Search results for: search algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3766

Search results for: search algorithms

736 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila

Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores

Abstract:

This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.

Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires

Procedia PDF Downloads 1
735 The Seeds of Limitlessness: Dambudzo Marechera's Utopian Thinking

Authors: Emily S. M. Chow

Abstract:

The word ‘utopia’ was coined by Thomas More in Utopia (1516). Its Greek roots ‘ou’ means ‘not’ and ‘topos’ means ‘place.’ In other words, it literally refers to ‘no-place.’ However, the possibility of having an alternative and better future society has always been appealing. In fact, at the core of every utopianism is the search for a future alternative state with the anticipation of a better life. Nonetheless, the practicalities of such ideas have never ceased to be questioned. At times, building a utopia presents itself as a divisive act. In addition to the violence that must be employed to sweep away the old regime in order to make space for the new, all utopias carry within them the potential for bringing catastrophic consequences to human life. After all, every utopia seeks to remodel the individual in a very particular way for the benefit of the masses. In this sense, utopian thinking has the potential both to create and destroy the future. While writing during a traumatic transitional period in Zimbabwe’s history, Dambudzo Marechera witnessed an age of upheavals in which different parties battled for power over Zimbabwe. Being aware of the fact that all institutionalized narratives, be they originated from the governance of the UK, Ian Smith’s white minority regime or Zimbabwe’s revolutionary parties, revealed themselves to be nothing more than fiction, Marechera realized the impossibility of determining reality absolutely. As such, this thesis concerns the writing of the Zimbabwean maverick, Dambudzo Marechera. It argues that Marechera writes a unique vision of utopia. In short, for Marechera utopia is not a static entity but a moment of perpetual change. He rethinks utopia in the sense that he phrases it as an event that ceaselessly contests institutionalized and naturalized narratives of a post-colonial self and its relationship to society. Marechera writes towards a vision of an alternative future of the country. Yet, it is a vision that does not constitute a fully rounded sense of utopia. Being cautious about the world and the operation of power upon the people, rather than imposing his own utopian ideals, Marechera chooses to instead peeling away the narrative constitution of the self in relation to society in order to turn towards a truly radical utopian thinking that empowers the individual.

Keywords: African literature, Marechera, post-colonial literature, utopian studies

Procedia PDF Downloads 413
734 Research on the Effectiveness of Online Guided Case Teaching in Problem-Based Learning: A Preschool Special Education Course

Authors: Chen-Ya Juan

Abstract:

Problem-Based Learning uses vague questions to guide student thinking and enhance their self-learning and collaboration. Most teachers implement PBL in a physical classroom, where teachers can monitor and evaluate students’ learning progress and guide them to search resources for answers. However, the prevalence of the Covid-19 in the world had changed from physical teaching to distance teaching. This instruction used many cases and applied Problem-Based Learning combined on the distance teaching via the internet for college students. This study involved an experimental group with PBL and a control group without PBL. The teacher divided all students in PBL class into eight groups, and 7~8 students in each group. The teacher assigned different cases for each group of the PBL class. Three stages of instruction were developed, including background knowledge of Learning, case analysis, and solving problems for each case. This study used a quantitative research method, a two-sample t-test, to find a significant difference in groups with PBL and without PBL. Findings indicated that PBL incased the average score of special education knowledge. The average score was improved by 20.46% in the PBL group and 15.4% without PBL. Results didn’t show significant differences (0.589>0.05) in special education professional knowledge. However, the feedback of the PBL students implied learning more about the application, problem-solving skills, and critical thinking. PBL students were more likely to apply professional knowledge on the actual case, find questions, resources, and answers. Most of them understood the importance of collaboration, working as a team, and communicating with other team members. The suggestions of this study included that (a) different web-based teaching instruments influenced student’s Learning; (b) it is difficult to monitor online PBL progress; (c) online PBL should be implemented flexible and multi-oriented; (d) although PBL did not show a significant difference on the group with PBL and without PBL, it did increase student’s problem-solving skills and critical thinking.

Keywords: problem-based learning, college students, distance learning, case analysis, problem-solving

Procedia PDF Downloads 130
733 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic

Authors: Farahnaz Karami

Abstract:

Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.

Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic

Procedia PDF Downloads 64
732 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88
731 Bridge Healthcare Access Gap with Artifical Intelligence

Authors: Moshmi Sangavarapu

Abstract:

The US healthcare industry has undergone tremendous digital transformation in recent years, but critical care access to lower-income ethnicities is still in its nascency. This population has historically showcased substantial hesitation to seek any medical assistance. While the lack of sufficient financial resources plays a critical role, the existing cultural and knowledge barriers also contribute significantly to widening the access gap. It is imperative to break these barriers to ensure timely access to therapeutic procedures that can save important lives! Based on ongoing research, healthcare access barriers can be best addressed by tapping the untapped potential of caregiver communities first. They play a critical role in patients’ diagnoses, building healthcare knowledge and instilling confidence in required therapeutic procedures. Recent technological advancements have opened many avenues by developing smart ways of reaching the large caregiver community. A digitized go-to-market strategy featuring connected media coupled with smart IoT devices and geo-location targeting can be collectively leveraged to reach this key audience group. AI/ML algorithms can be thoroughly trained to identify relevant data signals from users' location and browsing behavior and determine useful marketing touchpoints. The web behavior can be further assimilated with natural language processing to identify contextually relevant interest topics and decipher potential caregivers on digital avenues to serve that brand message. In conclusion, grasping the true health access journey of any lower-income ethnic group is important to design beneficial touchpoints that can alleviate patients’ concerns and allow them to break their own access barriers and opt for timely and quality healthcare.

Keywords: healthcare access, market access, diversity barriers, patient journey

Procedia PDF Downloads 54
730 A Systematic Review on Orphan Drugs Pricing, and Prices Challenges

Authors: Seyran Naghdi

Abstract:

Background: Orphan drug development is limited by very high costs attributed to the research and development and small size market. How health policymakers address this challenge to consider both supply and demand sides need to be explored for directing the policies and plans in the right way. The price is an important signal for pharmaceutical companies’ profitability and the patients’ accessibility as well. Objective: This study aims to find out the orphan drugs' price-setting patterns and approaches in health systems through a systematic review of the available evidence. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) approach was used. MedLine, Embase, and Web of Sciences were searched via appropriate search strategies. Through Medical Subject Headings (MeSH), the appropriate terms for pricing were 'cost and cost analysis', and it was 'orphan drug production', and 'orphan drug', for orphan drugs. The critical appraisal was performed by the Joanna-Briggs tool. A Cochrane data extraction form was used to obtain the data about the studies' characteristics, results, and conclusions. Results: Totally, 1,197 records were found. It included 640 hits from Embase, 327 from Web of Sciences, and 230 MedLine. After removing the duplicates, 1,056 studies remained. Of them, 924 studies were removed in the primary screening phase. Of them, 26 studies were included for data extraction. The majority of the studies (>75%) are from developed countries, among them, approximately 80% of the studies are from European countries. Approximately 85% of evidence has been produced in the recent decade. Conclusions: There is a huge variation of price-setting among countries, and this is related to the specific pharmacological market structure and the thresholds that governments want to intervene in the process of pricing. On the other hand, there is some evidence on the availability of spaces to reduce the very high costs of orphan drugs development through an early agreement between pharmacological firms and governments. Further studies need to focus on how the governments could incentivize the companies to agree on providing the drugs at lower prices.

Keywords: orphan drugs, orphan drug production, pricing, costs, cost analysis

Procedia PDF Downloads 163
729 Curvature Based-Methods for Automatic Coarse and Fine Registration in Dimensional Metrology

Authors: Rindra Rantoson, Hichem Nouira, Nabil Anwer, Charyar Mehdi-Souzani

Abstract:

Multiple measurements by means of various data acquisition systems are generally required to measure the shape of freeform workpieces for accuracy, reliability and holisticity. The obtained data are aligned and fused into a common coordinate system within a registration technique involving coarse and fine registrations. Standardized iterative methods have been established for fine registration such as Iterative Closest Points (ICP) and its variants. For coarse registration, no conventional method has been adopted yet despite a significant number of techniques which have been developed in the literature to supply an automatic rough matching between data sets. Two main issues are addressed in this paper: the coarse registration and the fine registration. For coarse registration, two novel automated methods based on the exploitation of discrete curvatures are presented: an enhanced Hough Transformation (HT) and an improved Ransac Transformation. The use of curvature features in both methods aims to reduce computational cost. For fine registration, a new variant of ICP method is proposed in order to reduce registration error using curvature parameters. A specific distance considering the curvature similarity has been combined with Euclidean distance to define the distance criterion used for correspondences searching. Additionally, the objective function has been improved by combining the point-to-point (P-P) minimization and the point-to-plane (P-Pl) minimization with automatic weights. These ones are determined from the preliminary calculated curvature features at each point of the workpiece surface. The algorithms are applied on simulated and real data performed by a computer tomography (CT) system. The obtained results reveal the benefit of the proposed novel curvature-based registration methods.

Keywords: discrete curvature, RANSAC transformation, hough transformation, coarse registration, ICP variant, point-to-point and point-to-plane minimization combination, computer tomography

Procedia PDF Downloads 424
728 The Impact of Intelligent Control Systems on Biomedical Engineering and Research

Authors: Melkamu Tadesse Getachew

Abstract:

Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.

Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling

Procedia PDF Downloads 44
727 The Implications of Technological Advancements on the Constitutional Principles of Contract Law

Authors: Laura Çami (Vorpsi), Xhon Skënderi

Abstract:

In today's rapidly evolving technological landscape, the traditional principles of contract law are facing significant challenges. The emergence of new technologies, such as electronic signatures, smart contracts, and online dispute resolution mechanisms, is transforming the way contracts are formed, interpreted, and enforced. This paper examines the implications of these technological advancements on the constitutional principles of contract law. One of the fundamental principles of contract law is freedom of contract, which ensures that parties have the autonomy to negotiate and enter into contracts as they see fit. However, the use of technology in the contracting process has the potential to disrupt this principle. For example, online platforms and marketplaces often offer standard-form contracts, which may not reflect the specific needs or interests of individual parties. This raises questions about the equality of bargaining power between parties and the extent to which parties are truly free to negotiate the terms of their contracts. Another important principle of contract law is the requirement of consideration, which requires that each party receives something of value in exchange for their promise. The use of digital assets, such as cryptocurrencies, has created new challenges in determining what constitutes valuable consideration in a contract. Due to the ambiguity in this area, disagreements about the legality and enforceability of such contracts may arise. Furthermore, the use of technology in dispute resolution mechanisms, such as online arbitration and mediation, may raise concerns about due process and access to justice. The use of algorithms and artificial intelligence to determine the outcome of disputes may also raise questions about the impartiality and fairness of the process. Finally, it should be noted that there are many different and complex effects of technical improvements on the fundamental constitutional foundations of contract law. As technology continues to evolve, it will be important for policymakers and legal practitioners to consider the potential impacts on contract law and to ensure that the principles of fairness, equality, and access to justice are preserved in the contracting process.

Keywords: technological advancements, constitutional principles, contract law, smart contracts, online dispute resolution, freedom of contract

Procedia PDF Downloads 150
726 An Online Questionnaire Investigating UK Mothers' Experiences of Bottle Refusal by Their Breastfed Baby

Authors: Clare Maxwell, Lorna Porcellato, Valerie Fleming, Kate Fleming

Abstract:

A review of global online forums and social media reveals large numbers of mothers experiencing bottle refusal by their breastfed baby. It is difficult to determine precise numbers due to a lack of data, however, established virtual communities illustrate thousands of posts in relation to the issue. Mothers report various negative consequences of bottle refusal including delaying their return to work, time and financial outlay spent on methods to overcome it and experiencing stress, anxiety, and resentment of breastfeeding. A search of the literature revealed no studies being identified, and due to a lack of epidemiological data, a study investigating mother’s experiences of bottle refusal by their breastfed baby was undertaken. The aim of the study was to investigate UK mothers’ experiences of bottle refusal by their breastfed baby. Data were collected using an online questionnaire collecting quantitative and qualitative data. 841 UK mothers who had experienced or were experiencing bottle refusal by their breastfed baby completed the questionnaire. Data were analyzed using descriptive statistics and non-parametric testing. The results showed 61% (516/840) of mothers reported their breastfed baby was still refusing/had never accepted a bottle, with 39% (324/840) reporting their baby had eventually accepted. The most frequently reported reason to introduce a bottle was so partner/family could feed the baby 59% (499/839). 75% (634/841) of mothers intended their baby to feed on a bottle ‘occasionally’. Babies who accepted a bottle were more likely to be older at 1st attempt to introduce one than those babies who refused (Mdn = 12 weeks v 8 weeks, n = 286) (p = <0.001). Length of time taken to acceptance was 9 weeks (Mdn = 9, IQR = 18, R = 103.9, n = 306) with the older the baby was at 1st attempt to introduce a bottle being associated with a shorter length of time to acceptance (p = < 0.002). 60% (500/841) of mothers stated that none of the methods they used had worked. 26% (222/841) of mothers reported bottle refusal had had a negative impact upon their overall breastfeeding experience. 47% (303/604) reported they would have tried to introduce a bottle earlier to prevent refusal. This study provides a unique insight into the scenario of bottle refusal by breastfed babies. It highlights that bottle refusal by breastfed babies is a significant issue, which requires recognition from those communicating breastfeeding information to mothers.

Keywords: bottle feeding, bottle refusal, breastfeeding, infant feeding

Procedia PDF Downloads 164
725 A Systematic Review of Pedometer-or Accelerometer-Based Interventions for Increasing Physical Activity in Low Socioeconomic Groups

Authors: Shaun G. Abbott, Rebecca C. Reynolds, James B. Etter, John B. F. de Wit

Abstract:

The benefits of physical activity (PA) on health are well documented. Low socioeconomic status (SES) is associated with poor health, with PA a suggested mediator. Pedometers and accelerometers offer an effective behavior change tool to increase PA levels. While the role of pedometer and accelerometer use in increasing PA is recognized in many populations, little is known in low-SES groups. We are aiming to assess the effectiveness of pedometer- and accelerometer-based interventions for increasing PA step count and improving subsequent health outcomes among low-SES groups of high-income countries. Medline, Embase, PsycINFO, CENTRAL and SportDiscus databases were searched to identify articles published before 10th July, 2015; using search terms developed from previous systematic reviews. Inclusion criteria are: low-SES participants classified by income, geography, education, occupation or ethnicity; study duration minimum 4 weeks; an intervention and control group; wearing of an unsealed pedometer or accelerometer to objectively measure PA as step counts per day for the duration of the study. We retrieved 2,142 articles from our database searches, after removal of duplicates. Two investigators independently reviewed titles and abstracts of these articles (50% each) and a combined 20% sample were reviewed to account for inter-assessor variation. We are currently verifying the full texts of 430 articles. Included studies will be critically appraised for risk of bias using guidelines suggested by the Cochrane Public Health Group. Two investigators will extract data concerning the intervention; study design; comparators; steps per day; participants; context and presence or absence of obesity and/or chronic disease. Heterogeneity amongst studies is anticipated, thus a narrative synthesis of data will be conducted with the simplification of selected results into percentage increases from baseline to allow for between-study comparison. Results will be presented at the conference in December if selected.

Keywords: accelerometer, pedometer, physical activity, socioeconomic, step count

Procedia PDF Downloads 331
724 The Effectiveness of Probiotics in the Treatment of Minimal Hepatic Encephalopathy Among Patients with Cirrhosis: An Expanded Meta-Analysis

Authors: Erwin Geroleo, Higinio Mappala

Abstract:

Introduction Overt Hepatic Encephalopathy (OHE) is the most dreaded outcome of liver cirrhosis. Aside from the triggering factors which are already known to precipitate OHE, there is growing evidence that an altered gut microbiota profile (dysbiosis) can also trigger OHE. MHE is the mildest form of hepatic encephalopathy(HE), affecting about one-third of patients with cirrhosis, and close 80% of patients with cirrhosis and manifests as abnormalities in central nervous system function. Since these symptoms are subclinical most patients are not being treated to prevent OHE. The gut microbiota have been evaluated by several studies as a therapeutic option for MHE, especially in decreasing the levels of ammonia, thus preventing progression to OHE Objectives This study aims to evaluate the efficacy of probiotics in terms of reduction of ammonia levels in patient with minimal hepatic encephalopathies and to determine if Probiotics has role in the prevention of progression to overt hepatic encephalopathy in adult patients with minimal hepatic encephalopathy (MHE) Methods and Analysis The literature search strategy was restricted to human studies in adults subjects from 2004 to 2022. The Jadad Score Calculation was utilized in the assessment of the final studies included in this study. Eight (8) studies were included. Cochrane’s Revman Web, the Fixed Effects model and the Ztest were all used in the overall analysis of the outcomes. A p value of less than 0.0005 was statistically significant. Results. These results show that Probiotics significantly lowers the level of Ammonia in Cirrhotic patients with OHE. It also shows that the use of Probiotics significantly prevents the progression of MHE to OHE. The overall risk of bias graph indicates low risk of publication bias among the studies included in the meta-analysis. Main findings This research found that plasma ammonia concentration was lower among participants treated with probiotics (p<0.00001).) Ammonia level of the probiotics group is lower by 13.96 μmol/ on the average. Overall risk of developing overt hepatic encephalopathy in the probiotics group is shown to be decreased by 15% as compared to the placebo group Conclusion The analysis showed that compared with placebo, probiotics can decrease serum ammonia, may improve MHE and may prevent OHE.

Keywords: minimal hepatic encephalopathy, probiotics, liver cirrhosis, overt hepatic encephalopathy

Procedia PDF Downloads 45
723 Modelling, Assessment, and Optimisation of Rules for Selected Umgeni Water Distribution Systems

Authors: Khanyisile Mnguni, Muthukrishnavellaisamy Kumarasamy, Jeff C. Smithers

Abstract:

Umgeni Water is a water board that supplies most parts of KwaZulu Natal with bulk portable water. Currently, Umgeni Water is running its distribution system based on required reservoir levels and demands and does not consider the energy cost at different times of the day, number of pump switches, and background leakages. Including these constraints can reduce operational cost, energy usage, leakages, and increase performance. Optimising pump schedules can reduce energy usage and costs while adhering to hydraulic and operational constraints. Umgeni Water has installed an online hydraulic software, WaterNet Advisor, that allows running different operational scenarios prior to implementation in order to optimise the distribution system. This study will investigate operation scenarios using optimisation techniques and WaterNet Advisor for a local water distribution system. Based on studies reported in the literature, introducing pump scheduling optimisation can reduce energy usage by approximately 30% without any change in infrastructure. Including tariff structures in an optimisation problem can reduce pumping costs by 15%, while including leakages decreases cost by 10%, and pressure drop in the system can be up to 12 m. Genetical optimisation algorithms are widely used due to their ability to solve nonlinear, non-convex, and mixed-integer problems. Other methods such as branch and bound linear programming have also been successfully used. A suitable optimisation method will be chosen based on its efficiency. The objective of the study is to reduce energy usage, operational cost, and leakages, and the feasibility of optimal solution will be checked using the Waternet Advisor. This study will provide an overview of the optimisation of hydraulic networks and progress made to date in multi-objective optimisation for a selected sub-system operated by Umgeni Water.

Keywords: energy usage, pump scheduling, WaterNet Advisor, leakages

Procedia PDF Downloads 92
722 Muslims in Diaspora Negotiating Islam through Muslim Public Sphere and the Role of Media

Authors: Sabah Khan

Abstract:

The idea of universal Islam tends to exaggerate the extent of homogeneity in Islamic beliefs and practices across Muslim communities. In the age of migration, various Muslim communities are in diaspora. The immediate implication of this is what happens to Islam in diaspora? How Islam gets represented in new forms? Such pertinent questions need to be dealt with. This paper shall draw on the idea of religious transnationalism, primarily transnational Islam. There are multiple ways to conceptualize transnational phenomenon with reference to Islam in terms of flow of people, transnational organizations and networks; Ummah oriented solidarity and the new Muslim public sphere. This paper specifically deals with the new Muslim public sphere. It primarily refers to the space and networks enabled by new media and communication technologies, whereby Muslim identity and Islamic normativity are rehearsed, debated by people in different locales. A new sense of public is emerging across Muslim communities, which needs to be contextualized. This paper uses both primary and secondary data. Primary data elicited through content analysis of audio-visuals on social media and secondary sources of information ranging from books, articles, journals, etc. The basic aim of the paper is to focus on the emerging Muslim public sphere and the role of media in expanding public spheres of Islam. It also explores how Muslims in diaspora negotiate Islam and Islamic practices through media and the new Muslim public sphere. This paper cogently weaves in discussions firstly, of re-intellectualization of Islamic discourse in the public sphere. In other words, how Muslims have come to reimagine their collective identity and critically look at fundamental principles and authoritative tradition. Secondly, the emerging alternative forms of Islam by young Muslims in diaspora. In other words, how young Muslims search for unorthodox ways and media for religious articulation, including music, clothing and TV. This includes transmission and distribution of Islam in diaspora in terms of emerging ‘media Islam’ or ‘soundbite Islam’. The new Muslim public sphere has offered an arena to a large number of participants to critically engage with Islam, which leads not only to a critical engagement with traditional forms of Islamic authority but also emerging alternative forms of Islam and Islamic practices.

Keywords: Islam, media, Muslims, public sphere

Procedia PDF Downloads 270
721 VeriFy: A Solution to Implement Autonomy Safely and According to the Rules

Authors: Michael Naderhirn, Marco Pavone

Abstract:

Problem statement, motivation, and aim of work: So far, the development of control algorithms was done by control engineers in a way that the controller would fit a specification by testing. When it comes to the certification of an autonomous car in highly complex scenarios, the challenge is much higher since such a controller must mathematically guarantee to implement the rules of the road while on the other side guarantee aspects like safety and real time executability. What if it becomes reality to solve this demanding problem by combining Formal Verification and System Theory? The aim of this work is to present a workflow to solve the above mentioned problem. Summary of the presented results / main outcomes: We show the usage of an English like language to transform the rules of the road into system specification for an autonomous car. The language based specifications are used to define system functions and interfaces. Based on that a formal model is developed which formally correctly models the specifications. On the other side, a mathematical model describing the systems dynamics is used to calculate the systems reachability set which is further used to determine the system input boundaries. Then a motion planning algorithm is applied inside the system boundaries to find an optimized trajectory in combination with the formal specification model while satisfying the specifications. The result is a control strategy which can be applied in real time independent of the scenario with a mathematical guarantee to satisfy a predefined specification. We demonstrate the applicability of the method in simulation driving scenarios and a potential certification. Originality, significance, and benefit: To the authors’ best knowledge, it is the first time that it is possible to show an automated workflow which combines a specification in an English like language and a mathematical model in a mathematical formal verified way to synthesizes a controller for potential real time applications like autonomous driving.

Keywords: formal system verification, reachability, real time controller, hybrid system

Procedia PDF Downloads 241
720 The Use of Orthodontic Pacifiers to Prevent Pacifier Induced Malocclusion - A Literature Review

Authors: Maliha Ahmed Suleman, Sidra Ahmed Suleman

Abstract:

Introduction: The use of pacifiers is common amongst infants and young children as a comforting behavior. These non-nutritive sucking habits can be detrimental to the developing occlusion should they persist while the permanent dentition is established. Orthodontic pacifiers have been recommended as an alternative to conventional pacifiers as they are considered to have less interference with orofacial development. However, there is a lack of consensus on whether this is true. Aim and objectives: To review the prevalence of malocclusion associated with the use of orthodontic pacifiers. Methodology: Literature was identified through a rigorous search of the Embase, Pubmed, CINAHL, and Cochrane Library databases. Articles published from 2000 onwards were included. In total, 5 suitable papers were identified. Results: One study showed that the use of orthodontic pacifiers increased the risk of malocclusion, as seen through a greater prevalence of accentuated overjet, posterior crossbites, and anterior open bites in comparison to individuals who did not use pacifiers. However, this study found that there was a clinically significant reduction in the prevalence of anterior open bites amongst orthodontic pacifier users in comparison to conventional pacifier users. Another study found that both types of pacifiers lead to malocclusion; however, they found no difference in the mean overjet and prevalence of anterior open bites amongst conventional and orthodontic pacifier users. In contrast, one study suggested that orthodontic pacifiers do not seem to be related to the development of malocclusions in the primary dentitions, and using them between the ages of 0-3 months was actually beneficial as it prevents thumb-sucking habits. One of the systemic reviews concluded that orthodontic pacifiers do not seem to reduce the occurrence of posterior crossbites; however, they could reduce the development of open bites by virtue of their thin neck design. Whereas another systematic review concluded that there were no differences as to the effects on the stomatognathic system when comparing conventional and orthodontic pacifiers. Conclusion: There is limited and conflicting evidence to support the notion that orthodontic pacifiers can reduce the prevalence of malocclusion when compared to conventional pacifiers. Well-designed randomized controlled trials are required in the future in order to thoroughly assess the effects of orthodontic pacifiers on the developing occlusion and orofacial structures.

Keywords: orthodontics, pacifier, malocclusion, review

Procedia PDF Downloads 85
719 Alteration of Placental Development and Vascular Dysfunction in Gestational Diabetes Mellitus Has Impact on Maternal and Infant Health

Authors: Sadia Munir

Abstract:

The aim of this study is to investigate changes in placental development and vascular dysfunction which subsequently affect feto-maternal health in pregnancies complicated by gestational diabetes mellitus (GDM). Fetal and postnatal adverse health outcomes of GDM are shown to be associated with disturbances in placental structure and function. Children of women with GDM are more likely to be obese and diabetic in childhood and adulthood. GDM also increases the risk of adverse pregnancy outcomes, including preeclampsia, birth injuries, macrosomia and neonatal hypoglycemia, respiratory distress syndrome, neonatal cardiac dysfunction and stillbirth. Incidences of type 2 diabetes in the MENA region are growing at an alarming rate which is estimated to become more than double by 2030. Five of the top 10 countries for diabetes prevalence in 2010 were in the Gulf region. GDM also increases the risk of development of type 2 diabetes. Interestingly, more than half of the women with GDM develop diabetes later in their life. The human placenta is a temporary organ located at the interface between mother and fetal blood circulation. Placenta has a central role as both a producer as well as a target of several molecules that are involved in placental development and function. We have investigated performed a Pubmed search with key words placenta, GDM, placental villi, vascularization, cytokines, growth factors, inflammation, hypoxia, oxidative stress and pathophysiology. We have investigated differences in the development and vascularization of placenta, their underlying causes and impact on feto-maternal health through literature review. We have also identified gaps in the literature and research questions that need to be answered to completely understand the central role of placenta in the GDM. This study is important in understanding the pathophysiology of placenta due to changes in the vascularization of villi, surface area and diameter of villous capillaries in pregnancies complicated by GDM. It is necessary to understand these mechanisms in order to develop treatments to reverse their effects on placental malfunctioning, which in turn, will result in improved mother and child health.

Keywords: gestational diabetes mellitus, placenta, vasculature, villi

Procedia PDF Downloads 318
718 A Personality-Based Behavioral Analysis on eSports

Authors: Halkiopoulos Constantinos, Gkintoni Evgenia, Koutsopoulou Ioanna, Antonopoulou Hera

Abstract:

E-sports and e-gaming have emerged in recent years since the increase in internet use have become universal and e-gamers are the new reality in our homes. The excessive involvement of young adults with e-sports has already been revealed and the adverse consequences have been reported in researches in the past few years, but the issue has not been fully studied yet. The present research is conducted in Greece and studies the psychological profile of video game players and provides information on personality traits, habits and emotional status that affect online gamers’ behaviors in order to help professionals and policy makers address the problem. Three standardized self-report questionnaires were administered to participants who were young male and female adults aged from 19-26 years old. The Profile of Mood States (POMS) scale was used to evaluate people’s perceptions of their everyday life mood; the personality features that can trace back to people’s habits and anticipated reactions were measured by Eysenck Personality Questionnaire (EPQ), and the Trait Emotional Intelligence Questionnaire (TEIQue) was used to measure which cognitive (gamers’ beliefs) and emotional parameters (gamers’ emotional abilities) mainly affected/ predicted gamers’ behaviors and leisure time activities?/ gaming behaviors. Data mining techniques were used to analyze the data, which resulted in machine learning algorithms that were included in the software package R. The research findings attempt to designate the effect of personality traits, emotional status and emotional intelligence influence and correlation with e-sports, gamers’ behaviors and help policy makers and stakeholders take action, shape social policy and prevent the adverse consequences on young adults. The need for further research, prevention and treatment strategies is also addressed.

Keywords: e-sports, e-gamers, personality traits, POMS, emotional intelligence, data mining, R

Procedia PDF Downloads 231
717 Fire Safety Assessment of At-Risk Groups

Authors: Naser Kazemi Eilaki, Carolyn Ahmer, Ilona Heldal, Bjarne Christian Hagen

Abstract:

Older people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to safe places. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. This research deals with the fire safety of mentioned people's buildings by means of probabilistic methods. For this purpose, fire safety is addressed by modeling the egress of our target group from a hazardous zone to a safe zone. A common type of detached house with a prevalent plan has been chosen for safety analysis, and a limit state function has been developed according to the time-line evacuation model, which is based on a two-zone and smoke development model. An analytical computer model (B-Risk) is used to consider smoke development. Since most of the involved parameters in the fire development model pose uncertainty, an appropriate probability distribution function has been considered for each one of the variables with indeterministic nature. To achieve safety and reliability for the at-risk groups, the fire safety index method has been chosen to define the probability of failure (causalities) and safety index (beta index). An improved harmony search meta-heuristic optimization algorithm has been used to define the beta index. Sensitivity analysis has been done to define the most important and effective parameters for the fire safety of the at-risk group. Results showed an area of openings and intervals to egress exits are more important in buildings, and the safety of people would improve with increasing dimensions of occupant space (building). Fire growth is more critical compared to other parameters in the home without a detector and fire distinguishing system, but in a home equipped with these facilities, it is less important. Type of disabilities has a great effect on the safety level of people who live in the same home layout, and people with visual impairment encounter more risk of capturing compared to visual and movement disabilities.

Keywords: fire safety, at-risk groups, zone model, egress time, uncertainty

Procedia PDF Downloads 103
716 Approaches to Integrating Entrepreneurial Education in School Curriculum

Authors: Kofi Nkonkonya Mpuangnan, Samantha Govender, Hlengiwe Romualda Mhlongo

Abstract:

In recent years, a noticeable and worrisome pattern has emerged in numerous developing nations which is a steady and persistent rise in unemployment rates. This escalation of economic struggles has become a cause of great concern for parents who, having invested significant resources in their children's education, harboured hopes of achieving economic prosperity and stability for their families through secure employment. To effectively tackle this pressing unemployment issue, it is imperative to adopt a holistic approach, and a pivotal aspect of this approach involves incorporating entrepreneurial education seamlessly into the entire educational system. In this light, the authors explored approaches to integrating entrepreneurial education into school curriculum focusing on the following questions. How can an entrepreneurial mindset among learners be promoted in school? And how far have pedagogical approaches improved entrepreneurship in schools? To find answers to these questions, a systematic literature review underpinned by Human Capital Theory was adopted. This method was supported by the three stages of guidelines like planning, conducting, and reporting. The data were specifically sought from publishers with expansive coverage of scholarly literature like Sage, Taylor & Francis, Emirate, and Springer, covering publications from 1965 to 2023. The search was supported by two broad terms such as promoting entrepreneurial mindset in learners and pedagogical strategies for enhancing entrepreneurship. It was found that acquiring an entrepreneurial mindset through an innovative classroom environment, resilience, and guest speakers and industry experts. Also, teachers can promote entrepreneurial education through the adoption of pedagogical approaches such as hands-on learning and experiential activities, role-playing, business simulation games and creative and innovative teaching. It was recommended that the Ministry of Education should develop tailored training programs and workshops aimed at empowering educators with the essential competencies and insights to deliver impactful entrepreneurial education.

Keywords: education, entrepreneurship, school curriculum, pedagogical approaches, integration

Procedia PDF Downloads 97
715 Evaluation of Alpha-Glucosidase Inhibitory Effect of Two Plants from Brazilian Cerrado

Authors: N. A. P. Camaforte, P. M. P. Vareda, L. L. Saldanha, A. L. Dokkedal, J. M. Rezende-Neto, M. R. Senger, F. P. Silva-Jr, J. R. Bosqueiro

Abstract:

Diabetes mellitus is a disease characterized by deficiency of insulin secretion and/or action which results in hyperglycemia. Nowadays, acarbose is a medicine used by diabetic people to inhibit alpha-glucosidases leading to the decreasing of post-feeding glycaemia, but with low effectiveness and many side effects. Medicinal plants have been used for the treatment of many diseases including diabetes and their action occurs through the modulation of insulin-depending processes, pancreas regeneration or inhibiting glucose absorption by the intestine. Previous studies in our laboratory showed that the treatment using two crude extracts of plants from Brazilian cerrado was able to decrease fasting blood glucose and improve glucose tolerance in streptozotocin-diabetic mice. Because of this and the importance of the search for new alternatives to decrease the hyperglycemia, we decided to evaluate the inhibitory action of two plants from Brazilian cerrado - B.H. and Myrcia bella. The enzymatic assay was performed in 50 µL of final volume using pancreatic α-amylase and maltase together with theirs commercial substrates. The inhibition potency (IC50) was determined by the incubation of eight different concentrations of both extracts and the enzymes for 5 minutes at 37ºC. After, the substrate was added to start the reaction. Glucosidases assay was evaluated measuring the quantity of p-nitrophenol in 405 nmin 384 wells automatic reader. The in vitro assay with the extracts of B.H. and M. bella showed an IC50 of 28,04µg/mL and 16,93 µg/mL for α-amilase, and 43,01µg/mL and 17 µg/mL for maltase, respectively. M. bella extract showed a higher inhibitory activity for those enzymes than B.H. extract. The crude extracts tested showed a higher inhibition rate to α-amylase, but were less effective against maltase in comparison to acarbose (IC50 36µg/mL and 9 µg/mL, respectively). In conclusion, the crude extract of B.H. and M. bella showed a potent inhibitory effect against α-amylase and showed promising results to the possible development of new medicines to treat diabetes with less or even without side effects.

Keywords: alfa-glucosidases, diabetes mellitus, glycaemia, medicinal plants

Procedia PDF Downloads 238
714 An Overview of Posterior Fossa Associated Pathologies and Segmentation

Authors: Samuel J. Ahmad, Michael Zhu, Andrew J. Kobets

Abstract:

Segmentation tools continue to advance, evolving from manual methods to automated contouring technologies utilizing convolutional neural networks. These techniques have evaluated ventricular and hemorrhagic volumes in the past but may be applied in novel ways to assess posterior fossa-associated pathologies such as Chiari malformations. Herein, we summarize literature pertaining to segmentation in the context of this and other posterior fossa-based diseases such as trigeminal neuralgia, hemifacial spasm, and posterior fossa syndrome. A literature search for volumetric analysis of the posterior fossa identified 27 papers where semi-automated, automated, manual segmentation, linear measurement-based formulas, and the Cavalieri estimator were utilized. These studies produced superior data than older methods utilizing formulas for rough volumetric estimations. The most commonly used segmentation technique was semi-automated segmentation (12 studies). Manual segmentation was the second most common technique (7 studies). Automated segmentation techniques (4 studies) and the Cavalieri estimator (3 studies), a point-counting method that uses a grid of points to estimate the volume of a region, were the next most commonly used techniques. The least commonly utilized segmentation technique was linear measurement-based formulas (1 study). Semi-automated segmentation produced accurate, reproducible results. However, it is apparent that there does not exist a single semi-automated software, open source or otherwise, that has been widely applied to the posterior fossa. Fully-automated segmentation via such open source software as FSL and Freesurfer produced highly accurate posterior fossa segmentations. Various forms of segmentation have been used to assess posterior fossa pathologies and each has its advantages and disadvantages. According to our results, semi-automated segmentation is the predominant method. However, atlas-based automated segmentation is an extremely promising method that produces accurate results. Future evolution of segmentation technologies will undoubtedly yield superior results, which may be applied to posterior fossa related pathologies. Medical professionals will save time and effort analyzing large sets of data due to these advances.

Keywords: chiari, posterior fossa, segmentation, volumetric

Procedia PDF Downloads 106
713 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 21
712 Optimization of Traffic Agent Allocation for Minimizing Bus Rapid Transit Cost on Simplified Jakarta Network

Authors: Gloria Patricia Manurung

Abstract:

Jakarta Bus Rapid Transit (BRT) system which was established in 2009 to reduce private vehicle usage and ease the rush hour gridlock throughout the Jakarta Greater area, has failed to achieve its purpose. With gradually increasing the number of private vehicles ownership and reduced road space by the BRT lane construction, private vehicle users intuitively invade the exclusive lane of BRT, creating local traffic along the BRT network. Invaded BRT lanes costs become the same with the road network, making BRT which is supposed to be the main public transportation in the city becoming unreliable. Efforts to guard critical lanes with preventing the invasion by allocating traffic agents at several intersections have been expended, lead to the improving congestion level along the lane. Given a set of number of traffic agents, this study uses an analytical approach to finding the best deployment strategy of traffic agent on a simplified Jakarta road network in minimizing the BRT link cost which is expected to lead to the improvement of BRT system time reliability. User-equilibrium model of traffic assignment is used to reproduce the origin-destination demand flow on the network and the optimum solution conventionally can be obtained with brute force algorithm. This method’s main constraint is that traffic assignment simulation time escalates exponentially with the increase of set of agent’s number and network size. Our proposed metaheuristic and heuristic algorithms perform linear simulation time increase and result in minimized BRT cost approaching to brute force algorithm optimization. Further analysis of the overall network link cost should be performed to see the impact of traffic agent deployment to the network system.

Keywords: traffic assignment, user equilibrium, greedy algorithm, optimization

Procedia PDF Downloads 229
711 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System

Authors: Nicolas M. Beleski, Gustavo A. G. Lugo

Abstract:

Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.

Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind

Procedia PDF Downloads 132
710 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 325
709 A Qualitative Study Exploring Factors Influencing the Uptake of and Engagement with Health and Wellbeing Smartphone Apps

Authors: D. Szinay, O. Perski, A. Jones, T. Chadborn, J. Brown, F. Naughton

Abstract:

Background: The uptake of health and wellbeing smartphone apps is largely influenced by popularity indicators (e.g., rankings), rather than evidence-based content. Rapid disengagement is common. This study aims to explore how and why potential users 1) select and 2) engage with such apps, and 3) how increased engagement could be promoted. Methods: Semi-structured interviews and a think-aloud approach were used to allow participants to verbalise their thoughts whilst searching for a health or wellbeing app online, followed by a guided search in the UK National Health Service (NHS) 'Apps Library' and Public Health England’s (PHE) 'One You' website. Recruitment took place between June and August 2019. Adults interested in using an app for behaviour change were recruited through social media. Data were analysed using the framework approach. The analysis is both inductive and deductive, with the coding framework being informed by the Theoretical Domains Framework. The results are further mapped onto the COM-B (Capability, Opportunity, Motivation - Behaviour) model. The study protocol is registered on the Open Science Framework (https://osf.io/jrkd3/). Results: The following targets were identified as playing a key role in increasing the uptake of and engagement with health and wellbeing apps: 1) psychological capability (e.g., reduced cognitive load); 2) physical opportunity (e.g., low financial cost); 3) social opportunity (e.g., embedded social media); 4) automatic motivation (e.g., positive feedback). Participants believed that the promotion of evidence-based apps on NHS-related websites could be enhanced through active promotion on social media, adverts on the internet, and in general practitioner practices. Future Implications: These results can inform the development of interventions aiming to promote the uptake of and engagement with evidence-based health and wellbeing apps, a priority within the UK NHS Long Term Plan ('digital first'). The targets identified across the COM-B domains could help organisations that provide platforms for such apps to increase impact through better selection of apps.

Keywords: behaviour change, COM-B model, digital health, mhealth

Procedia PDF Downloads 165
708 Constructivism and Situational Analysis as Background for Researching Complex Phenomena: Example of Inclusion

Authors: Radim Sip, Denisa Denglerova

Abstract:

It’s impossible to capture complex phenomena, such as inclusion, with reductionism. The most common form of reductionism is the objectivist approach, where processes and relationships are reduced to entities and clearly outlined phases, with a consequent search for relationships between them. Constructivism as a paradigm and situational analysis as a methodological research portfolio represent a way to avoid the dominant objectivist approach. They work with a situation, i.e. with the essential blending of actors and their environment. Primary transactions are taking place between actors and their surroundings. Researchers create constructs based on their need to solve a problem. Concepts therefore do not describe reality, but rather a complex of real needs in relation to the available options how such needs can be met. For examination of a complex problem, corresponding methodological tools and overall design of the research are necessary. Using an original research on inclusion in the Czech Republic as an example, this contribution demonstrates that inclusion is not a substance easily described, but rather a relationship field changing its forms in response to its actors’ behaviour and current circumstances. Inclusion consists of dynamic relationship between an ideal, real circumstances and ways to achieve such ideal under the given circumstances. Such achievement has many shapes and thus cannot be captured by description of objects. It can be expressed in relationships in the situation defined by time and space. Situational analysis offers tools to examine such phenomena. It understands a situation as a complex of dynamically changing aspects and prefers relationships and positions in the given situation over a clear and final definition of actors, entities, etc. Situational analysis assumes creation of constructs as a tool for solving a problem at hand. It emphasizes the meanings that arise in the process of coordinating human actions, and the discourses through which these meanings are negotiated. Finally, it offers “cartographic tools” (situational maps, socials worlds / arenas maps, positional maps) that are able to capture the complexity in other than linear-analytical ways. This approach allows for inclusion to be described as a complex of phenomena taking place with a certain historical preference, a complex that can be overlooked if analyzed with a more traditional approach.

Keywords: constructivism, situational analysis, objective realism, reductionism, inclusion

Procedia PDF Downloads 149
707 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties

Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich

Abstract:

Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.

Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis

Procedia PDF Downloads 107