistry, and perception. Measurements of thermal environment and indoor air quality were performed in 45 primary school classrooms in Gothenburg, Sweden. The classrooms were grouped into three categories according to their ventilation system: category A) natural or exhaust ventilation or automated window opening; category B) balanced mechanical ventilation systems with constant air volume (CAV); and category C) balanced mechanical ventilation systems with variable air volume (VAV). A questionnaire survey about indoor air quality, perception of temperature, odour, noise and light, and sensation of well-being, alertness focus, etc., was distributed among the 10-12 years old children attending the classrooms. The results (medians) showed statistically significant differences between ventilation category A and categories B and C, but not between categories B and C in air change rates, median concentrations of carbon dioxide, individual volatile organic compounds formaldehyde and isoprene, in-door-to-outdoor ozone ratios and products of ozonolysis of squalene, a constituent of human skin oils, 6-methyl-5-hepten-2-one and decanal. Median ozone concentration, ozone loss -a difference between outdoor and indoor ozone concentrations- were different only between categories A and C. Median concentration of total VOCs and a perception index based on survey responses on perceptions and sensations indoors were not significantly different. In conclusion, ventilation systems have an impact on air change rates, indoor air quality, and chemistry, but the Swedish primary school children’s perception did not differ with the ventilation systems of the classrooms.

Keywords: indoor air pollutants, indoor climate, indoor chemistry, air change rate, perception

Procedia PDF Downloads 65
4757 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model

Authors: Ella Sèdé Maforikan

Abstract:

Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.

Keywords: watershed, water balance, SWAT modeling, Beterou

Procedia PDF Downloads 60
4756 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.

Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making

Procedia PDF Downloads 77
4755 In Vitro Effects of Azadirachta indica Leaves Extract Against Albugo Candida, the Causative Agent of White Blisters Disease of Brassica Oleraceae L., Var. Italica

Authors: Affiah D. U., Katuri I. P., Emefiene M. E., Amienyo C. A.

Abstract:

Broccoli (Brassica oleraceae L., var. italica) is one of the most important vegetables that is high in nutrients and bioactive compounds. It easily grown on a wide range of soil types and is adaptable to many different climatic conditions. This study was carried out within Jos North and environs in vitro to evaluate Neem (Azadirachta indica) leaves extract against Albugo candida, the causative agent of white blisters disease of broccoli. Through the survey, prevalence and incidence were accessed and a fluffy white growth symptom on the underside of leaves was also observed on the field. Infected leaves samples were collected from three different farms namely: Farin Gada, Naraguta, and Juth and the organism associated with the disease was isolated. Pathogenicity test carried out revealed the fungal isolate Albugo candida to be responsible for the disease. Antimicrobial susceptibility test was performed using agar well diffusion method to determine the minimum inhibitory concentrations of two extract of Azadirachta indica leaves against the organism. Ethanolic extract had the highest antifungal activities of 3.30±0.21 - 17.61± 0.11 while aqueous extract had the least antifungal activities of 0.00±0.00 - 13.23±0.12. The minimum inhibitory concentration of aqueous was 100 mg/ml while its minimum fungicidal concentration was at 200 mg/ml. For ethanol, the minimum inhibitory concentration was 50 mg/ml while its minimum fungicidal concentration was 100 mg/ml. Plants being less toxic in usage over synthetic or inorganic chemicals makes them easy to handle, easily accessible and renewable. Due to the biosafety of plant extracts and its availability since the plant-based extracts of the two different solvents were found to be effective against the test organism hence, it is recommended for in-depth research to make it readily available for control of other pathogens and pests.

Keywords: antifungal, biocontrol, broccoli, fungi

Procedia PDF Downloads 78
4754 Study of Lamination Quality of Semi-Flexible Solar Modules with Special Textile Materials

Authors: K. Drabczyk, Z. Starowicz, S. Maleczek, P. Zieba

Abstract:

The army, police and fire brigade commonly use dedicated equipment based on special textile materials. The properties of these textiles should ensure human life and health protection. Equally important is the ability to use electronic equipment and this requires access to the source of electricity. Photovoltaic cells integrated with such textiles can be solution for this problem in the most of outdoor circumstances. One idea may be to laminate the cells to textile without changing their properties. The main goal of this work was analyzed lamination quality of special designed semi-flexible solar module with special textile materials as a backsheet. In the first step of investigation, the quality of lamination was determined using device equipped with dynamometer. In this work, the crystalline silicon solar cells 50 x 50 mm and thin chemical tempered glass - 62 x 62 mm and 0.8 mm thick - were used. The obtained results showed the correlation between breaking force and type of textile weave and fiber. The breaking force was in the ranges: 4.5-5.5 N, 15-20 N and 30-33 N depending on the type of wave and fiber type. To verify these observations the microscopic and FTIR analysis of fibers was performed. The studies showed the special textile can be used as a backsheet of semi-flexible solar modules. This work presents a new composition of solar module with special textile layer which, to our best knowledge, has not been published so far. Moreover, the work presents original investigations on adhesion of EVA (ethylene-vinyl acetate) polymer to textile with respect to fiber structure of laminated substrate. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management.

Keywords: flexible solar modules, lamination process, solar cells, textile for photovoltaics

Procedia PDF Downloads 360
4753 Assessment of Kinetic Trajectory of the Median Nerve from Wrist Ultrasound Images Using Two Dimensional Baysian Speckle Tracking Technique

Authors: Li-Kai Kuo, Shyh-Hau Wang

Abstract:

The kinetic trajectory of the median nerve (MN) in the wrist has shown to be capable of being applied to assess the carpal tunnel syndrome (CTS), and was found able to be detected by high-frequency ultrasound image via motion tracking technique. Yet, previous study may not quickly perform the measurement due to the use of a single element transducer for ultrasound image scanning. Therefore, previous system is not appropriate for being applied to clinical application. In the present study, B-mode ultrasound images of the wrist corresponding to movements of fingers from flexion to extension were acquired by clinical applicable real-time scanner. The kinetic trajectories of MN were off-line estimated utilizing two dimensional Baysian speckle tracking (TDBST) technique. The experiments were carried out from ten volunteers by ultrasound scanner at 12 MHz frequency. Results verified from phantom experiments have demonstrated that TDBST technique is able to detect the movement of MN based on signals of the past and present information and then to reduce the computational complications associated with the effect of such image quality as the resolution and contrast variations. Moreover, TDBST technique tended to be more accurate than that of the normalized cross correlation tracking (NCCT) technique used in previous study to detect movements of the MN in the wrist. In response to fingers’ flexion movement, the kinetic trajectory of the MN moved toward the ulnar-palmar direction, and then toward the radial-dorsal direction corresponding to the extensional movement. TDBST technique and the employed ultrasound image scanner have verified to be feasible to sensitively detect the kinetic trajectory and displacement of the MN. It thus could be further applied to diagnose CTS clinically and to improve the measurements to assess 3D trajectory of the MN.

Keywords: baysian speckle tracking, carpal tunnel syndrome, median nerve, motion tracking

Procedia PDF Downloads 496
4752 The Real Business Power of Virtual Reality: From Concept to Application

Authors: Svetlana Bialkova, Marnix van Gisbergen

Abstract:

Advanced Virtual Reality (VR) technologies offer compelling multisensory and interactive experiences applicable in various fields from education to entertainment. However, serious VR applications within the financial sector are scarce, and managing ‘real’ business services with(in) VR is a challenge inviting further investigation. The current research addresses this challenge, by exploring the key parameters influencing the VR business power and the development of appropriate VR applications in real financial business. We conducted profound investigation of both B2B and B2C needs, and how these could be met. In three studies, we have approached experts from leading international banks (finance to computer specialists), and their (potential) customers. Study 1 included focus group discussions with experts. First, participants could experience different VR devices such as Samsung Gear VR, then a structured discussion was held. The outcomes are analyzed and summarized in a portfolio. Study 2 further used the portfolio analyzer to profile the management of real business services with(in) VR. Again experts participated, where first being introduced with Samsung Gear, then experiencing it and being interviewed. Based on the outcomes, a survey was developed to interview (potential) customers and test ideas created (Study 3). The results suggest that developing proper system architectures to connect people and to connect devices is crucial for building up powerful business with(in) VR. From one side, connecting devices, e.g., pairing mobile Head Mounted Displays for VR with smart-phones and/or wearable technologies would be appropriate way “to have” customers anywhere, anytime with a brand and/or business. Developing VR Apps, providing detailed real time visualization of performance and infrastructure types could enable 3D VR navigation, 3D contents viewing, but also being opportunity for connecting people in collaborative platforms. The outcomes of the current research are summarized in a model which could be applied to unlock the real business power of VR.

Keywords: business power, B2B, B2C, VR applications

Procedia PDF Downloads 293
4751 The Role of Privatization as a Moderator of the Impact of Non-Institutional Factors on the Performance of the Enterprises in Central and Eastern Europe

Authors: Margerita Topalli

Abstract:

In this paper, we analyze the impact of corruption (business environment, informal payments and state capture), crime and tax time, on the enterprise's performance during economic transition in the Central and Eastern Europe and the role of privatization as a moderator. We examine this effect by comparing the performance of the privatized enterprises and the state-owned-enterprises, while controlling for various forms of selection bias. The present study is based on firm-level panel data collected by the BEEPS for 27 transition countries over 2002, 2005, 2007, and 2011. In addition to firm characteristics, BEEPS collects valuable survey information on different forms of corruption, crime, tax time and firm ownership. We estimate the impact of corruption, crime, tax time on the different performance measures (sales, productivity, employment, labor costs and material costs) of the enterprise, whereby we control for firm ownership, with a special focus on the role of the privatization as a moderator. It argues that in general terms, the privatization has positive effects on the performance of enterprises during transition, but these effects are significantly different, depending on the examined performance measure (sales, productivity, employment, labor costs and material costs). When the privatization is effective, the privatized enterprises show a considerable performance improvements, particularly in terms of revenue growth and productivity growth. It also argues that the effects of privatization are different depending on the types of owner (outsider or insider) to whom it gives control. The results show that privatization to insider owners has no significant performance effect.

Keywords: effects of privatization, enterprise performance, state capture, corruption, firm ownership, economic transition, Central and Eastern Europe

Procedia PDF Downloads 327
4750 Influence of Hydrophobic Surface on Flow Past Square Cylinder

Authors: S. Ajith Kumar, Vaisakh S. Rajan

Abstract:

In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures.

Keywords: drag reduction, flow past square cylinder, flow control, hydrophobic surfaces, vortex shedding

Procedia PDF Downloads 379
4749 Mapping Social and Natural Hazards: A Survey of Potential for Managed Retreat in the United States

Authors: Karim Ahmed

Abstract:

The purpose of this study was to investigate how factoring the impact of natural disasters beyond flooding would affect managed retreat policy eligibility in the United States. For the study design, a correlation analysis method compared weighted measures of flooding and other natural disasters (e.g., wildfires, tornadoes, heatwaves, etc.) to CBSA Populated areas, the prevalence of cropland, and relative poverty on a county level. The study found that the vast majority of CBSAs eligible for managed retreat programs under a policy inclusive of non-flooding events would have already been covered by flood-only managed retreat policies. However, it is noteworthy that a majority of those counties that are not covered by a flood-only managed retreat policy have high rates of poverty and are either heavily populated and/or agriculturally active. The correlation is particularly strong between counties that are subject to multiple natural hazards and those that have both high rates of relative poverty and cropland prevalence. There is currently no managed retreat policy for agricultural land in the United States despite the environmental implications and food supply chain vulnerabilities related to at-risk cropland. The findings of this study suggest both that such a policy should be created and, when it is, that special attention should be paid to non-flood natural disasters affecting agricultural areas. These findings also reveal that, while current flood-based policies in the United States serve many areas that do need access to managed retreat funding and implementation, other vulnerable areas are overlooked by this approach. These areas are often deeply impoverished and are therefore particularly vulnerable to natural disaster; if and when those disasters do occur, these areas are often less financially prepared to recover or retreat from the disaster’s advance and, due to the limitations of the current policies discussed above, are less able to take the precautionary measures necessary to mitigate their risk.

Keywords: flood, hazard, land use, managed retreat, wildfire

Procedia PDF Downloads 129
4748 Developing a Spatial Transport Model to Determine Optimal Routes When Delivering Unprocessed Milk

Authors: Sunday Nanosi Ndovi, Patrick Albert Chikumba

Abstract:

In Malawi, smallholder dairy farmers transport unprocessed milk to sell at Milk Bulking Groups (MBGs). MBGs store and chill the milk while awaiting collection by processors. The farmers deliver milk using various modes of transportation such as foot, bicycle, and motorcycle. As a perishable food, milk requires timely transportation to avoid deterioration. In other instances, some farmers bypass the nearest MBGs for facilities located further away. Untimely delivery worsens quality and results in rejection at MBG. Subsequently, these rejections lead to revenue losses for dairy farmers. Therefore, the objective of this study was to optimize routes when transporting milk by selecting the shortest route using time as a cost attribute in Geographic Information Systems (GIS). A spatially organized transport system impedes milk deterioration while promoting profitability for dairy farmers. A transportation system was modeled using Route Analysis and Closest Facility network extensions. The final output was to find the quickest routes and identify the nearest milk facilities from incidents. Face-to-face interviews targeted leaders from all 48 MBGs in the study area and 50 farmers from Namahoya MBG. During field interviews, coordinates were captured in order to create maps. Subsequently, maps supported the selection of optimal routes based on the least travel times. The questionnaire targeted 200 respondents. Out of the total, 182 respondents were available. Findings showed that out of the 50 sampled farmers that supplied milk to Namahoya, only 8% were nearest to the facility, while 92% were closest to 9 different MBGs. Delivering milk to the nearest MBGs would minimize travel time and distance by 14.67 hours and 73.37 km, respectively.

Keywords: closest facility, milk, route analysis, spatial transport

Procedia PDF Downloads 61
4747 Electrochemical Biosensor for the Detection of Botrytis spp. in Temperate Legume Crops

Authors: Marzia Bilkiss, Muhammad J. A. Shiddiky, Mostafa K. Masud, Prabhakaran Sambasivam, Ido Bar, Jeremy Brownlie, Rebecca Ford

Abstract:

A greater achievement in the Integrated Disease Management (IDM) to prevent the loss would result from early diagnosis and quantitation of the causal pathogen species for accurate and timely disease control. This could significantly reduce costs to the growers and reduce any flow on impacts to the environment from excessive chemical spraying. Necrotrophic fungal disease botrytis grey mould, caused by Botrytis cinerea and Botrytis fabae, significantly reduce temperate legume yield and grain quality during favourable environmental condition in Australia and worldwide. Several immunogenic and molecular probe-type protocols have been developed for their diagnosis, but these have varying levels of species-specificity, sensitivity, and consequent usefulness within the paddock. To substantially improve speed, accuracy, and sensitivity, advanced nanoparticle-based biosensor approaches have been developed. For this, two sets of primers were designed for both Botrytis cinerea and Botrytis fabae which have shown the species specificity with initial sensitivity of two genomic copies/µl in pure fungal backgrounds using multiplexed quantitative PCR. During further validation, quantitative PCR detected 100 spores on artificially infected legume leaves. Simultaneously an electro-catalytic assay was developed for both target fungal DNA using functionalised magnetic nanoparticles. This was extremely sensitive, able to detect a single spore within a raw total plant nucleic acid extract background. We believe that the translation of this technology to the field will enable quantitative assessment of pathogen load for future accurate decision support of informed botrytis grey mould management.

Keywords: biosensor, botrytis grey mould, sensitive, species specific

Procedia PDF Downloads 177
4746 Validating the Home Experiences of Children that Negatively Impact Their Right to Education in South Africa: The Case of HIV/AIDS Orphans and Vulnerable Children (OVCs) Living in the Amatole District

Authors: Tatenda Manomano, Moreblessing Memory Ndonga

Abstract:

In South Africa and the world over, despite an array of commendable policies to protect the rights of children, the situation on the ground indicates that HIV/AIDS continues to pose increasing challenges on the children’s’ right to education due to the death of their parents. This study sought to validate the home experiences of children that negatively impact on their right to education in South Africa with a case of HIV/AIDS orphans and vulnerable children (OVCs) in Amatole District. The study utilized a qualitative research method in collecting the feelings, views and attitudes of these children to establish the children’s home experiences. An interview guide with semi-structured questions was used to steer the one-on-one in-depth interviews with children from Parkside Primary School, Langa-Liphumile High School and one anonymous school in East London, Eastern Cape Province. 5 learners were purposively selected from each school and subjected to a one-on-one interview with the researcher. The researcher purposively selected one teacher per school, 2 members each from 3 community based organizations (CBOs) who were also subjected to a one-on-one in-depth interview. The findings indicated these negative experiences of the OVCs in their homes such as; attendance to a school was poor; academic performance was low; enrollment in schools was very low and abuse of these children was high. These researchers recommend for psychosocial support for these children to be placed in the schools; integration of HIV/AIDS programmes to target especially the OVCs; social workers should ensure that they regularly do home visits to these OVCs to establish whether the home circumstances these children are still conducive for them. It is hoped that the findings from this paper will be an asset that other researchers, policy makers, the government and NGOs/CBOs will take into consideration for the benefit of OVCs.

Keywords: orphaned and vulnerable children (OVCs), HIV, AIDS, home experiences

Procedia PDF Downloads 368
4745 Performance of Non-Deterministic Structural Optimization Algorithms Applied to a Steel Truss Structure

Authors: Ersilio Tushaj

Abstract:

The efficient solution that satisfies the optimal condition is an important issue in the structural engineering design problem. The new codes of structural design consist in design methodology that looks after the exploitation of the total resources of the construction material. In recent years some non-deterministic or meta-heuristic structural optimization algorithms have been developed widely in the research community. These methods search the optimum condition starting from the simulation of a natural phenomenon, such as survival of the fittest, the immune system, swarm intelligence or the cooling process of molten metal through annealing. Among these techniques the most known are: the genetic algorithms, simulated annealing, evolution strategies, particle swarm optimization, tabu search, ant colony optimization, harmony search and big bang crunch optimization. In this study, five of these algorithms are applied for the optimum weight design of a steel truss structure with variable geometry but fixed topology. The design process selects optimum distances and size sections from a set of commercial steel profiles. In the formulation of the design problem are considered deflection limitations, buckling and allowable stress constraints. The approach is repeated starting from different initial populations. The design problem topology is taken from an existing steel structure. The optimization process helps the engineer to achieve good final solutions, avoiding the repetitive evaluation of alternative designs in a time consuming process. The algorithms used for the application, the results of the optimal solutions, the number of iterations and the minimal weight designs, will be reported in the paper. Based on these results, it would be estimated, the amount of the steel that could be saved by applying structural analysis combined with non-deterministic optimization methods.

Keywords: structural optimization, non-deterministic methods, truss structures, steel truss

Procedia PDF Downloads 233
4744 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment

Authors: Innocent O. Arukalam, Emeka E. Oguzie

Abstract:

Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.

Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation

Procedia PDF Downloads 102
4743 The Potential of Kepulauan Seribu as Marine-Based Eco-Geotourism Site: The Study of Carbonate Platform as Geotourism Object in Kepulauan Seribu, Jakarta

Authors: Barry Majeed, Eka Febriana, Seto Julianto

Abstract:

Kepulauan Seribu National Parks is a marine preservation region in Indonesia. It is located in 5°23' - 5°40' LS, 106°25' - 106°37' BT North of Jakarta City. Covered with area 107,489 ha, Kepulauan Seribu has a lot of tourism spots such as cluster islands, fringing reef and many more. Kepulauan Seribu is also nominated as Strategic Tourism Region In Indonesia (KSPN). So, these islands have a lot of potential sides more than preservation function as a national park, hence the development of sustainable geotourism. The aim of this study is for enhancing the development of eco-geotourism in Kepulauan Seribu. This study concern for three main aspect of eco-geotourism such as tourism, form and process. Study for the tourism aspect includes attractions, accommodations, tours, activities, interpretation, and planning & management in Kepulauan Seribu. Study for the form aspect focused on the carbonate platform situated between two islands. Primarily in carbonate reef such as head coral, branchy coral, platy coral that created the carbonate sequence in Kepulauan Seribu. Study for the process aspect primarily discussed the process of forming of carbonate from carbonate factory later becomes Kepulauan Seribu. Study for the regional geology of Kepulauan Seribu has been conducted and suggested that Kepulauan Seribu lithologies are mainly quarternary limestone. In this study, primary data was taken from an observation of quarternary carbonate platform between two islands from Hati Island, Macan Island, Bulat Island, Ubi Island and Kelapa Island. From this observation, the best routes for tourist have been made from Island to Island. Qualitative methods such as depth interview to the local people in purposive sampling also have been made. Finally, this study also giving education about geological site – carbonate sequence - in Kepulauan Seribu for the local wisdom so that this study can support the development of sustainable eco-geotourism in Kepulauan Seribu.

Keywords: carbonate factory, carbonate platform, geotourism, Kepulauan Seribu

Procedia PDF Downloads 189
4742 A Comparative Study of Black Carbon Emission Characteristics from Marine Diesel Engines Using Light Absorption Method

Authors: Dongguk Im, Gunfeel Moon, Younwoo Nam, Kangwoo Chun

Abstract:

Recognition of the needs about protecting environment throughout worldwide is widespread. In the shipping industry, International Maritime Organization (IMO) has been regulating pollutants emitted from ships by MARPOL 73/78. Recently, the Marine Environment Protection Committee (MEPC) of IMO, at its 68th session, approved the definition of Black Carbon (BC) specified by the following physical properties (light absorption, refractory, insolubility and morphology). The committee also agreed to the need for a protocol for any voluntary measurement studies to identify the most appropriate measurement methods. Filter Smoke Number (FSN) based on light absorption is categorized as one of the IMO relevant BC measurement methods. EUROMOT provided a FSN measurement data (measured by smoke meter) of 31 different engines (low, medium and high speed marine engines) of member companies at the 3rd International Council on Clean Transportation (ICCT) workshop on marine BC. From the comparison of FSN, the results indicated that BC emission from low speed marine diesel engines was ranged from 0.009 to 0.179 FSN and it from medium and high speed marine diesel engine was ranged 0.012 to 3.2 FSN. In consideration of measured the low FSN from low speed engine, an experimental study was conducted using both a low speed marine diesel engine (2 stroke, power of 7,400 kW at 129 rpm) and a high speed marine diesel engine (4 stroke, power of 403 kW at 1,800 rpm) under E3 test cycle. The results revealed that FSN was ranged from 0.01 to 0.16 and 1.09 to 1.35 for low and high speed engines, respectively. The measurement equipment (smoke meter) ranges from 0 to 10 FSN. Considering measurement range of it, FSN values from low speed engines are near the detection limit (0.002 FSN or ~0.02 mg/m3). From these results, it seems to be modulated the measurement range of the measurement equipment (smoke meter) for enhancing measurement accuracy of marine BC and evaluation on performance of BC abatement technologies.

Keywords: black carbon, filter smoke number, international maritime organization, marine diesel engine (two and four stroke), particulate matter

Procedia PDF Downloads 283
4741 Solution of Reduced Mass in Solar Glider with Electric Engine

Authors: Piotr Żabicki, Paweł Skutta

Abstract:

The project of a glider with an electric motor charged by solar power is an step toward the future of Polish gliding. Due to the popularity of the SZD-50-3 glider and its type of usage, the project was developed based on this model. By placing an auxiliary engine in the glider, the pilot is guaranteed a safe return to the airport. Since it is a training glider, and routes are mainly flown by student pilots and instructors, the guarantee of returning to the airport allows flights in more challenging thermal conditions, which contributes to better pilot training. In case of worsening weather, the pilot has a reliable return option, which prevents time loss due to field landings and saves money by avoiding delays in training. The glider uses the NOVA 15 LW engine, a solar installation, and technical modifications to reduce the glider's weight. This includes the Misztal spar solution, previously used in the PZL 19 aircraft. Additionally, the use of lighter coverings and materials that handle loads from pulling, straining, and sharing improves the aerodynamic performance of the glider, enhancing its overall efficiency. Every component added to the glider's construction (battery, engine, etc.) has been placed to avoid shifting loads along the axis, thus preventing unintended spins and flat spins. Safety concerns were also addressed. In the event of a battery or engine fire, the pilot's cabin is designed as a detachable part of the structure and is made of composites covered with non-flammable resin. The batteries are also enclosed in separate boxes located in the former "luggage" compartment. Access to the installation connecting the engine, panel, and battery is convenient due to the detachable cabin from the structure and the fact that the entire installation runs under the structure. The batteries also have easy access due to the current closed hatch. Cooling for the battery is provided this way.

Keywords: engineering, girder, glider, solar, spar

Procedia PDF Downloads 16
4740 Nano-Enhanced In-Situ and Field Up-Gradation of Heavy Oil

Authors: Devesh Motwani, Ranjana S. Baruah

Abstract:

The prime incentive behind up gradation of heavy oil is to increase its API gravity for ease of transportation to refineries, thus expanding the market access of bitumen-based crude to the refineries. There has always been a demand for an integrated approach that aims at simplifying the upgrading scheme, making it adaptable to the production site in terms of economics, environment, and personnel safety. Recent advances in nanotechnology have facilitated the development of two lines of heavy oil upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. The In-Situ upgrading scheme makes use of Hot Fluid Injection (HFI) technique where heavy fractions separated from produced oil are injected into the formations to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. In the presence of hydrogen, catalytic exothermic hydro-processing reactions occur that produce light gases and volatile hydrocarbons which contribute to increased oil detachment from the rock resulting in enhanced recovery. In this way the process is a combination of enhanced heavy oil recovery along with up gradation that effectively handles the heat load within the reservoirs, reduces hydrocarbon waste generation and minimizes the need for diluents. By eliminating most of the residual oil, the Synthetic Crude Oil (SCO) is much easier to transport and more amenable for processing in refineries. For heavy oil reservoirs seriously impacted by the presence of aquifers, the nano-catalytic technology can still be implemented on field though with some additional investments and reduced synergies; however still significantly serving the purpose of production of transportable oil with substantial benefits with respect to both large scale upgrading, and known commercial field upgrading technologies currently on the market. The paper aims to delve deeper into the technology discussed, and the future compatibility.

Keywords: upgrading, synthetic crude oil, nano-catalytic technology, compatibility

Procedia PDF Downloads 410
4739 Sizing and Thermal Analysis of Mechanically Pumped Fluid Loop Thermal Control Technique for Small Satellite Scientific Applications

Authors: Shanmugasundaram Selvadurai, Amal Chandran

Abstract:

Small satellites have become an alternative low-cost solution for several missions to accomplish specific missions such as Earth imaging, Technology demonstration, Education, and other commercial purposes. Small satellite missions focusing on Infrared imaging applications require lower temperature for scientific instruments and such low temperature can be achieved only using external cryocoolers but the disadvantage is that they generate a large amount of waste heat. Existing passive thermal control techniques are not capable to handle such large thermal loads and hence one of the traditional active Thermal Control System (TCS) is studied for a small satellite configuration. This work aims to downscale the existing Mechanically Pumped Fluid Loop (MPFL) TCS to a 27U CubeSat platform for an imaginary scientific instrument. The temperature-sensitive detector in the instrument considered to be maintained between 130K and 150K to reduce dark current noise and increase the data quality. A Single-Phase fluid based MPFL is chosen for this system-level study and this TCS consists of a microfluid pump, a micro-cryocooler, a fluid accumulator, external heaters, flow regulators, and sensors. This work also explains the thermal control system architecture with a conceptual design, arrangement of all the components, and thermal analysis for different low orbit conditions. Sizing and extensive trade studies for the components are conducted and the results have shown that the Single-phase MPFL system is able to handle the given thermal loads and maintain the satellite’s interface temperature within the desired limit.

Keywords: active thermal control system, satellite thermal, mechanically pumped fluid loop system, cryogenics, cryocooler

Procedia PDF Downloads 265
4738 Encapsulated Western Red Cedar (Thuja Plicata) Essential Oil as a Prospective Biopesticide against Phytophthora Pathogens

Authors: Aleksandar M. Radojković, Jovana M. Ćirković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković

Abstract:

In many parts of the world, various Phytophthora species pose a serious threat to forests and crops. With the rapidly growing international trade in plants and the ongoing impacts of climate change, the harmful effects of plant pathogens of the genus Phytophthora are increasing, damaging the biodiversity and sustainability of forest ecosystems. This genus is one of the most destructive plant pathogens, causing the majority of fine root (66%) and collar rot diseases (90%) of woody plant species worldwide. Eco-friendly biopesticides, based on plant-derived products, such as essential oils (EOs), are one of the promising solutions to this problem. In this study, among three different EOs investigated (Chamaecyparis lawsoniana (A. Murr.) Parl., Thuja plicata Donn ex D.Don and Juniperus communis L.), western red cedar (Thuja plicata) essential oil almost completely inhibited the growth of three Phytophthora species (P. plurivora Jung and Burgess, P. quercina Jung, and P. ×cambivora (Petri) Buisman) during seven days of exposure for the EO concentrations of 0.1% and 0.5% (v/v). To prolong the inhibiting effect, Thuja plicata EO was encapsulated into a biopolymer matrix consisting of a chitosan-gelatin mixture to form a water-in-oil emulsion. This approach allowed the prolonged effect of the essential oil by its slow release from the biopolymer matrix and protection of the active components from atmospheric influences. Thus, it was demonstrated that encapsulated Thuja plicata EO consisting of sustainable bioproducts is efficient in controlling of Phytophthora species and can be considered a means of protection in natural and semi-natural ecosystems.

Keywords: emulsions, essential oils, phytophthora, thuja plicata

Procedia PDF Downloads 98
4737 The Study of Heat and Mass Transfer for Ferrous Materials' Filtration Drying

Authors: Dmytro Symak

Abstract:

Drying is a complex technologic, thermal and energy process. Energy cost of drying processes in many cases is the most costly stage of production, and can be over 50% of total costs. As we know, in Ukraine over 85% of Portland cement is produced moist, and the finished product energy costs make up to almost 60%. During the wet cement production, energy costs make up over 5500 kJ / kg of clinker, while during the dry only 3100 kJ / kg, that is, switching to a dry Portland cement will allow result into double cutting energy costs. Therefore, to study raw materials drying process in the manufacture of Portland cement is very actual task. The fine ferrous materials drying (small pyrites, red mud, clay Kyoko) is recommended to do by filtration method, that is one of the most intense. The essence of filtration method drying lies in heat agent filtering through a stationary layer of wet material, which is located on the perforated partition, in the "layer-dispersed material - perforated partition." For the optimum drying purposes, it is necessary to establish the dependence of pressure loss in the layer of dispersed material, and the values of heat and mass transfer, depending on the speed of the gas flow filtering. In our research, the experimentally determined pressure loss in the layer of dispersed material was generalized based on dimensionless complexes in the form and coefficients of heat exchange. We also determined the relation between the coefficients of mass and heat transfer. As a result of theoretic and experimental investigations, it was possible to develop a methodology for calculating the optimal parameters for the thermal agent and the main parameters for the filtration drying installation. The comparison of calculated by known operating expenses methods for the process of small pyrites drying in a rotating drum and filtration method shows to save up to 618 kWh per 1,000 kg of dry material and 700 kWh during filtration drying clay.

Keywords: drying, cement, heat and mass transfer, filtration method

Procedia PDF Downloads 265
4736 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications

Authors: S. Koul, Joshua Adedamola

Abstract:

Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.

Keywords: ICP, dopant, EMI, shielding

Procedia PDF Downloads 85
4735 Following the Caravans: Interdisciplinary Study to Integrate Chinese and African Relations in Ethiopia

Authors: E. Mattio

Abstract:

The aim of this project is to study the Chinese presence in Ethiopia, following the path of the last salt caravans from Danakil to Tigray region. Official estimates of the number of Chinese in Africa vary widely; on the continent, there are increasingly diverse groups of Chinese migrants in terms of language, dialect, class, education, and employment. Based on this and on a very general state of the art, it was decided to increase the studies on this phenomenon, documenting the extraction of salt and following the sellers in the north of the country. The project is unique and allows you to admire a landscape that will soon change, due to the construction of infrastructure that is changing the dynamics of movement and sales. To carry out this study, interdisciplinary investigation methods were integrated, such as landscape archeology, historiographic research, participatory anthropology, geopolitics, and cultural anthropology and ethnology. There are two main objectives of the research. The first was an analysis of risk perceptions to predict what will happen to these populations and how the territory will be modified, trying to monitor the growth of infrastructure in the country and the effects it will have on the population. Thanks to the use of GIS, some roads created by Chinese companies that worked in the area have been georeferenced. The second point was to document the life and rituals of Ethiopian populations, in order not to lose the aspects of uniqueness that risk being lost. The local interviews have garnered impressions and criticisms from the local population to understand whether the Chinese presence is perceived as a threat or a solution. Among the most exclusive interviews, there are those made to Afar leaders in the Logya area and some Coptic representatives in the Wukro area. To make this project even more unique, the Coptic rituals of Gennà and Timkat have been documented, unique expressions of a millennial tradition. The aim was to understand whether the Maoist presence began to influence the religious rites and forms of belief present in the country.

Keywords: China, Ethiopia, GIS, risk perceptions

Procedia PDF Downloads 162
4734 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass

Authors: Martin Botz, Michael Kraus, Geralt Siebert

Abstract:

The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.

Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity

Procedia PDF Downloads 127
4733 Assesments of Some Environment Variables on Fisheries at Two Levels: Global and Fao Major Fishing Areas

Authors: Hyelim Park, Juan Martin Zorrilla

Abstract:

Climate change influences very widely and in various ways ocean ecosystem functioning. The consequences of climate change on marine ecosystems are an increase in temperature and irregular behavior of some solute concentrations. These changes would affect fisheries catches in several ways. Our aim is to assess the quantitative contribution change of fishery catches along the time and express them through four environment variables: Sea Surface Temperature (SST4) and the concentrations of Chlorophyll (CHL), Particulate Inorganic Carbon (PIC) and Particulate Organic Carbon (POC) at two spatial scales: Global and the nineteen FAO Major Fishing Areas divisions. Data collection was based on the FAO FishStatJ 2014 database as well as MODIS Aqua satellite observations from 2002 to 2012. Some data had to be corrected and interpolated using some existing methods. As the results, a multivariable regression model for average Global fisheries captures contained temporal mean of SST4, standard deviation of SST4, standard deviation of CHL and standard deviation of PIC. Global vector auto-regressive (VAR) model showed that SST4 was a statistical cause of global fishery capture. To accommodate varying conditions in fishery condition and influence of climate change variables, a model was constructed for each FAO major fishing area. From the management perspective it should be recognized some limitations of the FAO marine areas division that opens to possibility to the discussion of the subdivision of the areas into smaller units. Furthermore, it should be treated that the contribution changes of fishery species and the possible environment factor for specific species at various scale levels.

Keywords: fisheries-catch, FAO FishStatJ, MODIS Aqua, sea surface temperature (SST), chlorophyll, particulate inorganic carbon (PIC), particulate organic carbon (POC), VAR, granger causality

Procedia PDF Downloads 487
4732 Field Study on Thermal Performance of a Green Office in Bangkok, Thailand: A Possibility of Increasing Temperature Set-Points

Authors: T. Sikram, M. Ichinose, R. Sasaki

Abstract:

In the tropics, indoor thermal environment is usually provided by a cooling mode to maintain comfort all year. Indoor thermal environment performance is sometimes different from the standard or from the first design process because of operation, maintenance, and utilization. The field study of thermal environment in the green building is still limited in this region, while the green building continues to increase. This study aims to clarify thermal performance and subjective perception in the green building by testing the temperature set-points. A Thai green office was investigated twice in October 2018 and in May 2019. Indoor environment variables (temperature, relative humidity, and wind velocity) were collected continuously. The temperature set-point was normally set as 23 °C, and it was changed into 24 °C and 25 °C. The study found that this gap of temperature set-point produced average room temperature from 22.7 to 24.6 °C and average relative humidity from 55% to 62%. Thermal environments slight shifted out of the ASHRAE comfort zone when the set-point was increased. Based on the thermal sensation vote, the feeling-colder vote decreased by 30% and 18% when changing +1 °C and +2 °C, respectively. Predicted mean vote (PMV) shows that most of the calculated median values were negative. The values went close to the optimal neutral value (0) when the set-point was set at 25 °C. The neutral temperature was slightly decreased when changing warmer temperature set-points. Building-related symptom reports were found in this study that the number of votes reduced continuously when the temperature was warmer. The symptoms that occurred by a cooler condition had the number of votes more than ones that occurred by a warmer condition. In sum, for this green office, there is a possibility to adjust a higher temperature set-point to +1 °C (24 °C) in terms of reducing cold sensitivity, discomfort, and symptoms. All results could support the policy of changing a warmer temperature of this office to become “a better green building”.

Keywords: thermal environment, green office, temperature set-point, comfort

Procedia PDF Downloads 124
4731 Modeling in the Middle School: Eighth-Grade Students’ Construction of the Summer Job Problem

Authors: Neslihan Sahin Celik, Ali Eraslan

Abstract:

Mathematical model and modeling are one of the topics that have been intensively discussed in recent years. In line with the results of the PISA studies, researchers in many countries have begun to question how much students in school-education system are prepared to solve the real-world problems they encounter in their future professional lives. As a result, many mathematics educators have begun to emphasize the importance of new skills and understanding such as constructing, Hypothesizing, Describing, manipulating, predicting, working together for complex and multifaceted problems for success in beyond the school. When students increasingly face this kind of situations in their daily life, it is important to make sure that students have enough experience to work together and interpret mathematical situations that enable them to think in different ways and share their ideas with their peers. Thus, model eliciting activities are one of main tools that help students to gain experiences and the new skills required. This research study was carried on the town center of a big city located in the Black Sea region in Turkey. The participants were eighth-grade students in a middle school. After a six-week preliminary study, three students in an eighth-grade classroom were selected using criterion sampling technique and placed in a focus group. The focus group of three students was videotaped as they worked on a model eliciting activity, the Summer Job Problem. The conversation of the group was transcribed, examined with students’ written work and then qualitatively analyzed through the lens of Blum’s (1996) modeling processing cycle. The study results showed that eighth grade students can successfully work with the model eliciting, develop a model based on the two parameters and review the whole process. On the other hand, they had difficulties to relate parameters to each other and take all parameters into account to establish the model.

Keywords: middle school, modeling, mathematical modeling, summer job problem

Procedia PDF Downloads 341
4730 A Comparative Analysis of the Private and Social Benefit-Cost Ratios of Organic and Inorganic Rice Farming: Case Study of Smallholder Farmers in the Aveyime Community, Ghana

Authors: Jerome E. Abiemo, Takeshi Mizunoya

Abstract:

The Aveyime community in the Volta region of Ghana is one of the major hubs for rice production. In the past, rice farmers applied organic pesticides to control pests, and compost as a soil amendment to improve fertility and productivity. However, the introduction of chemical pesticides and fertilizers have led many farmers to convert to inorganic system of rice production, without considering the social costs (e.g. groundwater contamination and health costs) related to the use of pesticides. The study estimates and compares the private and social BCRs of organic and inorganic systems of rice production. Both stratified and simple random sampling techniques were employed to select 300 organic and inorganic rice farmers and 50 pesticide applicators. The respondents were interviewed with pre-tested questionnaires. The Contingent Valuation Method (CVM) which elucidates organic farmers` Willingness-to-Pay (WTP) was employed to estimate the cost of groundwater contamination. The Cost of Illness (COI) analysis was used to estimate the health cost of pesticide-induced poisoning of applicators. The data collated, was analyzed with the aid of Microsoft excel. The study found that high private benefit (e.g. increase in farm yield and income) was the most influential factor for the rapid adoption of pesticides among rice farmers. The study also shows that the social costs of inorganic rice production were high. As such the social BCR of inorganic farming (0.2) was low as compared to organic farming (0.7). Based on the results, it was recommended that government should impose pesticide environmental tax, review current agricultural policies to favour organic farming and promote extension education to farmers on pesticide risk, to ensure agricultural and environmental sustainability.

Keywords: benefit-cost-ratio (BCR), inorganic farming, pesticides, social cost

Procedia PDF Downloads 483
4729 Single Tuned Shunt Passive Filter Based Current Harmonic Elimination of Three Phase AC-DC Converters

Authors: Mansoor Soomro

Abstract:

The evolution of power electronic equipment has been pivotal in making industrial processes productive, efficient and safe. Despite its attractive features, it has been due to nonlinear loads which make it vulnerable to power quality conditions. Harmonics is one of the power quality problem in which the harmonic frequency is integral multiple of supply frequency. Therefore, the supply voltage and supply frequency do not last within their tolerable limits. As a result, distorted current and voltage waveform may appear. Attributes of low power quality confirm that an electrical device or equipment is likely to malfunction, fail promptly or unable to operate under all applied conditions. The electrical power system is designed for delivering power reliably, namely maximizing power availability to customers. However, power quality events are largely untracked, and as a result, can take out a process as many as 20 to 30 times a year, costing utilities, customers and suppliers of load equipment, a loss of millions of dollars. The ill effects of current harmonics reduce system efficiency, cause overheating of connected equipment, result increase in electrical power and air conditioning costs. With the passage of time and the rapid growth of power electronic converters has highlighted the damages of current harmonics in the electrical power system. Therefore, it has become essential to address the bad influence of current harmonics while planning any suitable changes in the electrical installations. In this paper, an effort has been made to mitigate the effects of dominant 3rd order current harmonics. Passive filtering technique with six pulse multiplication converter has been employed to mitigate them. Since, the standards of power quality are to maintain the supply voltage and supply current within certain prescribed standard limits. For this purpose, the obtained results are validated as per specifications of IEEE 519-1992 and IEEE 519-2014 performance standards.

Keywords: current harmonics, power quality, passive filters, power electronic converters

Procedia PDF Downloads 305