Search results for: ritual space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3781

Search results for: ritual space

751 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model

Authors: Yoftahe Nigussie

Abstract:

This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.

Keywords: room, zone, space, thermal resistance

Procedia PDF Downloads 70
750 Studying the Influence of Systematic Pre-Occupancy Data Collection through Post-Occupancy Evaluation: A Shift in the Architectural Design Process

Authors: Noor Abdelhamid, Donovan Nelson, Cara Prosser

Abstract:

The architectural design process could be mapped out as a dialogue between designer and user that is constructed across multiple phases with the overarching goal of aligning design outcomes with user needs. Traditionally, this dialogue is bounded within a preliminary phase of determining factors that will direct the design intent, and a completion phase, of handing off the project to the client. Pre- and post-occupancy evaluations (P/POE’s) could provide an alternative process by extending this dialogue on both ends of the design process. The purpose of this research is to study the influence of systematic pre-occupancy data collection in achieving design goals by conducting post-occupancy evaluations of two case studies. In the context of this study, systematic pre-occupancy data collection is defined as the preliminary documentation of the existing conditions that helps portray stakeholders’ needs. When implemented, pre-occupancy occurs during the early phases of the architectural design process, utilizing the information to shape the design intent. Investigative POE’s are performed on two case studies with distinct early design approaches to understand how the current space is impacting user needs, establish design outcomes, and inform future strategies. The first case study underwent systematic pre-occupancy data collection and synthesis, while the other represents the traditional, uncoordinated practice of informally collecting data during an early design phase. POE’s target the dynamics between the building and its occupants by studying how spaces are serving the needs of the users. Data collection for this study consists of user surveys, audiovisual materials, and observations during regular site visits. Mixed methods of qualitative and quantitative analyses are synthesized to identify patterns in the data. The paper concludes by positioning value on both sides of the architectural design process: the integration of systematic pre-occupancy methods in the early phases and the reinforcement of a continued dialogue between building and design team after building completion.

Keywords: architecture, design process, pre-occupancy data, post-occupancy evaluation

Procedia PDF Downloads 163
749 Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems

Authors: L. Marcos Domínguez, Nils Rage, Ongun B. Kazanci, Bjarne W. Olesen

Abstract:

Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling.

Keywords: acoustic comfort, concrete core activation, full-scale measurements, thermally activated building systems, TRNSys

Procedia PDF Downloads 328
748 Experimental Investigation on the Role of Thermoacoustics on Soot Formation

Authors: Sambit Supriya Dash, Rahul Ravi R, Vikram Ramanan, Vinayak Malhotra

Abstract:

Combustion in itself is a complex phenomenon that involves the interaction and interplay of multiple phenomena, the combined effect of which gives rise to the common flame that we see and use in our daily life applications from cooking to propelling our vehicles to space. The most important thing that goes unnoticed about these flames is the effect of the various phenomena from its surrounding environment that affects its behavior and properties. These phenomena cause a variety of energy interactions that lead to various types of energy transformations which in turn affect the flame behavior. This paper focuses on experimentally investigating the effect of one such phenomenon, which is the acoustics or sound energy on diffusion flames. The subject in itself is extensively studied upon as thermo-acoustics globally, whereas the current work focuses on studying its effect on soot formation on diffusion flames. The said effect is studied in this research work by the use of a butane as fuel, fitted with a nozzle that houses 3 arrays consisting of 4 holes each that are placed equidistant to each other and the resulting flame impinged with sound from two independent and similar sound sources that are placed equidistant from the centre of the flame. The entire process is systematically video graphed using a 60 fps regular CCD and analysed for variation in flame heights and flickering frequencies where the fuel mass flow rate is maintained constant and the configuration of entrainment holes and frequency of sound are varied, whilst maintaining constant ambient atmospheric conditions. The current work establishes significant outcomes on the effect of acoustics on soot formation; it is noteworthy that soot formation is the main cause of pollution and a major cause of inefficiency of current propulsion systems. This work is one of its kinds, and its outcomes are widely applicable to commercial and domestic appliances that utilize combustion for energy generation or propulsion and help us understand them better, so that we can increase their efficiency and decrease pollution.

Keywords: thermoacoustics, entrainment, propulsion system, efficiency, pollution

Procedia PDF Downloads 161
747 Understanding the Fundamental Driver of Semiconductor Radiation Tolerance with Experiment and Theory

Authors: Julie V. Logan, Preston T. Webster, Kevin B. Woller, Christian P. Morath, Michael P. Short

Abstract:

Semiconductors, as the base of critical electronic systems, are exposed to damaging radiation while operating in space, nuclear reactors, and particle accelerator environments. What innate property allows some semiconductors to sustain little damage while others accumulate defects rapidly with dose is, at present, poorly understood. This limits the extent to which radiation tolerance can be implemented as a design criterion. To address this problem of determining the driver of semiconductor radiation tolerance, the first step is to generate a dataset of the relative radiation tolerance of a large range of semiconductors (exposed to the same radiation damage and characterized in the same way). To accomplish this, Rutherford backscatter channeling experiments are used to compare the displaced lattice atom buildup in InAs, InP, GaP, GaN, ZnO, MgO, and Si as a function of step-wise alpha particle dose. With this experimental information on radiation-induced incorporation of interstitial defects in hand, hybrid density functional theory electron densities (and their derived quantities) are calculated, and their gradient and Laplacian are evaluated to obtain key fundamental information about the interactions in each material. It is shown that simple, undifferentiated values (which are typically used to describe bond strength) are insufficient to predict radiation tolerance. Instead, the curvature of the electron density at bond critical points provides a measure of radiation tolerance consistent with the experimental results obtained. This curvature and associated forces surrounding bond critical points disfavors localization of displaced lattice atoms at these points, favoring their diffusion toward perfect lattice positions. With this criterion to predict radiation tolerance, simple density functional theory simulations can be conducted on potential new materials to gain insight into how they may operate in demanding high radiation environments.

Keywords: density functional theory, GaN, GaP, InAs, InP, MgO, radiation tolerance, rutherford backscatter channeling

Procedia PDF Downloads 174
746 A Shared Space: A Pioneering Approach to Interprofessional Education in New Zealand

Authors: Maria L. Ulloa, Ruth M. Crawford, Stephanie Kelly, Joey Domdom

Abstract:

In recent decades health and social service delivery have become more collaborative and interdisciplinary. Emerging trends suggest the need for an integrative and interprofessional approach to meet the challenges faced by professionals navigating the complexities of health and social service practice environments. Terms such as multidisciplinary practice, interprofessional collaboration, interprofessional education and transprofessional practice have become the common language used across a range of social services and health providers in western democratic systems. In Aotearoa New Zealand, one example of an interprofessional collaborative approach to curriculum design and delivery in health and social service is the development of an innovative Masters of Professional Practice programme. This qualification is the result of a strategic partnership between two tertiary institutions – Whitireia New Zealand (NZ) and the Wellington Institute of Technology (Weltec) in Wellington. The Master of Professional Practice programme was designed and delivered from the perspective of a collaborative, interprofessional and relational approach. Teachers and students in the programme come from a diverse range of cultural, professional and personal backgrounds and are engaged in courses using a blended learning approach that incorporates the values and pedagogies of interprofessional education. Students are actively engaged in professional practice while undertaking the programme. This presentation describes the themes of exploratory qualitative formative observations of engagement in class and online, student assessments, student research projects, as well as qualitative interviews with the programme teaching staff. These formative findings reveal the development of critical practice skills around the common themes of the programme: research and evidence based practice, education, leadership, working with diversity and advancing critical reflection of professional identities and interprofessional practice. This presentation will provide evidence of enhanced learning experiences in higher education and learning in multi-disciplinary contexts.

Keywords: diversity, exploratory research, interprofessional education, professional identity

Procedia PDF Downloads 302
745 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller

Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu

Abstract:

This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.

Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression

Procedia PDF Downloads 146
744 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 225
743 Transformation of Traditional Marketplaces in an Urban Context: Case of Chalai Market, Thiruvananthapuram

Authors: Aswathy Vijayan, Sharath Sunder Rajeev

Abstract:

Trade has been fundamental in the footprint of human civilization since ancient time. In most of the historic cities, city development was along trading routes, where marketplaces are the major entrance to a city and hence a major element of the urban fabric. Marketplaces are where the commercial activities flourish, people, having a sense of belonging to the place, where they easily fit in. Acknowledging the built environment in and around the market in a way, creating a sense of place is an important factor in the success of public spaces. Local markets are developed in an organic manner, which adds on to the people experience and perception of urban space. With the city development, the commercial needs within the city increase, hence marketplaces flourish, irrespective of the functional segregation within. The work-live culture in the marketplaces diminishes as the commercial expansion washes away the residential patches within it. Real estate flourishes as the newer infills are without considering the carrying capacity of the place. Chalai market is a prominent business center serving the regional level of Thiruvananthapuram city. The transformation trend of marketplaces in city cores are understood from case study on Fatimid Cairo Marketplace. The parameters that led to transformation of marketplaces in a global context is considered for the analysis of the Chalai market. The structure of the marketplace over the years is analyzed in terms of transformation in location, transformation in the land- use, change in commodity, and transformation in movement and activity. The aim of the research is to emphasize the need to understand the transformation trend, in creating a suitable development pattern for the city. The unregulated transformation within the city core has led to tremendous transformation in the user group and user pattern and eventually to the commercial trend. With the change in lifestyle and need for new amenities have led to addition of new infills leading to the degradation of the native commerce. Hence addressing the transformation of marketplaces are crucial to maintaining the locational significance and cultural importance and heritage of the place.

Keywords: bazaar, market centers, marketplaces, traditional city, traditional market, urban fabric

Procedia PDF Downloads 152
742 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 109
741 Effect of Plant Density and Planting Pattern on Yield and Quality of Single Cross 704 Silage Corn (Zea mays L.) in Isfahan

Authors: Seyed Mohammad Ali Zahedi

Abstract:

This field experiment was conducted in Isfahan in 2011 in order to study the effect of plant density and planting pattern on growth, yield and quality of silage corn (SC 704) using a randomized complete block design with split plot layout and four replications. The main plot consisted of three planting patterns (60 and 75 cm single planting row and 75 cm double planting row referred to as 60S, 75S and 75T, respectively). The subplots consisted of four levels of plant densities (65000, 80000, 95000 and 110000 plants per hectare). Each subplot consisted of 7 rows, each with 10m length. Vegetative and reproductive characteristics of plants at silking and hard dough stages (when the plants were harvested for silage) were evaluated. Results of variance analysis showed that the effects of planting pattern and plant density were significant on leaf area per plant, leaf area index (at silking), plant height, stem diameter, dry weights of leaf, stem and ear in silking and harvest stages and on fresh and dry yield, dry matter percentage and crude protein percentage at harvest. There was no planting pattern × plant density interaction for these parameters. As row space increased from 60 cm with single planting to 75 cm with single planting, leaf area index and plant height increased, but leaf area per plant, stem diameter, dry weight of leaf, stem and ear, dry matter percentage, dry matter yield and crude protein percentage decreased. Dry matter yield reduced from 24.9 to 18.5 t/ha and crude protein percentage decreased from 6.11 to 5.60 percent. When the plant density increased from 65000 to 110000 plant per hectare, leaf area index, plant height, dry weight of leaf, stem and ear and dry matter yield increased from 19.2 to 23.3 t/ha, whereas leaf area per plant, stem diameter, dry matter percentage and crude protein percentage decreased from 6.30 to 5.25. The best results were obtained with 60 cm row distance with single planting and 110000 plants per hectare.

Keywords: silage corn, plant density, planting pattern, yield

Procedia PDF Downloads 338
740 Hidden Hot Spots: Identifying and Understanding the Spatial Distribution of Crime

Authors: Lauren C. Porter, Andrew Curtis, Eric Jefferis, Susanne Mitchell

Abstract:

A wealth of research has been generated examining the variation in crime across neighborhoods. However, there is also a striking degree of crime concentration within neighborhoods. A number of studies show that a small percentage of street segments, intersections, or addresses account for a large portion of crime. Not surprisingly, a focus on these crime hot spots can be an effective strategy for reducing community level crime and related ills, such as health problems. However, research is also limited in an important respect. Studies tend to use official data to identify hot spots, such as 911 calls or calls for service. While the use of call data may be more representative of the actual level and distribution of crime than some other official measures (e.g. arrest data), call data still suffer from the 'dark figure of crime.' That is, there is most certainly a degree of error between crimes that occur versus crimes that are reported to the police. In this study, we present an alternative method of identifying crime hot spots, that does not rely on official data. In doing so, we highlight the potential utility of neighborhood-insiders to identify and understand crime dynamics within geographic spaces. Specifically, we use spatial video and geo-narratives to record the crime insights of 36 police, ex-offenders, and residents of a high crime neighborhood in northeast Ohio. Spatial mentions of crime are mapped to identify participant-identified hot spots, and these are juxtaposed with calls for service (CFS) data. While there are bound to be differences between these two sources of data, we find that one location, in particular, a corner store, emerges as a hot spot for all three groups of participants. Yet it does not emerge when we examine CFS data. A closer examination of the space around this corner store and a qualitative analysis of narrative data reveal important clues as to why this store may indeed be a hot spot, but not generate disproportionate calls to the police. In short, our results suggest that researchers who rely solely on official data to study crime hot spots may risk missing some of the most dangerous places.

Keywords: crime, narrative, video, neighborhood

Procedia PDF Downloads 238
739 Smart Signature - Medical Communication without Barrier

Authors: Chia-Ying Lin

Abstract:

This paper explains how to enhance doctor-patient communication and nurse-patient communication through multiple intelligence signing methods and user-centered. It is hoped that through the implementation of the "electronic consent", the problems faced by the paper consent can be solved: storage methods, resource utilization, convenience, correctness of information, integrated management, statistical analysis and other related issues. Make better use and allocation of resources to provide better medical quality. First, invite the medical records department to assist in the inventory of paper consent in the hospital: organising, classifying, merging, coding, and setting. Second, plan the electronic consent configuration file: set the form number, consent form group, fields and templates, and the corresponding doctor's order code. Next, Summarize four types of rapid methods of electronic consent: according to the doctor's order, according to the medical behavior, according to the schedule, and manually generate the consent form. Finally, system promotion and adjustment: form an "electronic consent promotion team" to improve, follow five major processes: planning, development, testing, release, and feedback, and invite clinical units to raise the difficulties faced in the promotion, and make improvements to the problems. The electronic signature rate of the whole hospital will increase from 4% in January 2022 to 79% in November 2022. Use the saved resources more effectively, including: reduce paper usage (reduce carbon footprint), reduce the cost of ink cartridges, re-plan and use the space for paper medical records, and save human resources to provide better services. Through the introduction of information technology and technology, the main spirit of "lean management" is implemented. Transforming and reengineering the process to eliminate unnecessary waste is also the highest purpose of this project.

Keywords: smart signature, electronic consent, electronic medical records, user-centered, doctor-patient communication, nurse-patient communication

Procedia PDF Downloads 126
738 Determining the Policy Space of the Partido Socialista Obrero Español Government in Managing Spain's Economic and Financial Crisis

Authors: A. Pascual Ramsay

Abstract:

Accounts of the management of the economic and euro crisis in Spain have been dominated by an emphasis on external constraints. However, this approach leaves unanswered important questions about the role of domestic political factors. Using systematic qualitative primary research and employing elite interviewing and process tracing, this paper aims to fill this gap for the period of the Partido Socialista Obrero Español (PSOE) administration. The paper shows that domestic politics played a crucial role in the management of the crisis, most importantly by determining the shape of the measures undertaken. In its three distinct stages – downplaying/inaction, reaction/stimulus, and austerity/reform – the PSOE's response was certainly constrained by external factors, most notably EMU membership and the actions of sovereign-bond investors, the ECB and Germany. Yet while these external constraints forced the government to act, domestic political factors fundamentally shaped the content of key measures: the fiscal stimulus, the labour, financial and pension reforms, the refusal to accept a bailout or the reform of the Constitution. Seven factors were particularly influential: i) electoral and political cost, ii) party and partisanship, iii) organised interests, iv) domestic institutions, v) ideological preferences, vi) ineffective decision-making, and vii) judgement and personal characteristics of decision-makers. In conclusion, domestic politics played an important role in the management of the crisis, a role that has been underestimated by dominant approaches focusing on external constraints and weak domestic policy autonomy. The findings provide empirical evidence to support research agendas that identify significant state discretion in the face of international economic integration and an important role for domestic political factors such as institutions, material interests, partisanship and ideology in shaping economic outcomes.

Keywords: economic crisis, Euro, PSOE, Spain

Procedia PDF Downloads 120
737 3D-Shape-Perception Studied Exemplarily with Tetrahedron and Icosahedron as Prototypes of the Polarities Sharp versus Round

Authors: Iris Sauerbrei, Jörg Trojan, Erich Lehner

Abstract:

Introduction and significance of the study: This study examines if three-dimensional shapes elicit distinct patterns of perceptions. If so, it is relevant for all fields of design, especially for the design of the built environment. Description of basic methodologies: The five platonic solids are the geometrical base for all other three-dimensional shapes, among which tetrahedron and icosahedron provide the clearest representation of the qualities sharp and round. The component pair of attributes ‘sharp versus round’ has already been examined in various surveys in a psychology of perception and in neuroscience by means of graphics, images of products of daily use, as well as by photographs and walk-through-videos of landscapes and architecture. To verify a transfer of outcomes of the existing surveys to the perception of three-dimensional shapes, walk-in models (total height 2.2m) of tetrahedron and icosahedron were set up in a public park in Frankfurt am Main, Germany. Preferences of park visitors were tested by questionnaire; also they were asked to write down associations in a free text. In summer 2015, the tetrahedron was assembled eight times, the icosahedron seven times. In total 288 participants took part in the study; 116 rated the tetrahedron, 172 rated the icosahedron. Findings: Preliminary analyses of the collected data using Wilcoxon Rank-Sum tests show that the perceptions of the two solids differ in respect to several attributes and that each of the tested model show significance for specific attributes. Conclusion: These findings confirm the assumptions and provide first evidence that the perception of three-dimensional shapes are associated to characteristic attributes and to which. In order to enable conscious choices for spatial arrangements in design processes for the built environment, future studies should examine attributes for the other three basic bodies - Octahedron, Cube, and Dodecahedron. Additionally, similarities and differences between the perceptions of two- and three-dimensional shapes as well as shapes that are more complex need further research.

Keywords: 3D shapes, architecture, geometrical features, space perception, walk-in models

Procedia PDF Downloads 228
736 Approaches to Estimating the Radiation and Socio-Economic Consequences of the Fukushima Daiichi Nuclear Power Plant Accident Using the Data Available in the Public Domain

Authors: Dmitry Aron

Abstract:

Major radiation accidents carry not only the potential risks of negative consequences for public health due to exposure but also because of large-scale emergency measures were taken by authorities to protect the population, which can lead to unreasonable social and economic damage. It is technically difficult, as a rule, to assess the possible costs and damages from decisions on evacuation or resettlement of residents in the shortest possible time, since it requires specially prepared information systems containing relevant information on demographic, economic parameters and incoming data on radiation conditions. Foreign observers also face the difficulties in assessing the consequences of an accident in a foreign territory, since they usually do not have official and detailed statistical data on the territory of foreign state beforehand. Also, they can suppose the application of unofficial data from open Internet sources is an unreliable and overly labor-consuming procedure. This paper describes an approach to prompt creation of relational database that contains detailed actual data on economics, demographics and radiation situation at the Fukushima Prefecture during the Fukushima Daiichi NPP accident, received by the author from open Internet sources. This database was developed and used to assess the number of evacuated population, radiation doses, expected financial losses and other parameters of the affected areas. The costs for the areas with temporarily evacuated and long-term resettled population were investigated, and the radiological and economic effectiveness of the measures taken to protect the population was estimated. Some of the results are presented in the article. The study showed that such a tool for analyzing the consequences of radiation accidents can be prepared in a short space of time for the entire territory of Japan, and it can serve for the modeling of social and economic consequences for hypothetical accidents for any nuclear power plant in its territory.

Keywords: Fukushima, radiation accident, emergency measures, database

Procedia PDF Downloads 191
735 The Crossroad of Identities in Wajdi Mouawad's 'Littoral': A Rhizomatic Approach of Identity Reconstruction through Theatre and Performance

Authors: Mai Hussein

Abstract:

'Littoral' is an original voice in Québécois theatre, spanning the cultural gaps that can exist between the playwrights’ native Lebanon, North America, Quebec, and Europe. Littoral is a 'crossroad' of cultures and themes, a 'bridge' connecting cultures and languages. It represents a new form of theatrical writing that combines the verbal, the vocal and the pantomimic, calling upon the stage to question the real, to engage characters in a quest, in a journey of mourning, of reconstructing identity and a collective memory despite ruins and wars. A theatre of witness, a theatre denouncing irrationality of racism and war, a theatre 'performing' the symptoms of the stress disorders of characters passing from resistance and anger to reconciliation and giving voice to the silenced victims, these are some of the pillars that this play has to offer. In this corrida between life and death, the identity seems like a work-in-progress that is shaped in the presence of the Self and the Other. This trajectory will lead to re-open widely the door to questions, interrogations, and reflections to show how this play is at the nexus of contemporary preoccupations of the 21st century: the importance of memory, the search for meaning, the pursuit of the infinite. It also shows how a play can create bridges between languages, cultures, societies, and movements. To what extent does it mediate between the words and the silence, and how does it burn the bridges or the gaps between the textual and the performative while investigating the power of intermediality to confront racism and segregation. It also underlines the centrality of confrontation between cultures, languages, writing and representation techniques to challenge the characters in their quest to restructure their shattered, but yet intertwined identities. The goal of this theatre would then be to invite everyone involved in the process of a journey of self-discovery away from their comfort zone. Everyone will have to explore the liminal space, to read in between the lines of the written text as well as in between the text and the performance to explore the gaps and the tensions that exist between what is said, and what is played, between the 'parole' and the performative body.

Keywords: identity, memory, performance, testimony, trauma

Procedia PDF Downloads 115
734 The Observable Method for the Regularization of Shock-Interface Interactions

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined.

Keywords: compressible flow simulation, inviscid regularization, Richtmyer-Meshkov instability, shock-bubble interactions.

Procedia PDF Downloads 349
733 Integrating a Universal Forensic DNA Database: Anticipated Deterrent Effects

Authors: Karen Fang

Abstract:

Investigative genetic genealogy has attracted much interest in both the field of ethics and the public eye due to its global application in criminal cases. Arguments have been made regarding privacy and informed consent, especially with law enforcement using consumer genetic testing results to convict individuals. In the case of public interest, DNA databases have the strong potential to significantly reduce crime, which in turn leads to safer communities and better futures. With the advancement of genetic technologies, the integration of a universal forensic DNA database in violent crimes, crimes against children, and missing person cases is expected to deter crime while protecting one’s privacy. Rather than collecting whole genomes from the whole population, STR profiles can be used to identify unrelated individuals without compromising personal information such as physical appearance, disease risk, and geographical origin, and additionally, reduce cost and storage space. STR DNA profiling is already used in the forensic science field and going a step further benefits several areas, including the reduction in recidivism, improved criminal court case turnaround time, and just punishment. Furthermore, adding individuals to the database as early as possible prevents young offenders and first-time offenders from participating in criminal activity. It is important to highlight that DNA databases should be inclusive and tightly governed, and the misconception on the use of DNA based on crime television series and other media sources should be addressed. Nonetheless, deterrent effects have been observed in countries like the US and Denmark with DNA databases that consist of serious violent offenders. Fewer crimes were reported, and fewer people were convicted of those crimes- a favorable outcome, not even the death penalty could provide. Currently, there is no better alternative than a universal forensic DNA database made up of STR profiles. It can open doors for investigative genetic genealogy and fostering better communities. Expanding the appropriate use of DNA databases is ethically acceptable and positively impacts the public.

Keywords: bioethics, deterrent effects, DNA database, investigative genetic genealogy, privacy, public interest

Procedia PDF Downloads 149
732 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling

Authors: Aamna Lawrence, Ashutosh Mishra

Abstract:

Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.

Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor

Procedia PDF Downloads 128
731 The Impact of the Urban Planning and Environmental Problems over the Quality of Life Case Study: Median Zone of Bucharest's Sector 1, Romania

Authors: Cristian Cazacu, Bela Kobulniczky

Abstract:

Even though nowadays the median area of the Bucharest’s Sector 1 owns one of the best reputations in terms of quality of life level, the problems in urban planning from the last twenty years, as well as those related to the urban environment, became more and more obvious and shrill. And all this happened as long as non-compliance with urban and spatial planning laws, corroborated with uncontrolled territorial expansion on certain areas and faulty management of public and private spaces were more acute. The action of all these factors has been felt more and more strongly in the territory in the last twenty years, generating the degradation of the quality of the urban environment and affecting in parallel the general level of the inhabitants¬’ quality of life. Our methodology is based on analyzing a wide range of environmental parameters and it is also based on using advanced resources and skills for mapping planning and environmental dysfunctions as well as the possibility of integrating information into GIS programs, all data sets corroborated with problems related to spatial planning management and inaccuracies of the urbanistic sector. In the end, we managed to obtain a calculated and realistic image of the dysfunctions and a quantitative view of their magnitude in the territory. We also succeeded to create a full general map of the degree of degradation of the urban environment by typologies of urban tissues. Moreover, the methods applied by us can also be used globally to calculate and create realistic images and intelligent maps over the quality of the environment in areas larger than this one. Our study shows that environmental degradation occurred differently in the urban tissues from our study area, depending on several factors, reviewing the faulty way in which the processes of recovery / urban regeneration of the gap in recent years have led to the creation of new territorial dysfunctions. The general, centralized results show that the analyzed space has a much wider range of problems than initially thought, although notoriety and social etiquette place them far above other spaces from the same city of study.

Keywords: environment, GIS, planning, urban tissues

Procedia PDF Downloads 147
730 Associations between Sharing Bike Usage and Characteristics of Urban Street Built Environment in Wuhan, China

Authors: Miao Li, Mengyuan Xu

Abstract:

As a low-carbon travel mode, bicycling has drawn increasing political interest in the contemporary Chinese urban context, and the public sharing bikes have become the most popular ways of bike usage in China now. This research aims to explore the spatial-temporal relationship between sharing bike usage and different characteristics of the urban street built environment. In the research, street segments were used as the analytic unit of the street built environment defined by street intersections. The sharing bike usage data in the research include a total of 2.64 million samples that are the entire sharing bike distribution data recorded in two days in 2018 within a neighborhood of 185.4 hectares in the city of Wuhan, China. And these data are assigned to the 97 urban street segments in this area based on their geographic location. The built environment variables used in this research are categorized into three sections: 1) street design characteristics, such as street width, street greenery, types of bicycle lanes; 2) condition of other public transportation, such as the availability of metro station; 3) Street function characteristics that are described by the categories and density of the point of interest (POI) along the segments. Spatial Lag Models (SLM) were used in order to reveal the relationships of specific urban streets built environment characteristics and the likelihood of sharing bicycling usage in whole and different periods a day. The results show: 1) there is spatial autocorrelation among sharing bicycling usage of urban streets in case area in general, non-working day, working day and each period of a day, which presents a clustering pattern in the street space; 2) a statistically strong association between bike sharing usage and several different built environment characteristics such as POI density, types of bicycle lanes and street width; 3) the pattern that bike sharing usage is influenced by built environment characteristics depends on the period within a day. These findings could be useful for policymakers and urban designers to better understand the factors affecting bike sharing system and thus propose guidance and strategy for urban street planning and design in order to promote the use of sharing bikes.

Keywords: big data, sharing bike usage, spatial statistics, urban street built environment

Procedia PDF Downloads 145
729 Transforming Data Science Curriculum Through Design Thinking

Authors: Samar Swaid

Abstract:

Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.

Keywords: data science, design thinking, AI, currculum, transformation

Procedia PDF Downloads 81
728 Exploring Well-Being: Lived Experiences and Assertions From a Marginalized Perspective

Authors: Ritwik Saha, Anindita Chaudhuri

Abstract:

The psychological dimension of work-based mobility of the contemporary time in the context of the ever-changing socio-economic process mounting the interest to address the consequential issues of quality of life and well-being of the migrant section of society. The negotiation with the fluidity of the job market and the changing psychosocial dimensions within and between psychosocial relations may disentangle the resilience as well as the mechanism of diligence toward migrant (marginal) life. The work-based mobility and its associated phenomena have highly impacted the migrant’s quality of life especially the marginalized (socioeconomically weak) ones along with their family members staying away from them. The subjective experiences of the journey of their migrant life and reconstruction of the psychosocial being in terms of existence and well-being at the host place are the minimal addressed issues in migrant literature. Hence this gap instigates to bring forth the issue with the present study exploring the phenomenal aspects of lived experiences, resilience, and sense-making of the well-being of migrant living by the marginalized migrant people engaging in unorganized space. In doing so qualitative research method was followed, and semi-structured interviews were used for data collection from the four selected migrant groups (Fuchkawala, Bhunjawala, Bhari - drinking water supplier, Construction worker) as they migrated to Kolkata and its metropolis area from different states of India, Five participants from each group (20 participants in total) age range between 20 to 45 were interviewed physically and participants’ observatory notes were taken to capture their lived experiences, audio recordings were transcribed and analyzed systematically following Charmaz’s three-layer coding of grounded theory. Being truthful to daily industry, the strong desire to build children’s future, the mastering mechanism to dual existence, use of traditional social network these four themes emerges after analysis of the data. However, incorporating fate as their usual way of life and making sense of well-being through their assertion is another evolving aspect of migrant life.

Keywords: lived experiences, marginal living, resilience, sense-making process, well-being

Procedia PDF Downloads 61
727 Time's Arrow and Entropy: Violations to the Second Law of Thermodynamics Disrupt Time Perception

Authors: Jason Clarke, Michaela Porubanova, Angela Mazzoli, Gulsah Kut

Abstract:

What accounts for our perception that time inexorably passes in one direction, from the past to the future, the so-called arrow of time, given that the laws of physics permit motion in one temporal direction to also happen in the reverse temporal direction? Modern physics says that the reason for time’s unidirectional physical arrow is the relationship between time and entropy, the degree of disorder in the universe, which is evolving from low entropy (high order; thermal disequilibrium) toward high entropy (high disorder; thermal equilibrium), the second law of thermodynamics. Accordingly, our perception of the direction of time, from past to future, is believed to emanate as a result of the natural evolution of entropy from low to high, with low entropy defining our notion of ‘before’ and high entropy defining our notion of ‘after’. Here we explored this proposed relationship between entropy and the perception of time’s arrow. We predicted that if the brain has some mechanism for detecting entropy, whose output feeds into processes involved in constructing our perception of the direction of time, presentation of violations to the expectation that low entropy defines ‘before’ and high entropy defines ‘after’ would alert this mechanism, leading to measurable behavioral effects, namely a disruption in duration perception. To test this hypothesis, participants were shown briefly-presented (1000 ms or 500 ms) computer-generated visual dynamic events: novel 3D shapes that were seen either to evolve from whole figures into parts (low to high entropy condition) or were seen in the reverse direction: parts that coalesced into whole figures (high to low entropy condition). On each trial, participants were instructed to reproduce the duration of their visual experience of the stimulus by pressing and releasing the space bar. To ensure that attention was being deployed to the stimuli, a secondary task was to report the direction of the visual event (forward or reverse motion). Participants completed 60 trials. As predicted, we found that duration reproduction was significantly longer for the high to low entropy condition compared to the low to high entropy condition (p=.03). This preliminary data suggests the presence of a neural mechanism that detects entropy, which is used by other processes to construct our perception of the direction of time or time’s arrow.

Keywords: time perception, entropy, temporal illusions, duration perception

Procedia PDF Downloads 172
726 Rethinking Entrepreneurship Education as a Remedy for Graduates Unemployment in Nigeria

Authors: Chinwe Susan Oguejiofor, Daniel Osamwonyi Iyioha

Abstract:

Over the last two decades, Nigeria has witnessed an upsurge in graduate unemployment occasioned by the lack of industries and proliferation of tertiary institutions churning out thousands of graduates every year to compete for the few available job space. The astronomical rise in the unemployment rate amongst Nigerian graduates however, is principally assumed to be the defective curricula of the universities and other tertiary institutions whose focus is on training for white-collar jobs. Although graduate unemployment has become a global scourge, its adverse economic impact is believed to be more in developing economies like Nigeria with a huge young population within the working age who cannot seem to find gainful employment to make out a respectable livelihood. Thus, higher institutions especially Universities found itself under pressure and intense competition to produce graduates who can think outside the box and create jobs; hence there was the need to focus on instilling hands-on practical job skills into their students that will make them job creators rather than job seekers on graduation. In the same vein stakeholders in education have continued to lend their voices to the philosophy that the undergraduate curricula should be completely overhauled to accomodate the development of hand-on practical skills and innovative capacity relevant to creating solutions to societal problems. In a bid to correct this anomaly, the Federal Government of Nigeria in conjunction with the Ministry of Commerce, Industry and Investment inaugurated a programme tagged “University Entrepreneurship Development Programme” (UNEDEP) whose objective was basically to promote self-employment among the youth right from the institutions of higher learning. But the question is whether the objectives of the programme have actually been achieved. Despite the inclusion in Nigerian educational curriculum close to two decades now,, one wonder if the essence has been aborted. Thus, the paper focused on the concept of entrepreneurship education, objectives of entrepreneurship education, Graduates unemployment, rethinking entrepreneurship education programme in tertiary institution for employment generation , role of entrepreneurship in job creation, challenges of entrepreneurship education in tertiary institution in Nigeria, conclusion and recommendations were drawn accordingly.

Keywords: rethinking, entrepreneurship education, remedy, unemployment, job creation

Procedia PDF Downloads 79
725 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior

Authors: Mohamed dammak

Abstract:

Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.

Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis

Procedia PDF Downloads 85
724 X-Ray Crystallographic Studies on BPSL2418 from Burkholderia pseudomallei

Authors: Mona Alharbi

Abstract:

Melioidosis has emerged as a lethal disease. Unfortunately, the molecular mechanisms of virulence and pathogenicity of Burkholderia pseudomallei remain unknown. However, proteomics research has selected putative targets in B. pseudomallei that might play roles in the B. pseudomallei virulence. BPSL 2418 putative protein has been predicted as a free methionine sulfoxide reductase and interestingly there is a link between the level of the methionine sulfoxide in pathogen tissues and its virulence. Therefore in this work, we describe the cloning expression, purification, and crystallization of BPSL 2418 and the solution of its 3D structure using X-ray crystallography. Also, we aimed to identify the substrate binding and reduced forms of the enzyme to understand the role of BPSL 2418. The gene encoding BPSL2418 from B. pseudomallei was amplified by PCR and reclone in pETBlue-1 vector and transformed into E. coli Tuner DE3 pLacI. BPSL2418 was overexpressed using E. coli Tuner DE3 pLacI and induced by 300μM IPTG for 4h at 37°C. Then BPS2418 purified to better than 95% purity. The pure BPSL2418 was crystallized with PEG 4000 and PEG 6000 as precipitants in several conditions. Diffraction data were collected to 1.2Å resolution. The crystals belonged to space group P2 21 21 with unit-cell parameters a = 42.24Å, b = 53.48Å, c = 60.54Å, α=γ=β= 90Å. The BPSL2418 binding MES was solved by molecular replacement with the known structure 3ksf using PHASER program. The structure is composed of six antiparallel β-strands and four α-helices and two loops. BPSL2418 shows high homology with the GAF domain fRMsrs enzymes which suggest that BPSL2418 might act as methionine sulfoxide reductase. The amino acids alignment between the fRmsrs including BPSL 2418 shows that the three cysteines that thought to catalyze the reduction are fully conserved. BPSL 2418 contains the three conserved cysteines (Cys⁷⁵, Cys⁸⁵ and Cys¹⁰⁹). The active site contains the six antiparallel β-strands and two loops where the disulfide bond formed between Cys⁷⁵ and Cys¹⁰⁹. X-ray structure of free methionine sulfoxide binding and native forms of BPSL2418 were solved to increase the understanding of the BPSL2418 catalytic mechanism.

Keywords: X-Ray Crystallography, BPSL2418, Burkholderia pseudomallei, Melioidosis

Procedia PDF Downloads 248
723 Study on Safety Management of Deep Foundation Pit Construction Site Based on Building Information Modeling

Authors: Xuewei Li, Jingfeng Yuan, Jianliang Zhou

Abstract:

The 21st century has been called the century of human exploitation of underground space. Due to the characteristics of large quantity, tight schedule, low safety reserve and high uncertainty of deep foundation pit engineering, accidents frequently occur in deep foundation pit engineering, causing huge economic losses and casualties. With the successful application of information technology in the construction industry, building information modeling has become a research hotspot in the field of architectural engineering. Therefore, the application of building information modeling (BIM) and other information communication technologies (ICTs) in construction safety management is of great significance to improve the level of safety management. This research summed up the mechanism of the deep foundation pit engineering accident through the fault tree analysis to find the control factors of deep foundation pit engineering safety management, the deficiency existing in the traditional deep foundation pit construction site safety management. According to the accident cause mechanism and the specific process of deep foundation pit construction, the hazard information of deep foundation pit engineering construction site was identified, and the hazard list was obtained, including early warning information. After that, the system framework was constructed by analyzing the early warning information demand and early warning function demand of the safety management system of deep foundation pit. Finally, the safety management system of deep foundation pit construction site based on BIM through combing the database and Web-BIM technology was developed, so as to realize the three functions of real-time positioning of construction site personnel, automatic warning of entering a dangerous area, real-time monitoring of deep foundation pit structure deformation and automatic warning. This study can initially improve the current situation of safety management in the construction site of deep foundation pit. Additionally, the active control before the occurrence of deep foundation pit accidents and the whole process dynamic control in the construction process can be realized so as to prevent and control the occurrence of safety accidents in the construction of deep foundation pit engineering.

Keywords: Web-BIM, safety management, deep foundation pit, construction

Procedia PDF Downloads 153
722 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump

Authors: Ravi Verma

Abstract:

Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.

Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity

Procedia PDF Downloads 89