Search results for: spatial resolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3499

Search results for: spatial resolution

469 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups

Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto

Abstract:

The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.

Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group

Procedia PDF Downloads 361
468 Habitat Suitability, Genetic Diversity and Population Structure of Two Sympatric Fruit Bat Species Reveal the Need of an Urgent Conservation Action

Authors: Mohamed Thani Ibouroi, Ali Cheha, Claudine Montgelard, Veronique Arnal, Dawiyat Massoudi, Guillelme Astruc, Said Ali Ousseni Dhurham, Aurelien Besnard

Abstract:

The Livingstone's flying fox (Pteropus livingstonii) and the Comorian fruit bat (P.seychellensis comorensis) are two endemic fruit bat species among the mostly threatened animals of the Comoros archipelagos. Despite their role as important ecosystem service providers like all flying fox species as pollinators and seed dispersers, little is known about their ecologies, population genetics and structures making difficult the development of evidence-based conservation strategies. In this study, we assess spatial distribution and ecological niche of both species using Species Distribution Modeling (SDM) based on the recent Ensemble of Small Models (ESMs) approach using presence-only data. Population structure and genetic diversity of the two species were assessed using both mitochondrial and microsatellite markers based on non-invasive genetic samples. Our ESMs highlight a clear niche partitioning of the two sympatric species. Livingstone’s flying fox has a very limited distribution, restricted on steep slope of natural forests at high elevation. On the contrary, the Comorian fruit bat has a relatively large geographic range spread over low elevations in farmlands and villages. Our genetic analysis shows a low genetic diversity for both fruit bats species. They also show that the Livingstone’s flying fox population of the two islands were genetically isolated while no evidence of genetic differentiation was detected for the Comorian fruit bats between islands. Our results support the idea that natural habitat loss, especially the natural forest loss and fragmentation are the important factors impacting the distribution of the Livingstone’s flying fox by limiting its foraging area and reducing its potential roosting sites. On the contrary, the Comorian fruit bats seem to be favored by human activities probably because its diets are less specialized. By this study, we concluded that the Livingstone’s flying fox species and its habitat are of high priority in term of conservation at the Comoros archipelagos scale.

Keywords: Comoros islands, ecological niche, habitat loss, population genetics, fruit bats, conservation biology

Procedia PDF Downloads 244
467 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 52
466 Delineation of Green Infrastructure Buffer Areas with a Simulated Annealing: Consideration of Ecosystem Services Trade-Offs in the Objective Function

Authors: Andres Manuel Garcia Lamparte, Rocio Losada Iglesias, Marcos BoullóN Magan, David Miranda Barros

Abstract:

The biodiversity strategy of the European Union for 2030, mentions climate change as one of the key factors for biodiversity loss and considers green infrastructure as one of the solutions to this problem. In this line, the European Commission has developed a green infrastructure strategy which commits members states to consider green infrastructure in their territorial planning. This green infrastructure is aimed at granting the provision of a wide number of ecosystem services to support biodiversity and human well-being by countering the effects of climate change. Yet, there are not too many tools available to delimit green infrastructure. The available ones consider the potential of the territory to provide ecosystem services. However, these methods usually aggregate several maps of ecosystem services potential without considering possible trade-offs. This can lead to excluding areas with a high potential for providing ecosystem services which have many trade-offs with other ecosystem services. In order to tackle this problem, a methodology is proposed to consider ecosystem services trade-offs in the objective function of a simulated annealing algorithm aimed at delimiting green infrastructure multifunctional buffer areas. To this end, the provision potential maps of the regulating ecosystem services considered to delimit the multifunctional buffer areas are clustered in groups, so that ecosystem services that create trade-offs are excluded in each group. The normalized provision potential maps of the ecosystem services in each group are added to obtain a potential map per group which is normalized again. Then the potential maps for each group are combined in a raster map that shows the highest provision potential value in each cell. The combined map is then used in the objective function of the simulated annealing algorithm. The algorithm is run both using the proposed methodology and considering the ecosystem services individually. The results are analyzed with spatial statistics and landscape metrics to check the number of ecosystem services that the delimited areas produce, as well as their regularity and compactness. It has been observed that the proposed methodology increases the number of ecosystem services produced by delimited areas, improving their multifunctionality and increasing their effectiveness in preventing climate change impacts.

Keywords: ecosystem services trade-offs, green infrastructure delineation, multifunctional buffer areas, climate change

Procedia PDF Downloads 148
465 Ecology, Value-Form and Metabolic Rift: Conceptualizing the Environmental History of the Amazon in the Capitalist World-System (19th-20th centuries)

Authors: Santiago Silva de Andrade

Abstract:

In recent decades, Marx's ecological theory of the value-form and the theory of metabolic rift have represented fundamental methodological innovations for social scientists interested in environmental transformations and their relationships with the development of the capital system. However, among Latin American environmental historians, such theoretical and methodological instruments have been used infrequently and very cautiously. This investigation aims to demonstrate how the concepts of metabolic rift and ecological value-form are important for understanding the environmental, economic and social transformations in the Amazon region between the second half of the 19th century and the end of the 20th century. Such transformations manifested themselves mainly in two dimensions: the first concerns the link between the manufacture of tropical substances for export and scientific developments in the fields of botany, chemistry and agriculture. This link was constituted as a set of social, intellectual and economic relations that condition each other, configuring an asymmetrical field of exchanges and connections between the demands of the industrialized world - personified in scientists, naturalists, businesspeople and bureaucrats - and the agencies of local social actors, such as indigenous people, riverside dwellers and quilombolas; the second dimension concerns the imperative link between the historical development of the capitalist world-system and the restructuring of the natural world, its landscapes, biomes and social relations, notably in peripheral colonial areas. The environmental effects of capitalist globalization were not only seen in the degradation of exploited environments, although this has been, until today, its most immediate and noticeable aspect. There was also, in territories subject to the logic of market accumulation, the reformulation of patterns of authority and institutional architectures, such as property systems, political jurisdictions, rights and social contracts, as a result of the expansion of commodity frontiers between the 16th and 21st centuries. . This entire set of transformations produced impacts on the ecological landscape of the Amazon. This demonstrates the need to investigate the histories of local configurations of power, spatial and ecological - with their institutions and social actors - and their role in structuring the capitalist world-system , under the lens of the ecological theory of value-form and metabolic rift.

Keywords: amazon, ecology, form-value, metabolic rift

Procedia PDF Downloads 41
464 Restoring Urban South Africa through a Sustainable Green Infrastructure Approach

Authors: Z. Goosen, E. J. Cilliers

Abstract:

Referring to the entire green network within urban environments, at all spatial scales, green infrastructure is considered as an important constituent of sustainable development within urban areas through planning for a healthy environment and simultaneously improving quality of life for the people. Green infrastructure has made its appearance internationally in terms of the infrastructural urban environment focussing on ecological systems and sustaining society while building with nature. Within South Africa, the terminology of green infrastructure has, however, not continuously been entertained, mainly due to more pressing realities and challenges faced within urban areas of South Africa that include but are not limited to basic service provision, financial constraints and a lack of guiding policies and frameworks. But the notion of green infrastructure planning has changes, creating a newfound movement within urban areas of South Africa encouraging green infrastructure for urban resilience. Although green infrastructure is not an entirely new concept within the local context of South Africa, the benefits thereof constantly needs to be identified in order to measure the value of green infrastructure. Consequently challenges faces within urban areas of South Africa, in terms of human and nature, could be restored through focussing on a sustainable green infrastructure approach. This study does not focus on the pressing challenges and realities faced within urban areas of South Africa but rather aims solely on improving a green infrastructure approach within urban areas of South Africa. At the outset, the study will commence by introducing the concept of a green infrastructure approach by means of a local and international comparison. This will ensure an improved conceptual understanding of green infrastructure within a local South African context. The green infrastructure concept will be elaborated on through the inclusion of South African case study evaluations. The selected case studies will illustrate existing green infrastructure implementation within South Africa along with the benefits provided through the implementation thereof in terms of human (the people) and nature (the natural environment). As green infrastructure within South Africa continues to remain a fairly new concept with moderate levels of implementation thereof, room for improving on the approach in terms of implementation and maintenance exist. For this reason, the study will conclude with alternative green infrastructure suggestions and approaches to possibly be enforced within South Africa, led by international best practices.

Keywords: green infrastructure, international best practices, sustainability, urban South Africa

Procedia PDF Downloads 386
463 The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats

Authors: A. M. Pashayev, A. S. Samedov, T. B. Usubaliyev, N. Sh. Yusifov

Abstract:

Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades.

Keywords: gas turbine blades, thermal barrier coating, metallic bond coat, strategic metals, physical-chemical features

Procedia PDF Downloads 287
462 The Invaluable Contributions of Radiography and Radiotherapy in Modern Medicine

Authors: Sahar Heidary

Abstract:

Radiography and radiotherapy have emerged as crucial pillars of modern medical practice, revolutionizing diagnostics and treatment for a myriad of health conditions. This abstract highlights the pivotal role of radiography and radiotherapy in favor of healthcare and society. Radiography, a non-invasive imaging technique, has significantly advanced medical diagnostics by enabling the visualization of internal structures and abnormalities within the human body. With the advent of digital radiography, clinicians can obtain high-resolution images promptly, leading to faster diagnoses and informed treatment decisions. Radiography plays a pivotal role in detecting fractures, tumors, infections, and various other conditions, allowing for timely interventions and improved patient outcomes. Moreover, its widespread accessibility and cost-effectiveness make it an indispensable tool in healthcare settings worldwide. On the other hand, radiotherapy, a branch of medical science that utilizes high-energy radiation, has become an integral component of cancer treatment and management. By precisely targeting and damaging cancerous cells, radiotherapy offers a potent strategy to control tumor growth and, in many cases, leads to cancer eradication. Additionally, radiotherapy is often used in combination with surgery and chemotherapy, providing a multifaceted approach to combat cancer comprehensively. The continuous advancements in radiotherapy techniques, such as intensity-modulated radiotherapy and stereotactic radiosurgery, have further improved treatment precision while minimizing damage to surrounding healthy tissues. Furthermore, radiography and radiotherapy have demonstrated their worth beyond oncology. Radiography is instrumental in guiding various medical procedures, including catheter placement, joint injections, and dental evaluations, reducing complications and enhancing procedural accuracy. On the other hand, radiotherapy finds applications in non-cancerous conditions like benign tumors, vascular malformations, and certain neurological disorders, offering therapeutic options for patients who may not benefit from traditional surgical interventions. In conclusion, radiography and radiotherapy stand as indispensable tools in modern medicine, driving transformative improvements in patient care and treatment outcomes. Their ability to diagnose, treat, and manage a wide array of medical conditions underscores their favor in medical practice. As technology continues to advance, radiography and radiotherapy will undoubtedly play an ever more significant role in shaping the future of healthcare, ultimately saving lives and enhancing the quality of life for countless individuals worldwide.

Keywords: radiology, radiotherapy, medical imaging, cancer treatment

Procedia PDF Downloads 48
461 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique

Authors: Stefano Iannello, Massimiliano Materazzi

Abstract:

Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.

Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray

Procedia PDF Downloads 151
460 The Collective Memory, Node Reconstruction and Local Belongingness in the Settlement of Outlying Islands: By Taking the Important Architectural Complex of Wang-an Hua-Zhai Settlement as an Example

Authors: Shu-Yen Wang, Shyh-Huei Hwang

Abstract:

Designated as an important architectural complex of settlement by the Ministry of Culture, Hua-Zhai Settlement located in Wang-An Township, Peng-Hu County, of Taiwan has been progressively restored year by year and is now at the revitalization and reutilization stage. Over the last 5 years, YunTech has participated in the restoration project while being in compliance with the Bureau of Cultural Heritage’s spirit of 'Living Heritage Conservation'. In this study, reflections have been made to evaluate the contemporariness of traditional settlement development from the aspects of revitalization and reutilization. On the one hand, the connection between settlers’ experiences and emotions have been clarified through the living nodes, collective memory, and social-cultural connotation. On the other hand, activity design has promoted the reconstruction of living nodes and facilitated the reconnection of collective memory, enabling us to explore the contemporariness of living nodes after the reconstruction. With the adoption of literature review, participant observation, and interview analysis methods, this study concludes the following results: 1) The node reconstruction brings back the memories and makes emotional connections: the spatial collective memory is composed of different components. During the reconstruction of node space, villagers participated not only in the narration of the history but also in the restoration of the space. This process enables villagers to bring back their memories and make emotional connections thereto. 2) Villagers’ understanding towards revitalization has been facilitated through node reconstruction: as a medium of this project, activity design has facilitated node reconstruction by offering villagers a natural environment to build up emotional connections to the settlement. This also enables us to better understand the meaning of settlement activation for the local community. 3) New connections are established in life between villagers and the university through the construction of living nodes: through the local implementation of node reconstruction, new connections have been established in life between villagers who participated in the project and the university. In the meantime, the university’s entrance to the community has also been revalued.

Keywords: collective memory, local sense of belonging, reconstruction of living nodes, the important architectural complex of Wang-An Hua-Zhai settlement

Procedia PDF Downloads 116
459 Geomorphology of Leyte, Philippines: Seismic Response and Remote Sensing Analysis and Its Implication to Landslide Hazard Assessment

Authors: Arturo S. Daag, Ira Karrel D. L. San Jose, Mike Gabriel G. Pedrosa, Ken Adrian C. Villarias, Rayfred P. Ingeniero, Cyrah Gale H. Rocamora, Margarita P. Dizon, Roland Joseph B. De Leon, Teresito C. Bacolcol

Abstract:

The province of Leyte consists of various geomorphological landforms: These are: a) landforms of tectonic origin transect large part of the volcanic centers in upper Ormoc area; b) landforms of volcanic origin, several inactive volcanic centers located in Upper Ormoc are transected by Philippine Fault; c) landforms of volcano-denudational and denudational slopes dominates the area where most of the earthquake-induced landslide occurred; and d) Colluvium and alluvial deposits dominate the foot slope of Ormoc and Jaro-Pastrana plain. Earthquake ground acceleration and geotechnical properties of various landforms are crucial for landslide studies. To generate the landslide critical acceleration model of sliding block, various data were considered, these are: geotechnical data (i.e., soil and rock strength parameters), slope, topographic wetness index (TWI), landslide inventory, soil map, geologic maps for the calculation of the factor of safety. Horizontal-to-vertical spectral ratio (HVSR) surveying methods, refraction microtremor (ReMi), and three-component microtremor (3CMT) were conducted to measure site period and surface wave velocity as well as to create a soil thickness model. Critical acceleration model of various geomorphological unit using Remote Sensing, field geotechnical, geophysical, and geospatial data collected from the areas affected by the 06 July 2017 M6.5 Leyte earthquake. Spatial analysis of earthquake-induced landslide from the 06 July 2017, were then performed to assess the relationship between the calculated critical acceleration and peak ground acceleration. The observed trends proved helpful in establishing the role of critical acceleration as a determining factor in the distribution of co-seismic landslides.

Keywords: earthquake-induced landslide, remote sensing, geomorphology, seismic response

Procedia PDF Downloads 87
458 Impacts of Urban Morphologies on Air Pollutants Dispersion in Porto's Urban Area

Authors: Sandra Rafael, Bruno Vicente, Vera Rodrigues, Carlos Borrego, Myriam Lopes

Abstract:

Air pollution is an environmental and social issue at different spatial scales, especially in a climate change context, with an expected decrease of air quality. Air pollution is a combination of high emissions and unfavourable weather conditions, where wind speed and wind direction play a key role. The urban design (location and structure of buildings and trees) can both promote the air pollutants dispersion as well as promote their retention within the urban area. Today, most of the urban areas are applying measures to adapt to future extreme climatic events. Most of these measures are grounded on nature-based solutions, namely green roofs and green areas. In this sense, studies are required to evaluate how the implementation of these actions will influence the wind flow within the urban area and, consequently, how this will influence air pollutants' dispersion. The main goal of this study was to evaluate the influence of a set of urban morphologies in the wind conditions and in the dispersion of air pollutants, in a built-up area in Portugal. For that, two pollutants were analysed (NOx and PM10) and four scenarios were developed: i) a baseline scenario, which characterizes the current status of the study area, ii) an urban green scenario, which implies the implementation of a green area inside the domain, iii) a green roof scenario, which consists in the implementation of green roofs in a specific area of the domain; iv) a 'grey' scenario, which consists in a scenario with absence of vegetation. For that, two models were used, namely the Weather Research and Forecasting model (WRF) and the CFD model VADIS (pollutant dispersion in the atmosphere under variable wind conditions). The WRF model was used to initialize the CFD model, while the last was used to perform the set of numerical simulations, on an hourly basis. The implementation of the green urban area promoted a reduction of air pollutants' concentrations, 16% on average, related to the increase in the wind flow, which promotes air pollutants dispersion; while the application of green roofs showed an increase of concentrations (reaching 60% during specific time periods). Overall the results showed that a strategic placement of vegetation in cities has the potential to make an important contribution to increase air pollutants dispersion and so promote the improvement of air quality and sustainability of urban environments.

Keywords: air pollutants dispersion, wind conditions, urban morphologies, road traffic emissions

Procedia PDF Downloads 321
457 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada

Authors: S. Chowdhury, A. Corlett

Abstract:

Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.

Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation

Procedia PDF Downloads 112
456 A Comparative Study of the Alternatives to Land Acquisition: India

Authors: Aparna Soni

Abstract:

The much-celebrated foretold story of Indian city engines driving the growth of India has been scrutinized to have serious consequences. A wide spectrum of scholarship has brought to light the un-equalizing effects and the need to adopt a rights-based approach to development planning in India. Notably, these concepts and discourses ubiquitously entail the study of land struggles in the making of Urban. In fact, the very progression of the primitive accumulation theory to accumulation by dispossession, followed by ‘dispossession without development,’ thereafter Development without dispossession and now as Dispossession by financialization noticeably the last three developing in a span of mere three decades, is evidence enough to trace the centrality and evolving role of land in the making of urban India. India, in the last decade, has seen its regional governments actively experimenting with alternative models of land assembly (Amaravati and Delhi land pooling models, the loudly advertised ones). These are publicized as a replacement to the presumably cost and time antagonistic, prone to litigation land acquisition act of 2013. It has been observed that most of the literature treats these models as a generic large bracket of land expropriation and do not, in particular, try to differentially analyse to granularly find a pattern in these alternatives. To cater to this gap, this research comparatively studies these alternative land, assembly models. It categorises them based on their basic architecture, spatial and sectoral application, and governance frameworks. It is found that these alternatives are ad-hoc and fragmented pieces of legislation. These are fit for profit models commodifying land to ease its access by the private sector for real estate led growth. The research augments the literature on the privatization of land use planning in India. Further, it attempts to discuss the increasing role a landowner is expected to play in the future and suggests a way forward to safeguard them from market risks. The study involves a thematic analysis of the policy elements contained in legislative/policy documents, notifications, office orders. The study also derives from the various widely circulated print media information. With the present field-visit limitations, the study relies on documents accessed open-source in the public domain.

Keywords: commodification, dispossession, land acquisition, landowner

Procedia PDF Downloads 139
455 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.

Keywords: contamination, DRASTIC, groundwater, vulnerability, model

Procedia PDF Downloads 63
454 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components

Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin

Abstract:

This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.

Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization

Procedia PDF Downloads 357
453 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X

Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira

Abstract:

An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.

Keywords: boundary-layer, scramjet, simple algorithm, shock wave

Procedia PDF Downloads 461
452 Accuracy of Computed Tomography Dose Monitor Values: A Multicentric Study in India

Authors: Adhimoolam Saravana Kumar, K. N. Govindarajan, B. Devanand, R. Rajakumar

Abstract:

The quality of Computed Tomography (CT) procedures has improved in recent years due to technological developments and increased diagnostic ability of CT scanners. Due to the fact that CT doses are the peak among diagnostic radiology practices, it is of great significance to be aware of patient’s CT radiation dose whenever a CT examination is preferred. CT radiation dose delivered to patients in the form of volume CT dose index (CTDIvol) values, is displayed on scanner monitors at the end of each examination and it is an important fact to assure that this information is accurate. The objective of this study was to estimate the CTDIvol values for great number of patients during the most frequent CT examinations, to study the comparison between CT dose monitor values and measured ones, as well as to highlight the fluctuation of CTDIvol values for the same CT examination at different centres and scanner models. The output CT dose indices measurements were carried out on single and multislice scanners for available kV, 5 mm slice thickness, 100 mA and FOV combination used. The 100 CT scanners were involved in this study. Data with regard to 15,000 examinations in patients, who underwent routine head, chest and abdomen CT were collected using a questionnaire sent to a large number of hospitals. Out of the 15,000 examinations, 5000 were head CT examinations, 5000 were chest CT examinations and 5000 were abdominal CT examinations. Comprehensive quality assurance (QA) was performed for all the machines involved in this work. Followed by QA, CT phantom dose measurements were carried out in South India using actual scanning parameters used clinically by the hospitals. From this study, we have measured the mean divergence between the measured and displayed CTDIvol values were 5.2, 8.4, and -5.7 for selected head, chest and abdomen procedures for protocols as mentioned above, respectively. Thus, this investigation revealed an observable change in CT practices, with a much wider range of studies being performed currently in South India. This reflects the improved capacity of CT scanners to scan longer scan lengths and at finer resolutions as permitted by helical and multislice technology. Also, some of the CT scanners have used smaller slice thickness for routine CT procedures to achieve better resolution and image quality. It leads to an increase in the patient radiation dose as well as the measured CTDIv, so it is suggested that such CT scanners should select appropriate slice thickness and scanning parameters in order to reduce the patient dose. If these routine scan parameters for head, chest and abdomen procedures are optimized than the dose indices would be optimal and lead to the lowering of the CT doses. In South Indian region all the CT machines were routinely tested for QA once in a year as per AERB requirements.

Keywords: CT dose index, weighted CTDI, volumetric CTDI, radiation dose

Procedia PDF Downloads 231
451 The Genus Bacillus, Effect on Commercial Crops of Colombia

Authors: L. C. Sánchez, L. C. Corrales, A. G. Lancheros, E. Castañeda, Y. Ariza, L. S. Fuentes, L. Sierra, J. L. Cuervo

Abstract:

The importance of environment friendly alternatives in agricultural processes is the reason why the research group Ceparium, the Colegio Mayor de Cundinamarca University, Colombia, investigated the genus Bacillus and its applicability for improving crops of economic importance in Colombia. In this investigation, we presented a study in which the genus Bacillus plays a leading role as beneficial microorganism. The objective was to identify the biochemical potential of three indigenous species of Bacillus, which were able to carry out actions for biological control against pathogens and pests or promoted growth to improve productivity of crops in Colombia. The procedures were performed in three phases: first, the production of biomass of an indigenous strain and a reference strain starting from culture media for production of spores and toxins were made. Spore count was done in a Neubauer chamber, concentrations of spores of Bacillus sphaericus were prepared and a bioassay was done at the Laboratory of Entomology at the University Jorge Tadeo Lozano of Plutella xylostella larvae, insect pest of crucifers in several Colombian regions. The second phase included the extraction in the liquid state fermentation, a secondary metabolite that has antibiosis action against fungi, call iturin B, and was obtained from strains of Bacillus subtilis. The molecule was identified using High Resolution Chromatography (HPLC) and its biocontrol effect on Fusarium sp fungus causes vascular wilt in economically important plant varieties, was confirmed using testing of antagonism in Petri dish. In the third phase, an initial procedure in that let recover and identify microorganisms of the genus Bacillus from the rhizosphere in two aromatic herbs, Rosmarinus officinalis and Thymus vulgaris L. was used. Subsequently, testing of antagonism against Fusarium sp were made and an assay was done under greenhouse conditions to observe biocontrol and growth promoting action by comparing growth in length and dry weight. In the first experiment, native Bacillus sphaericus was lethal to 92% Plutella xylostella larvae in 10 DDA. In the second experiment, iturin B was identified and biological control of Fusarium sp was demonstrated. In the third study, all strains demonstrated biological control and the B14 strain identified as Bacillus megaterium increased root length and productivity of the two plants in terms of weight. It was concluded that the native microorganisms of the genus Bacillus has a great biochemical potential that provides a beneficial interactions with plants, improve their growth and development and therefore a greater impact on production.

Keywords: genus bacillus, biological control, PGPRs, biochemical potential

Procedia PDF Downloads 422
450 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection

Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili

Abstract:

The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).

Keywords: EM induction sensing, detector, plastic mines, remote sensing

Procedia PDF Downloads 129
449 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System

Authors: Lela Gadrani, Mariam Tsitsagi

Abstract:

Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.

Keywords: analysis, geo information system, remote sensing, LULC

Procedia PDF Downloads 435
448 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet

Abstract:

The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.

Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines

Procedia PDF Downloads 154
447 Genetic Diversity of Cord Blood of the National Center of Blood Transfusion, Mexico (NCBT)

Authors: J. Manuel Bello-López, Julieta Rojo-Medina

Abstract:

Introduction: The transplant of Umbilical Cord Blood Units (UCBU) are a therapeutic possibility for patients with oncohaematological disorders, especially in children. In Mexico, 48.5% of oncological diseases in children 1-4 years old are leukemias; whereas in patients 5-14 and 15-24 years old, lymphomas and leukemias represent the second and third cause of death in these groups respectively. Therefore it is necessary to have more registries of UCBU in order to ensure genetic diversity in the country; the above because the search for appropriate a UCBU is increasingly difficult for patients of mixed ethnicity. Objective: To estimate the genetic diversity (polymorphisms) of Human Leucocyte Antigen (HLA) Class I (A, B) and Class II (DRB1) in UCBU cryopreserved for transplant at Cord Blood Bank of the NCBT. Material and Methods: HLA typing of 533 UCBU for transplant was performed from 2003-2012 at the Histocompatibility Laboratory from the Research Department (evaluated by Los Angeles Ca. Immunogenetics Center) of the NCBT. Class I HLA-A, HLA-B and Class II HLA-DRB1 typing was performed using medium resolution Sequence-Specific Primer (SSP). In cases of an ambiguity detected by SSP; Sequence-Specific Oligonucleotide (SSO) method was carried out. A strict analysis of populations genetic parameters were done in 5 representative UCBU populations. Results: 46.5% of UCBU were collected from Mexico City, State of Mexico (30.95%), Puebla (8.06%), Morelos (6.37%) and Veracruz (3.37%). The remaining UCBU (4.75%) are represented by other states. The identified genotypes correspond to Amerindian origins (HLA-A*02, 31; HLA-B*39, 15, 48), Caucasian (HLA-A*02, 68, 01, 30, 31; HLA-B*35, 15, 40, 44, 07 y HLA-DRB1*04, 08, 07, 15, 03, 14), Oriental (HLA-A*02, 30, 01, 31; HLA-B* 35, 39, 15, 40, 44, 07,48 y HLA-DRB1*04, 07,15, 03) and African (HLA-A*30 y HLA-DRB1*03). The genetic distances obtained by Cavalli-Sforza analysis of the five states showed significant genetic differences by comparing genetic frequencies. The shortest genetic distance exists between Mexico City and the state of Puebla (0.0039) and the largest between Veracruz and Morelos (0.0084). In order to identify significant differences between this states, the ANOVA test was performed. This demonstrates that UCBU is significantly different according to their origin (P <0.05). This is shown by the divergence between arms at the Dendogram of Neighbor-Joining. Conclusions: The NCBT provides UCBU in patients with oncohaematological disorders in all the country. There is a group of patients for which not compatible UCBU can be find due to the mixed ethnic origin. For example, the population of northern Mexico is mostly Caucasian. Most of the NCBT donors are of various ethnic origins, predominantly Amerindians and Caucasians; although some ethnic minorities like Oriental, African and pure Indian ethnics are not represented. The NCBT is, therefore, establishing agreements with different states of Mexico to promote the altruistic donation of Umbilical Cord Blood in order to enrich the genetic diversity in its files.

Keywords: cord blood, genetic diversity, human leucocyte antigen, transplant

Procedia PDF Downloads 362
446 Prevalence of Behavioral and Emotional Problems in School Going Adolescents in India

Authors: Anshu Gupta, Charu Gupta

Abstract:

Background: Adolescence is the transitional period between puberty and adulthood. It is marked by immense turmoil in emotional and behavioral spheres. Adolescents are at risk of an array of behavioral and emotional problems, resulting in social, academic and vocational function impairments. Conflicts in the family and inability of the parents to cope with the changing demands of an adolescent have a negative impact on the overall development of the child. This augers ill for the individual’s future, resulting in depression, delinquency and suicides among other problems. Aim: The aim of the study was to compare the prevalence of behavioral and emotional problems in school going adolescents aged 13 to 15 years residing in Ludhiana city. Method: A total of 1380 school children in the age group of 13 to 15 years were assessed by the adolescent health screening questionnaire (FAPS) and Youth Self-Report (2001) questionnaire. Statistical significance was ascertained by t-test, chi-square test (x²) and ANOVA, as appropriate. Results: A considerably high prevalence of behavioral and emotional problems was found in school going adolescents (26.5%), more in girls (31.7%) than in boys (24.4%). In case of boys, the maximum problem was in the 13 year age group, i.e., 28.2%, followed by a significant decline by the age of 14 years, i.e., 24.2% and 15 years, i.e., 19.6%. In case of girls also, the maximum problem was in the 13 year age group, i.e., 32.4% followed by a marginal decline in the 14 years i.e., 31.8% and 15 year age group, i.e., 30.2%. Demographic factors were non contributory. Internalizing syndrome (22.4%) was the most common problem followed by the neither internalizing nor externalizing (17.6%) group. In internalizing group, most (26.5%) of the students were observed to be anxious/ depressed. Social problem was observed to be the most frequent (10.6%) among neither internalizing nor externalizing group. Aggressive behavior was the commonest (8.4%) among externalizing group. Internalizing problems, mainly anxiety and depression, were commoner in females (30.6%) than males (24.6%). More boys (16%) than girls (13.4%) were reported to suffer from externalizing disorders. A critical review of the data showed that most of the adolescents had poor knowledge about reproductive health. Almost 36% reported that the source of their information on sexual and reproductive health being friends and the electronic media. There was a high percentage of adolescents who reported being worried about sexual abuse (20.2%) with majority of them being girls (93.6%) reflecting poorly on the social setup in the country. About 41% of adolescents reported being concerned about body weight and most of them being girls (92.4%). Up to 14.5% reported having thoughts of using alcohol or drugs perhaps due to the easy availability of substances of abuse in this part of the country. 12.8% (mostly girls) reported suicidal thoughts. Summary/conclusion: There is a high prevalence of emotional and behavioral problems among school-going adolescents. Resolution of these problems during adolescence is essential for attaining a healthy adulthood. The need of the hour is to spread awareness among caregivers and formulation of effective management strategies including school mental health programme.

Keywords: adolescence, behavioral, emotional, internalizing problem

Procedia PDF Downloads 258
445 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 189
444 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 96
443 Mapping Intertidal Changes Using Polarimetry and Interferometry Techniques

Authors: Khalid Omari, Rene Chenier, Enrique Blondel, Ryan Ahola

Abstract:

Northern Canadian coasts have vulnerable and very dynamic intertidal zones with very high tides occurring in several areas. The impact of climate change presents challenges not only for maintaining this biodiversity but also for navigation safety adaptation due to the high sediment mobility in these coastal areas. Thus, frequent mapping of shorelines and intertidal changes is of high importance. To help in quantifying the changes in these fragile ecosystems, remote sensing provides practical monitoring tools at local and regional scales. Traditional methods based on high-resolution optical sensors are often used to map intertidal areas by benefiting of the spectral response contrast of intertidal classes in visible, near and mid-infrared bands. Tidal areas are highly reflective in visible bands mainly because of the presence of fine sand deposits. However, getting a cloud-free optical data that coincide with low tides in intertidal zones in northern regions is very difficult. Alternatively, the all-weather capability and daylight-independence of the microwave remote sensing using synthetic aperture radar (SAR) can offer valuable geophysical parameters with a high frequency revisit over intertidal zones. Multi-polarization SAR parameters have been used successfully in mapping intertidal zones using incoherence target decomposition. Moreover, the crustal displacements caused by ocean tide loading may reach several centimeters that can be detected and quantified across differential interferometric synthetic aperture radar (DInSAR). Soil moisture change has a significant impact on both the coherence and the backscatter. For instance, increases in the backscatter intensity associated with low coherence is an indicator for abrupt surface changes. In this research, we present primary results obtained following our investigation of the potential of the fully polarimetric Radarsat-2 data for mapping an inter-tidal zone located on Tasiujaq on the south-west shore of Ungava Bay, Quebec. Using the repeat pass cycle of Radarsat-2, multiple seasonal fine quad (FQ14W) images are acquired over the site between 2016 and 2018. Only 8 images corresponding to low tide conditions are selected and used to build an interferometric stack of data. The observed displacements along the line of sight generated using HH and VV polarization are compared with the changes noticed using the Freeman Durden polarimetric decomposition and Touzi degree of polarization extrema. Results show the consistency of both approaches in their ability to monitor the changes in intertidal zones.

Keywords: SAR, degree of polarization, DInSAR, Freeman-Durden, polarimetry, Radarsat-2

Procedia PDF Downloads 122
442 Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean

Authors: K. Alafogiannis, E. E. Houssos, E. Anagnostou, G. Kouvarakis, N. Mihalopoulos, A. Fotiadi

Abstract:

The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula.

Keywords: aerosols, atmospheric circulation, dust particles, Eastern Mediterranean

Procedia PDF Downloads 210
441 Comparative Study on Efficacy and Clinical Outcomes in Minimally Invasive Surgery Transforaminal Interbody Fusion vs Minimally Invasive Surgery Lateral Interbody Fusion

Authors: Sundaresan Soundararajan, George Ezekiel Silvananthan, Chor Ngee Tan

Abstract:

Introduction: Transforaminal Interbody Fusion (TLIF) has been adopted for many decades now, however, XLIF, still in relative infancy, has grown to be accepted as a new Minimally Invasive Surgery (MIS) option. There is a paucity of reports directly comparing lateral approach surgery to other MIS options such as TLIF in the treatment of lumbar degenerative disc diseases. Aims/Objectives: The objective of this study was to compare the efficacy and clinical outcomes between Minimally Invasive Transforaminal Interbody Fusion (TLIF) and Minimally Invasive Lateral Interbody Fusion (XLIF) in the treatment of patients with degenerative disc disease of the lumbar spine. Methods: A single center, retrospective cohort study involving a total of 38 patients undergoing surgical intervention between 2010 and 2013 for degenerative disc disease of lumbar spine at single L4/L5 level. 18 patients were treated with MIS TLIF, and 20 patients were treated with XLIF. Results: The XLIF group showed shorter duration of surgery compared to the TLIF group (176 mins vs. 208.3 mins, P = 0.03). Length of hospital stay was also significantly shorter in XLIF group (5.9 days vs. 9 days, p = 0.03). Intraoperative blood loss was favouring XLIF as 85% patients had blood loss less than 100cc compared to 58% in the TLIF group (P = 0.03). Radiologically, disc height was significantly improved post operatively in the XLIF group compared to the TLIF group (0.56mm vs. 0.39mm, P = 0.01). Foraminal height increment was also higher in the XLIF group (0.58mm vs. 0.45mm , P = 0.06). Clinically, back pain and leg pain improved in 85% of patients in the XLIF group and 78% in the TLIF group. Post op hip flexion weakness was more common in the XLIF group (40%) than in the TLIF group (0%). However, this weakness resolved within 6 months post operatively. There was one case of dural tear and surgical site infection in the TLIF group respectively and none in the XLIF group. Visual Analog Scale (VAS) score 6 months post operatively showed comparable reduction in both groups. TLIF group had Owsterty Disability Index (ODI) improvement on 67% while XLIF group showed improvement of 70% of its patients. Conclusions: Lateral approach surgery shows comparable clinical outcomes in resolution of back pain and radiculopathy to conventional MIS techniques such as TLIF. With significantly shorter duration of surgical time, minimal blood loss and shorter hospital stay, XLIF seems to be a reasonable MIS option compared to other MIS techniques in treating degenerative lumbar disc diseases.

Keywords: extreme lateral interbody fusion, lateral approach, minimally invasive, XLIF

Procedia PDF Downloads 190
440 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports

Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel

Abstract:

The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.

Keywords: biomechanics, inertial sensors, motion capture, rehabilitation

Procedia PDF Downloads 120