Search results for: spatial information network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16186

Search results for: spatial information network

13156 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework

Authors: Mayada Al Meghari

Abstract:

Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.

Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance

Procedia PDF Downloads 119
13155 Utilization of Online Risk Mapping Techniques versus Desktop Geospatial Tools in Making Multi-Hazard Risk Maps for Italy

Authors: Seyed Vahid Kamal Alavi

Abstract:

Italy has experienced a notable quantity and impact of disasters due to natural hazards and technological accidents caused by diverse risk sources on its physical, technological, and human/sociological infrastructures during past decade. This study discusses the frequency and impacts of the most three physical devastating natural hazards in Italy for the period 2000–2013. The approach examines the reliability of a range of open source WebGIS techniques versus a proposed multi-hazard risk management methodology. Spatial and attribute data which include USGS publically available hazard data and thirteen years Munich RE recorded data for Italy with different severities have been processed, visualized in a GIS (Geographic Information System) framework. Comparison of results from the study showed that the multi-hazard risk maps generated using open source techniques do not provide a reliable system to analyze the infrastructures losses in respect to national risk sources while they can be adopted for general international risk management purposes. Additionally, this study establishes the possibility to critically examine and calibrate different integrated techniques in evaluating what better protection measures can be taken in an area.

Keywords: multi-hazard risk mapping, risk management, GIS, Italy

Procedia PDF Downloads 371
13154 Spatio-Temporal Analysis of Drought in Cholistan Region, Pakistan: An Application of Standardized Precipitation Index

Authors: Qurratulain Safdar

Abstract:

Drought is a temporary aberration in contrast to aridity, as it is a permanent feature of climate. Virtually, it takes place in all types of climatic regions that range from high to low rainfall areas. Due to the wide latitudinal extent of Pakistan, there is seasonal and annual variability in rainfall. The south-central part of the country is arid and hyper-arid. This study focuses on the spatio-temporal analysis of droughts in arid and hyperarid region of Cholistan using the standardized precipitation index (SPI) approach. This study has assessed the extent of recurrences of drought and its temporal vulnerability to drought in Cholistan region. Initially, the paper described the geographic setup of the study area along with a brief description of the drought conditions that prevail in Pakistan. The study also provides a scientific foundation for preparing literature and theoretical framework in-line with the selected parameters and indicators. Data were collected both from primary and secondary data sources. Rainfall and temperature data were obtained from Pakistan Meteorology Department. By applying geostatistical approach, a standardized precipitation index (SPI) was calculated for the study region, and the value of spatio-temporal variability of drought and its severity was explored. As a result, in-depth spatial analysis of drought conditions in Cholistan area was found. Parallel to this, drought-prone areas with seasonal variation were also identified using Kriging spatial interpolation techniques in a GIS environment. The study revealed that there is temporal variation in droughts' occurrences both in time series and SPI values. The paper is finally concluded, and strategic plan was suggested to minimize the impacts of drought.

Keywords: Cholistan desert, climate anomalies, metrological droughts, standardized precipitation index

Procedia PDF Downloads 213
13153 Effects of Health Information Websites on Health Care Facility Visits

Authors: M. Aljumaan, F. Alkhadra, A. Aldajani, M. Alarfaj, A. Alawami, Y. Aljamaan

Abstract:

Introduction: The internet has been widely available with 18 million users in Saudi Arabia alone. It was shown that 58% of Saudis are using the internet as a source of health-related information which may contribute to overcrowding of the Emergency Room (ER). Not many studies have been conducted to show the effect of online searching for health related information (HRI) and its role in influencing internet users to visit various health care facilities. So the main objective is to determine a correlation between HRI website use and health care facility visits in Saudi Arabia. Methodology: By conducting a cross sectional study and distributing a questionnaire, a total number of 1095 people were included in the study. Demographic data was collected as well as questions including the use of HRI websites, type of websites used, the reason behind the internet search, which health care facility it lead them to visit and whether seeking health information on the internet influenced their attitude towards visiting health care facilities. The survey was distributed using an internet survey applications. The data was then put on an excel sheet and analyzed with the help of a biostatician for making a correlation. Results: We found 91.4% of our population have used the internet for medical information using mainly General medical websites (77.8%), Forums (34.2%), Social Media (21.6%), and government websites (21.6%). We also found that 66.9% have used the internet for medical information to diagnose and treat their medical conditions on their own while 34.7% did so due to the inability to have a close referral and 29.5% due to their lack of time. Searching for health related information online caused 62.5% of people to visit health care facilities. Outpatient clinics were most visited at 77.9% followed by the ER (27.9%). The remaining 37.5% do not visit because using HRI websites reassure them of their condition. Conclusion: In conclusion, there may be a correlation between health information website use and health care facility visits. However, to avoid potentially inaccurate medical information, we believe doctors have an important role in educating their patients and the public on where to obtain the correct information & advertise the sites that are regulated by health care officials.

Keywords: ER visits, health related information, internet, medical websites

Procedia PDF Downloads 191
13152 Morphological Analysis of Manipuri Language: Wahei-Neinarol

Authors: Y. Bablu Singh, B. S. Purkayashtha, Chungkham Yashawanta Singh

Abstract:

Morphological analysis forms the basic foundation in NLP applications including syntax parsing Machine Translation (MT), Information Retrieval (IR) and automatic indexing in all languages. It is the field of the linguistics; it can provide valuable information for computer based linguistics task such as lemmatization and studies of internal structure of the words. Computational Morphology is the application of morphological rules in the field of computational linguistics, and it is the emerging area in AI, which studies the structure of words, which are formed by combining smaller units of linguistics information, called morphemes: the building blocks of words. Morphological analysis provides about semantic and syntactic role in a sentence. It analyzes the Manipuri word forms and produces several grammatical information associated with the words. The Morphological Analyzer for Manipuri has been tested on 3500 Manipuri words in Shakti Standard format (SSF) using Meitei Mayek as source; thereby an accuracy of 80% has been obtained on a manual check.

Keywords: morphological analysis, machine translation, computational morphology, information retrieval, SSF

Procedia PDF Downloads 326
13151 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 162
13150 Blockchain’s Feasibility in Military Data Networks

Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam

Abstract:

Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.

Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing

Procedia PDF Downloads 138
13149 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 318
13148 Data Integrity: Challenges in Health Information Systems in South Africa

Authors: T. Thulare, M. Herselman, A. Botha

Abstract:

Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.

Keywords: data integrity, data integrity challenges, hospital information systems, South Africa

Procedia PDF Downloads 181
13147 Breast Cancer Detection Using Machine Learning Algorithms

Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra

Abstract:

In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.

Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer

Procedia PDF Downloads 53
13146 The Diffusion of Membrane Nanodomains with Specific Ganglioside Composition

Authors: Barbora Chmelova, Radek Sachl

Abstract:

Gangliosides are amphipathic membrane lipids. Due to the composition of bulky oligosaccharide chains containing one or more sialic acids linked to the hydrophobic ceramide base, gangliosides are classified among glycosphingolipids. This unique structure induces a high self-aggregating tendency of gangliosides and, therefore, the formation of nanoscopic clusters called nanodomains. Gangliosides are preferentially present in an extracellular membrane leaflet of all human tissues and thus have an impact on a huge number of biological processes, such as intercellular communication, cell signalling, membrane trafficking, and regulation of receptor activity. Defects in their metabolism, impairment of proper ganglioside function, or changes in their organization lead to serious health conditions such as Alzheimer´s and Parkinson´s diseases, autoimmune diseases, tumour growth, etc. This work mainly focuses on ganglioside organization into nanodomains and their dynamics within the plasma membrane. Current research investigates static ganglioside nanodomains characterization; nevertheless, the information about their diffusion is missing. In our study, fluorescence correlation spectroscopy is implemented together with stimulated emission depletion (STED-FCS), which combines the diffraction-unlimited spatial resolution with high temporal resolution. By comparison of the experiments performed on model vesicles containing 4 % of either GM1, GM2, or GM3 and Monte Carlo simulations of diffusion on the plasma membrane, the description of ganglioside clustering, diffusion of nanodomains, and even diffusion of ganglioside molecules inside investigated nanodomains are described.

Keywords: gangliosides, nanodomains, STED-FCS, flourescence microscopy, membrane diffusion

Procedia PDF Downloads 81
13145 Design an Architectural Model for Deploying Wireless Sensor Network to Prevent Forest Fire

Authors: Saurabh Shukla, G. N. Pandey

Abstract:

The fires have become the most serious disasters to forest resources and the human environment. In recent years, due to climate change, human activities and other factors the frequency of forest fires has increased considerably. The monitoring and prevention of forest fires have now become a global concern for forest fire prevention organizations. Currently, the methods for forest fire prevention largely consist of patrols, observation from watch towers. Thus, software like deployment of the wireless sensor network to prevent forest fire is being developed to get a better estimate of the temperature and humidity prospects. Now days, wireless sensor networks are beginning to be deployed at an accelerated pace. It is not unrealistic to expect that in coming years the world will be covered with wireless sensor networks. This new technology has lots of unlimited potentials and can be used for numerous application areas including environmental, medical, military, transportation, entertainment, crisis management, homeland defense, and smart spaces.

Keywords: deployment, sensors, wireless sensor networks, forest fires

Procedia PDF Downloads 436
13144 A Comparative Study of Cognitive Functions in Relapsing-Remitting Multiple Sclerosis Patients, Secondary-Progressive Multiple Sclerosis Patients and Normal People

Authors: Alireza Pirkhaefi

Abstract:

Background: Multiple sclerosis (MS) is one of the most common diseases of the central nervous system (brain and spinal cord). Given the importance of cognitive disorders in patients with multiple sclerosis, the present study was in order to compare cognitive functions (Working memory, Attention and Centralization, and Visual-spatial perception) in patients with relapsing- remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS). Method: Present study was performed as a retrospective study. This research was conducted with Ex-Post Facto method. The samples of research consisted of 60 patients with multiple sclerosis (30 patients relapsing-retrograde and 30 patients secondary progressive), who were selected from Tehran Community of MS Patients Supported as convenience sampling. 30 normal persons were also selected as a comparison group. Montreal Cognitive Assessment (MOCA) was used to assess cognitive functions. Data were analyzed using multivariate analysis of variance. Results: The results showed that there were significant differences among cognitive functioning in patients with RRMS, SPMS, and normal individuals. There were not significant differences in working memory between two groups of patients with RRMS and SPMS; while significant differences in these variables were seen between the two groups and normal individuals. Also, results showed significant differences in attention and centralization and visual-spatial perception among three groups. Conclusions: Results showed that there are differences between cognitive functions of RRMS and SPMS patients so that the functions of RRMS patients are better than SPMS patients. These results have a critical role in improvement of cognitive functions; reduce the factors causing disability due to cognitive impairment, and especially overall health of society.

Keywords: multiple sclerosis, cognitive function, secondary-progressive, normal subjects

Procedia PDF Downloads 239
13143 Locating the Best Place for Earthquake Refugee Camps by OpenSource Software: A Case Study for Tehran, Iran

Authors: Reyhaneh Saeedi

Abstract:

Iran is one of the regions which are most prone for earthquakes annually having a large number of financial and mortality and financial losses. Every year around the world, a large number of people lose their home and life due to natural disasters such as earthquakes. It is necessary to provide and specify some suitable places for settling the homeless people before the occurrence of the earthquake, one of the most important factors in crisis planning and management. Some of the natural disasters can be Modeling and shown by Geospatial Information System (GIS). By using GIS, it would be possible to manage the spatial data and reach several goals by making use of the analyses existing in it. GIS has a determining role in disaster management because it can determine the best places for temporary resettling after such a disaster. In this research QuantumGIS software is used that It is an OpenSource software so that easy to access codes and It is also free. In this system, AHP method is used as decision model and to locate the best places for temporary resettling, is done based on the related organizations criteria with their weights and buffers. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Eventually, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QuantumGIS platform.

Keywords: disaster management, temporary resettlement, earthquake, QuantumGIS

Procedia PDF Downloads 397
13142 Network Impact of a Social Innovation Initiative in Rural Areas of Southern Italy

Authors: A. M. Andriano, M. Lombardi, A. Lopolito, M. Prosperi, A. Stasi, E. Iannuzzi

Abstract:

In according to the scientific debate on the definition of Social Innovation (SI), the present paper identifies SI as new ideas (products, services, and models) that simultaneously meet social needs and create new social relationships or collaborations. This concept offers important tools to unravel the difficult condition for the agricultural sector in marginalized areas, characterized by the abandonment of activities, low level of farmer education, and low generational renewal, hampering new territorial strategies addressed at and integrated and sustainable development. Models of SI in agriculture, starting from bottom up approach or from the community, are considered to represent the driving force of an ecological and digital revolution. A system based on SI may be able to grasp and satisfy individual and social needs and to promote new forms of entrepreneurship. In this context, Vazapp ('Go Hoeing') is an emerging SI model in southern Italy that promotes solutions for satisfying needs of farmers and facilitates their relationships (creation of network). The Vazapp’s initiative, considered in this study, is the Contadinners ('Farmer’s dinners'), a dinner held at farmer’s house where stakeholders living in the surrounding area know each other and are able to build a network for possible future professional collaborations. The aim of the paper is to identify the evolution of farmers’ relationships, both quantitatively and qualitatively, because of the Contadinner’s initiative organized by Vazapp. To this end, the study adopts the Social Network Analysis (SNA) methodology by using UCINET (Version 6.667) software to analyze the relational structure. Data collection was realized through a questionnaire distributed to 387 participants in the twenty 'Contadinners', held from February 2016 to June 2018. The response rate to the survey was about 50% of farmers. The elaboration data was focused on different aspects, such as: a) the measurement of relational reciprocity among the farmers using the symmetrize method of answers; b) the measurement of the answer reliability using the dichotomize method; c) the description of evolution of social capital using the cohesion method; d) the clustering of the Contadinners' participants in followers and not-followers of Vazapp to evaluate its impact on the local social capital. The results concern the effectiveness of this initiative in generating trustworthy relationships within the rural area of southern Italy, typically affected by individualism and mistrust. The number of relationships represents the quantitative indicator to define the dimension of the network development; while the typologies of relationships (from simple friendship to formal collaborations, for branding new cooperation initiatives) represents the qualitative indicator that offers a diversified perspective of the network impact. From the analysis carried out, Vazapp’s initiative represents surely a virtuous SI model to catalyze the relationships within the rural areas and to develop entrepreneurship based on the real needs of the community.

Keywords:

Procedia PDF Downloads 111
13141 A Challenge to Acquire Serious Victims’ Locations during Acute Period of Giant Disasters

Authors: Keiko Shimazu, Yasuhiro Maida, Tetsuya Sugata, Daisuke Tamakoshi, Kenji Makabe, Haruki Suzuki

Abstract:

In this paper, we report how to acquire serious victims’ locations in the Acute Stage of Large-scale Disasters, in an Emergency Information Network System designed by us. The background of our concept is based on the Great East Japan Earthquake occurred on March 11th, 2011. Through many experiences of national crises caused by earthquakes and tsunamis, we have established advanced communication systems and advanced disaster medical response systems. However, Japan was devastated by huge tsunamis swept a vast area of Tohoku causing a complete breakdown of all the infrastructures including telecommunications. Therefore, we noticed that we need interdisciplinary collaboration between science of disaster medicine, regional administrative sociology, satellite communication technology and systems engineering experts. Communication of emergency information was limited causing a serious delay in the initial rescue and medical operation. For the emergency rescue and medical operations, the most important thing is to identify the number of casualties, their locations and status and to dispatch doctors and rescue workers from multiple organizations. In the case of the Tohoku earthquake, the dispatching mechanism and/or decision support system did not exist to allocate the appropriate number of doctors and locate disaster victims. Even though the doctors and rescue workers from multiple government organizations have their own dedicated communication system, the systems are not interoperable.

Keywords: crisis management, disaster mitigation, messing, MGRS, military grid reference system, satellite communication system

Procedia PDF Downloads 236
13140 Analysis of Underground Logistics Transportation Technology and Planning Research: Based on Xiong'an New Area, China

Authors: Xia Luo, Cheng Zeng

Abstract:

Under the promotion of the Central Committee of the Communist Party of China and the State Council in 2017, Xiong'an New Area is the third crucial new area in China established after Shenzhen and Shanghai. Its constructions' significance lies in mitigating Beijing's non-capital functions and exploring a new mode of optimizing development in densely populated and economically intensive areas. For this purpose, developing underground logistics can assume the role of goods distribution in the capital, relieve the road transport pressure in Beijing-Tianjin-Hebei Urban Agglomeration, adjust and optimize the urban layout and spatial structure of it. Firstly, the construction planning of Xiong'an New Area and underground logistics development are summarized, especially the development status abroad, the development trend, and bottlenecks of underground logistics in China. This paper explores the technicality, feasibility, and necessity of four modes of transportation. There are pneumatic capsule pipeline (PCP) technology, the CargoCap technology, cable hauled mule, and automatic guided vehicle (AGV). The above technical parameters and characteristics are introduced to relevant experts or scholars. Through establishing an indicator system, carrying out a questionnaire survey with the Delphi method, the final suggestion is obtained: China should develop logistics vehicles similar to CargoCap, adopting rail mode and driverless mode. Based on China's temporal and spatial logistics demand and the geographical pattern of Xiong'an New Area, the construction scale, technical parameters, node location, and other vital parameters of underground logistics are planned. In this way, we hope to speed up the new area's construction and the logistics industry's innovation.

Keywords: the Xiong'an new area, underground logistics, contrastive analysis, CargoCap, logistics planning

Procedia PDF Downloads 129
13139 Effects of Financial and Non-Financial Reports On - Firms Performance

Authors: Vithaya Intaraphimol

Abstract:

This research investigates the effect of financial accounting information and non-financial accounting reports on corporate credibility via strength of board of directors and market environment volatility as moderating effect. Data in this research is collected by questionnaire form non-financial companies listed on the Stock Exchange of Thailand. Multiple regression statistic technique is chosen for analyzing the data. The empirical results find that firms with greater financial accounting information reports and non-financial accounting information reports will gain greater corporate credibility. Therefore, the corporate reporting has the value for the firms. Moreover, the strength of board of directors will positively moderate the financial and non-financial accounting information reports and corporate credibility relationship. Whereas, market environment volatility will negatively moderate the financial and nonfinancial accounting information reports and corporate credibility relationship.

Keywords: corporate credibility, financial and non-financial reports, firms performance, economics

Procedia PDF Downloads 458
13138 An Analytic Network Process Approach towards Academic Staff Selection

Authors: Nasrullah khan

Abstract:

Today business environment is very dynamic and most of organizations are in tough competition for their added values and sustainable hold in market. To achieve such objectives, organizations must have dynamic and creative people as optimized process. To get these people, there should strong human resource management system in organizations. There are multiple approaches have been devised in literature to hire more job relevant and more suitable people. This study proposed an ANP (Analytic Network Process) approach to hire faculty members for a university system. This study consists of two parts. In fist part, a through literature survey and universities interview are conducted in order to find the common criteria for the selection of academic staff. In second part the available candidates are prioritized on the basis of the relative values of these criteria. According to results the GRE & foreign language, GPA and research paper writing were most important factors for the selection of academic staff.

Keywords: creative people, ANP, academic staff, business environment

Procedia PDF Downloads 415
13137 Digital Customer Relationship Management on Service Delivery Performance

Authors: Reuben Kinyuru Njuguna, Martin Mabuya Njuguna

Abstract:

Digital platforms, such as The Internet, and the advent of digital marketing strategies, have led to many changes in the marketing of goods and services. These have resulted in improved service quality, enhanced customer relations, productivity gains, marketing transaction cost reductions, improved customer service and flexibility in fulfilling customers’ changing needs and lifestyles. Consequently, the purpose of this study was to determine the effect of digital marketing practices on the financial performance of mobile network operators in the telecommunications industry in Kenya. The objectives of the study were to establish how digital customer relationship management strategies on performance of mobile network operators in Kenya. The study used an explanatory cross-sectional survey research design, while the target population was made up of from the 4 major mobile network operators in Kenya, namely Safaricom Limited, Airtel Networks Kenya Limited, Finserve Africa Limited and Telkom Kenya Limited. Sampling strategy was stratified sampling with a sample size of 97 respondents. Digital customer relationship strategies were seen to influence firm performance, through enhancing convenience, building trust, encouraging growth in market share through creating sustainable relationships, building commitment with customers, enhancing customer retention and customer satisfaction. Digital customer relationship management were seen to maximize gross profits by increasing customer satisfaction, loyalty and retention. The study recommended upscaling the use of digital customer relationship management strategies to further enhance firm performance, given their great potential in this regard.

Keywords: customer relationship management, customer service delivery, performance, customer satisfaction

Procedia PDF Downloads 238
13136 Visuospatial Perspective Taking and Theory of Mind in a Clinical Approach: Development of a Task for Adults

Authors: Britt Erni, Aldara Vazquez Fernandez, Roland Maurer

Abstract:

Visuospatial perspective taking (VSPT) is a process that allows to integrate spatial information from different points of view, and to transform the mental images we have of the environment to properly orient our movements and anticipate the location of landmarks during navigation. VSPT is also related to egocentric perspective transformations (imagined rotations or translations of one's point of view) and to infer the visuospatial experiences of another person (e.g. if and how another person sees objects). This process is deeply related to a wide-ranging capacity called the theory of mind (ToM), an essential cognitive function that allows us to regulate our social behaviour by attributing mental representations to individuals in order to make behavioural predictions. VSPT is often considered in the literature as the starting point of the development of the theory of mind. VSPT and ToM include several levels of knowledge that have to be assessed by specific tasks. Unfortunately, the lack of tasks assessing these functions in clinical neuropsychology leads to underestimate, in brain-damaged patients, deficits of these functions which are essential, in everyday life, to regulate our social behaviour (ToM) and to navigate in known and unknown environments (VSPT). Therefore, this study aims to create and standardize a VSPT task in order to explore the cognitive requirements of VSPT and ToM, and to specify their relationship in healthy adults and thereafter in brain-damaged patients. Two versions of a computerized VSPT task were administered to healthy participants (M = 28.18, SD = 4.8 years). In both versions the environment was a 3D representation of 10 different geometric shapes placed on a circular base. Two sets of eight pictures were generated from this: of the environment with an avatar somewhere on its periphery (locations) and of what the avatar sees from that place (views). Two types of questions were asked: a) identify the location from the view, and b) identify the view from the location. Twenty participants completed version 1 of the task and 20 completed the second version, where the views were offset by ±15° (i.e., clockwise or counterclockwise) and participants were asked to choose the closest location or the closest view. The preliminary findings revealed that version 1 is significantly easier than version 2 for accuracy (with ceiling scores for version 1). In version 2, participants responded significantly slower when they had to infer the avatar's view from the latter's location, probably because they spent more time visually exploring the different views (responses). Furthermore, men significantly performed better than women in version 1 but not in version 2. Most importantly, a sensitive task (version 2) has been created for which the participants do not seem to easily and automatically compute what someone is looking at yet which does not involve more heavily other cognitive functions. This study is further completed by including analysis on non-clinical participants with low and high degrees of schizotypy, different socio-educational status, and with a range of older adults to examine age-related and other differences in VSPT processing.

Keywords: mental transformation, spatial cognition, theory of mind, visuospatial perspective taking

Procedia PDF Downloads 203
13135 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications

Authors: Morsy Ahmed Morsy Ismail

Abstract:

In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.

Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia

Procedia PDF Downloads 175
13134 Effect of Educational Information with Video Compact Disc on Anxiety Level in Patients Undergoing Bronchoscopy in Ramathibodi Hospital

Authors: Chariya Laohavich, Viboon Bunsrangsuk

Abstract:

Objective: Bronchoscopy is a common outpatient procedure. The authors compared the patient anxiety level before and after received video-assisted procedural information. Method: One hundred and twenty patients who never received bronchoscopy and scheduled for elective bronchoscopy at outpatient Bronchosope unit at Ramathibodi Hospital, Mahidol University were randomized into control and intervention group. Video-assisted procedural information was given in intervention group. Pre and post procedural anxiety score were recorded and compared between two groups. Paired T-test was used for statistical analysis. Result: There was statistically significant decrease (p < 0.001) for anxiety score in patients who received video assisted procedural information compare with control group. Conclusion: Video-assisted procedural information should be given to patient who will have bronchoscopy to reduce anxiety.

Keywords: anxiety, bronchoscopy, video compact disc (VCD)

Procedia PDF Downloads 349
13133 Reduction of Energy Consumption of Distillation Process by Recovering the Heat from Exit Streams

Authors: Apichit Svang-Ariyaskul, Thanapat Chaireongsirikul, Pawit Tangviroon

Abstract:

Distillation consumes enormous quantity of energy. This work proposed a process to recover the energy from exit streams during the distillation process of three consecutive columns. There are several novel techniques to recover the heat with the distillation system; however, a complex control system is required. This work proposed a simpler technique by exchanging the heat between streams without interrupting the internal distillation process that might cause a serious control problem. The proposed process is executed by using heat exchanger network with pinch analysis to maximize the process heat recovery. The test model is the distillation of butane, pentane, hexane, and heptanes, which is a common mixture in the petroleum refinery. This proposed process saved the energy consumption for hot and cold utilities of 29 and 27%, which is considered significant. Therefore, the recovery of heat from exit streams from distillation process is proved to be effective for energy saving.

Keywords: distillation, heat exchanger, network pinch analysis, chemical engineering

Procedia PDF Downloads 369
13132 Effects of Epinephrine on Gene Expressions during the Metamorphosis of Pacific Oyster Crassostrea gigas

Authors: Fei Xu, Guofan Zhang, Xiao Liu

Abstract:

Many major marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic adults via settlement and metamorphosis, which has many advantages for organisms to adapt marine environment. Studying the biological process of metamorphosis is thus a key to understand the origin and evolution of indirect development. Although the mechanism of metamorphosis has been largely studied on their relationships with the marine environment, microorganisms, as well as the neurohormones, little is known on the gene regulation network (GRN) during metamorphosis. We treated competent oyster pediveligers with epinephrine, which was known to be able to effectively induce oyster metamorphosis, and analyzed the dynamics of gene and proteins with transcriptomics and proteomics methods. The result indicated significant upregulation of protein synthesis system, as well as some transcription factors including Homeobox, basic helix-loop-helix, and nuclear receptors. The result suggested the GRN complexity of the transition stage during oyster metamorphosis.

Keywords: indirect development, gene regulation network, protein synthesis, transcription factors

Procedia PDF Downloads 141
13131 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia

Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak

Abstract:

In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.

Keywords: data security, flow cytometry, leukaemia, telematics platform, telemedicine

Procedia PDF Downloads 984
13130 Characterization of the Upper Crust in Botswana Using Vp/Vs and Poisson's Ratios from Body Waves

Authors: Rapelang E. Simon, Thebeetsile A. Olebetse, Joseph R. Maritinkole, Ruth O. Moleleke

Abstract:

The P and S wave seismic velocity ratios (Vp/Vs) of some aftershocks are investigated using the method ofWadati diagrams. These aftershocks occurred after the 3rdApril 2017 Botswana’s Mw 6.5 earthquake and were recorded by the Network of Autonomously Recording Seismographs (NARS)-Botswana temporary network deployed from 2013 to 2018. In this paper, P and S wave data with good signal-to-noise ratiofrom twenty events of local magnitude greater or equal to 4.0are analysed with the Seisan software and used to infer properties of the upper crust in Botswana. The Vp/Vsratiosare determined from the travel-times of body waves and then converted to Poisson’s ratio, which is useful in determining the physical state of the subsurface materials. The Vp/Vs ratios of the upper crust in Botswana show regional variations from 1.70 to 1.77, with an average of 1.73. The Poisson’s ratios range from 0.24to 0.27 with an average of 0.25 and correlate well with the geological structures in Botswana.

Keywords: Botswana, earthquake, poisson's ratio, seismic velocity, Vp/Vs ratio

Procedia PDF Downloads 135
13129 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 362
13128 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company

Authors: Lokendra Kumar Devangan, Ajay Mishra

Abstract:

This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.

Keywords: production planning, mixed integer optimization, network model, network optimization

Procedia PDF Downloads 67
13127 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131