Search results for: multi-scale computational modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3722

Search results for: multi-scale computational modelling

692 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 106
691 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: finite element method, growth, residual stress, soft tissue

Procedia PDF Downloads 270
690 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 93
689 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim

Abstract:

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Keywords: gerotor pump, high speed, numerical simulations, aeronautic, aeration, cavitation

Procedia PDF Downloads 133
688 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods

Authors: Thabo M. Bafitlhile, Adewole Oladele

Abstract:

Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.

Keywords: drainage, estimate, evaluation, floods, flood forecasting

Procedia PDF Downloads 371
687 Oral Grammatical Errors of Arabic as Second Language (ASL) Learners: An Applied Linguistic Approach

Authors: Sadeq Al Yaari, Fayza Al Hammadi, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari, Salah Al Yami

Abstract:

Background: When we further take Arabic grammatical issues into account in accordance with applied linguistic investigations on Arabic as Second Language (ASL) learners, a fundamental issue arises at this point as to the production of speech in Arabic: Oral grammatical errors committed by ASL learners. Aims: Using manual rating as well as computational analytic methodology to test a corpus of recorded speech by Second Language (ASL) learners of Arabic, this study aims to find the areas of difficulties in learning Arabic grammar. More specifically, it examines how and why ASL learners make grammatical errors in their oral speech. Methods: Tape recordings of four (4) Arabic as Second Language (ASL) learners who ranged in age from 23 to 30 were naturally collected. All participants have completed an intensive Arabic program (two years) and 20 minute-speech was recorded for each participant. Having the collected corpus, the next procedure was to rate them against Arabic standard grammar. The rating includes four processes: Description, analysis and assessment. Conclusions: Outcomes made from the issues addressed in this paper can be summarized in the fact that ASL learners face many grammatical difficulties when studying Arabic word order, tenses and aspects, function words, subject-verb agreement, verb form, active-passive voice, global and local errors, processes-based errors including addition, omission, substitution or a combination of any of them.

Keywords: grammar, error, oral, Arabic, second language, learner, applied linguistics.

Procedia PDF Downloads 45
686 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 149
685 Recent Progress in Wave Rotor Combustion

Authors: Mohamed Razi Nalim, Shahrzad Ghadiri

Abstract:

With current concerns regarding global warming, demand for a society with greater environmental awareness significantly increases. With gradual development in hybrid and electric vehicles and the availability of renewable energy resources, increasing efficiency in fossil fuel and combustion engines seems a faster solution toward sustainability and reducing greenhouse gas emissions. This paper aims to provide a comprehensive review of recent progress in wave rotor combustor, one of the combustion concepts with considerable potential to improve power output and emission standards. A wave rotor is an oscillatory flow device that uses the unsteady gas dynamic concept to transfer energy by generating pressure waves. From a thermodynamic point of view, unlike conventional positive-displacement piston engines which follow the Brayton cycle, wave rotors offer higher cycle efficiency due to pressure gain during the combustion process based on the Humphrey cycle. First, the paper covers all recent and ongoing computational and experimental studies around the world with a quick look at the milestones in the history of wave rotor development. Second, the main similarity and differences in the ignition system of the wave rotor with piston engines are considered. Also, the comparison is made with another pressure gain device, rotating detonation engines. Next, the main challenges and research needs for wave rotor combustor commercialization are discussed.

Keywords: wave rotor combustor, unsteady gas dynamic, pre-chamber jet ignition, pressure gain combustion, constant-volume combustion

Procedia PDF Downloads 84
684 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm

Authors: J. S. Dhillon, K. K. Dhaliwal

Abstract:

In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.

Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization

Procedia PDF Downloads 477
683 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 113
682 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 163
681 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: amplitude-independent damping, homogeneous friction, pendulum nonlinear dynamics, structural control, vibration resonant absorbers

Procedia PDF Downloads 148
680 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
679 Aerodynamic Heating and Drag Reduction of Pegasus-XL Satellite Launch Vehicle

Authors: Syed Muhammad Awais Tahir, Syed Hossein Raza Hamdani

Abstract:

In the last two years, there has been a substantial increase in the rate of satellite launches. To keep up with the technology, it is imperative that the launch cost must be made affordable, especially in developing and underdeveloped countries. Launch cost is directly affected by the launch vehicle’s aerodynamic performance. Pegasus-XL SLV (Satellite Launch Vehicle) has been serving as a commercial SLV for the last 26 years, commencing its commercial flight operation from the six operational sites all around the US and Europe, and the Marshal Islands. Aerodynamic heating and drag contribute largely to Pegasus’s flight performance. The objective of this study is to reduce the aerodynamic heating and drag on Pegasus’s body significantly for supersonic and hypersonic flight regimes. Aerodynamic data for Pegasus’s first flight has been validated through CFD (Computational Fluid Dynamics), and then drag and aerodynamic heating is reduced by using a combination of a forward-facing cylindrical spike and a conical aero-disk at the actual operational flight conditions. CFD analysis using ANSYS fluent will be carried out for Mach no. ranges from 0.83 to 7.8, and AoA (Angle of Attack) ranges from -4 to +24 degrees for both simple and spiked-configuration, and then the comparison will be drawn using a variety of graphs and contours. Expected drag reduction for supersonic flight is to be around 15% to 25%, and for hypersonic flight is to be around 30% to 50%, especially for AoA < 15⁰. A 5% to 10% reduction in aerodynamic heating is expected to be achieved for hypersonic regions. In conclusion, the aerodynamic performance of air-launched Pegasus-XL SLV can be further enhanced, leading to its optimal fuel usage to achieve a more economical orbital flight.

Keywords: aerodynamics, pegasus-XL, drag reduction, aerodynamic heating, satellite launch vehicle, SLV, spike, aero-disk

Procedia PDF Downloads 105
678 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks

Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode

Abstract:

The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.

Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control

Procedia PDF Downloads 84
677 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid

Authors: Tran Ich Thinh, Nguyen Manh Cuong

Abstract:

Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.

Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell

Procedia PDF Downloads 498
676 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques

Authors: Imed Feki, Faouzi Msahli

Abstract:

Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.

Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique

Procedia PDF Downloads 605
675 Three Foci of Trust as Potential Mediators in the Association Between Job Insecurity and Dynamic Organizational Capability: A Quantitative, Exploratory Study

Authors: Marita Heyns

Abstract:

Job insecurity is a distressing phenomenon which has far reaching consequences for both employees and their organizations. Previously, much attention has been given to the link between job insecurity and individual level performance outcomes, while less is known about how subjectively perceived job insecurity might transfer beyond the individual level to affect performance of the organization on an aggregated level. Research focusing on how employees’ fear of job loss might affect the organization’s ability to respond proactively to volatility and drastic change through applying its capabilities of sensing, seizing, and reconfiguring, appears to be practically non-existent. Equally little is known about the potential underlying mechanisms through which job insecurity might affect the dynamic capabilities of an organization. This study examines how job insecurity might affect dynamic organizational capability through trust as an underling process. More specifically, it considered the simultaneous roles of trust at an impersonal (organizational) level as well as trust at an interpersonal level (in leaders and co-workers) as potential underlying mechanisms through which job insecurity might affect the organization’s dynamic capability to respond to opportunities and imminent, drastic change. A quantitative research approach and a stratified random sampling technique enabled the collection of data among 314 managers at four different plant sites of a large South African steel manufacturing organization undergoing dramatic changes. To assess the study hypotheses, the following statistical procedures were employed: Structural equation modelling was performed in Mplus to evaluate the measurement and structural models. The Chi-square values test for absolute fit as well as alternative fit indexes such as the Comparative Fit Index and the Tucker-Lewis Index, the Root Mean Square Error of Approximation and the Standardized Root Mean Square Residual were used as indicators of model fit. Composite reliabilities were calculated to evaluate the reliability of the factors. Finally, interaction effects were tested by using PROCESS and the construction of two-sided 95% confidence intervals. The findings indicate that job insecurity had a lower-than-expected detrimental effect on evaluations of the organization’s dynamic capability through the conducive buffering effects of trust in the organization and in its leaders respectively. In contrast, trust in colleagues did not seem to have any noticeable facilitative effect. The study proposes that both job insecurity and dynamic capability can be managed more effectively by also paying attention to factors that could promote trust in the organization and its leaders; some practical recommendations are given in this regard.

Keywords: dynamic organizational capability, impersonal trust, interpersonal trust, job insecurity

Procedia PDF Downloads 89
674 Embedded System of Signal Processing on FPGA: Underwater Application Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.

Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing

Procedia PDF Downloads 79
673 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation

Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher

Abstract:

Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.

Keywords: brine disposal, desalination, field study, negatively buoyant discharge

Procedia PDF Downloads 239
672 Examining Moderating Mechanisms of Alignment Practice and Community Response through the Self-Construal Perspective

Authors: Chyong-Ru Liu, Wen-Shiung Huang, Wan-Ching Tang, Shan-Pei Chen

Abstract:

Two of the biggest challenges companies involved in sports and exercise information services face are how to strengthen participation in virtual sports/exercise communities and how to increase the ongoing participatoriness of those communities. In the past, relatively little research has explored mechanisms for strengthening alignment practice and community response from the perspective of self-construal, and as such this study seeks to explore the self-construal of virtual sports/exercise communities, the role it plays in the emotional commitment of forming communities, and the factor that can strengthen alignment practice. Moreover, which factor of the emotional commitment of forming virtual communities have the effect of strengthening interference in the process of transforming customer citizenship behaviors? This study collected 625 responses from the two leading websites in terms of fan numbers in the provision of information on road race and marathon events in Taiwan, with model testing conducted through linear structural equation modelling and the bootstrapping technique to test the proposed hypotheses. The results proved independent construal had a stronger positive direct effect on affective commitment to fellow customers than did interdependent construal, and the influences of affective commitment to fellow customers in enhancing customer citizenship behavior. Public self-consciousness moderates the relationships among independent self-construal and interdependent self-construal on effective commitment to fellow customers. Perceived playfulness moderates the relationships between effective commitment to fellow customers and customer citizenship behavior. The findings of this study provide significant insights for the researchers and related organizations. From the theoretical perspective, this is empirical research that investigated the self-construal theory and responses (i.e., affective commitment to fellow customers, customer citizenship behavior) in virtual sports/exercise communities. We further explore how to govern virtual sports/exercise community participants’ heterogeneity through public self-consciousness mechanism to align participants’ affective commitment. Moreover, perceived playfulness has the effect of strengthening effective commitment to fellow customers with customer citizenship behaviors. The results of this study can provide a foundation for the construction of future theories and can be provided to related organizations for reference in their planning of virtual communities.

Keywords: self-construal theory, public self-consciousness, affective commitment, customer citizenship behavior

Procedia PDF Downloads 105
671 Formulation and Test of a Model to explain the Complexity of Road Accident Events in South Africa

Authors: Dimakatso Machetele, Kowiyou Yessoufou

Abstract:

Whilst several studies indicated that road accident events might be more complex than thought, we have a limited scientific understanding of this complexity in South Africa. The present project proposes and tests a more comprehensive metamodel that integrates multiple causality relationships among variables previously linked to road accidents. This was done by fitting a structural equation model (SEM) to the data collected from various sources. The study also fitted the GARCH Model (Generalized Auto-Regressive Conditional Heteroskedasticity) to predict the future of road accidents in the country. The analysis shows that the number of road accidents has been increasing since 1935. The road fatality rate follows a polynomial shape following the equation: y = -0.0114x²+1.2378x-2.2627 (R²=0.76) with y = death rate and x = year. This trend results in an average death rate of 23.14 deaths per 100,000 people. Furthermore, the analysis shows that the number of crashes could be significantly explained by the total number of vehicles (P < 0.001), number of registered vehicles (P < 0.001), number of unregistered vehicles (P = 0.003) and the population of the country (P < 0.001). As opposed to expectation, the number of driver licenses issued and total distance traveled by vehicles do not correlate significantly with the number of crashes (P > 0.05). Furthermore, the analysis reveals that the number of casualties could be linked significantly to the number of registered vehicles (P < 0.001) and total distance traveled by vehicles (P = 0.03). As for the number of fatal crashes, the analysis reveals that the total number of vehicles (P < 0.001), number of registered (P < 0.001) and unregistered vehicles (P < 0.001), the population of the country (P < 0.001) and the total distance traveled by vehicles (P < 0.001) correlate significantly with the number of fatal crashes. However, the number of casualties and again the number of driver licenses do not seem to determine the number of fatal crashes (P > 0.05). Finally, the number of crashes is predicted to be roughly constant overtime at 617,253 accidents for the next 10 years, with the worse scenario suggesting that this number may reach 1 896 667. The number of casualties was also predicted to be roughly constant at 93 531 overtime, although this number may reach 661 531 in the worst-case scenario. However, although the number of fatal crashes may decrease over time, it is forecasted to reach 11 241 fatal crashes within the next 10 years, with the worse scenario estimated at 19 034 within the same period. Finally, the number of fatalities is also predicted to be roughly constant at 14 739 but may also reach 172 784 in the worse scenario. Overall, the present study reveals the complexity of road accidents and allows us to propose several recommendations aimed to reduce the trend of road accidents, casualties, fatal crashes, and death in South Africa.

Keywords: road accidents, South Africa, statistical modelling, trends

Procedia PDF Downloads 161
670 Price Effect Estimation of Tobacco on Low-wage Male Smokers: A Causal Mediation Analysis

Authors: Kawsar Ahmed, Hong Wang

Abstract:

The study's goal was to estimate the causal mediation impact of tobacco tax before and after price hikes among low-income male smokers, with a particular emphasis on the effect estimating pathways framework for continuous and dichotomous variables. From July to December 2021, a cross-sectional investigation of observational data (n=739) was collected from Bangladeshi low-wage smokers. The Quasi-Bayesian technique, binomial probit model, and sensitivity analysis using a simulation of the computational tools R mediation package had been used to estimate the effect. After a price rise for tobacco products, the average number of cigarettes or bidis sticks taken decreased from 6.7 to 4.56. Tobacco product rising prices have a direct effect on low-income people's decisions to quit or lessen their daily smoking habits of Average Causal Mediation Effect (ACME) [effect=2.31, 95 % confidence interval (C.I.) = (4.71-0.00), p<0.01], Average Direct Effect (ADE) [effect=8.6, 95 percent (C.I.) = (6.8-0.11), p<0.001], and overall significant effects (p<0.001). Tobacco smoking choice is described by the mediated proportion of income effect, which is 26.1% less of following price rise. The curve of ACME and ADE is based on observational figures of the coefficients of determination that asses the model of hypothesis as the substantial consequence after price rises in the sensitivity analysis. To reduce smoking product behaviors, price increases through taxation have a positive causal mediation with income that affects the decision to limit tobacco use and promote low-income men's healthcare policy.

Keywords: causal mediation analysis, directed acyclic graphs, tobacco price policy, sensitivity analysis, pathway estimation

Procedia PDF Downloads 112
669 Systematic Discovery of Bacterial Toxins Against Plants Pathogens Fungi

Authors: Yaara Oppenheimer-Shaanan, Nimrod Nachmias, Marina Campos Rocha, Neta Schlezinger, Noam Dotan, Asaf Levy

Abstract:

Fusarium oxysporum, a fungus that attacks a broad range of plants and can cause infections in humans, operates across different kingdoms. This pathogen encounters varied conditions, such as temperature, pH, and nutrient availability, in plant and human hosts. The Fusarium oxysporum species complex, pervasive in soils globally, can affect numerous plants, including key crops like tomatoes and bananas. Controlling Fusarium infections can involve biocontrol agents that hinder the growth of harmful strains. Our research developed a computational method to identify toxin domains within a vast number of microbial genomes, leading to the discovery of nine distinct toxins capable of killing bacteria and fungi, including Fusarium. These toxins appear to function as enzymes, causing significant damage to cellular structures, membranes and DNA. We explored biological control using bacteria that produce polymorphic toxins, finding that certain bacteria, non-pathogenic to plants, offer a safe biological alternative for Fusarium management, as they did not harm macrophage cells or C. elegans. Additionally, we elucidated the 3D structures of two toxins with their protective immunity proteins, revealing their function as unique DNases. These potent toxins are likely instrumental in microbial competition within plant ecosystems and could serve as biocontrol agents to mitigate Fusarium wilt and related diseases.

Keywords: microbial toxins, antifungal, Fusarium oxysporum, bacterial-fungal intreactions

Procedia PDF Downloads 56
668 Creating Futures: Using Fictive Scripting Methods for Institutional Strategic Planning

Authors: Christine Winberg, James Garraway

Abstract:

Many key university documents, such as vision and mission statements and strategic plans, are aspirational and future-oriented. There is a wide range of future-oriented methods that are used in planning applications, ranging from mathematical modelling to expert opinions. Many of these methods have limitations, and planners using these tools might, for example, make the technical-rational assumption that their plans will unfold in a logical and inevitable fashion, thus underestimating the many complex forces that are at play in planning for an unknown future. This is the issue that this study addresses. The overall project aim was to assist a new university of technology in developing appropriate responses to its social responsibility, graduate employability and research missions in its strategic plan. The specific research question guiding the research activities and approach was: how might the use of innovative future-oriented planning tools enable or constrain a strategic planning process? The research objective was to engage collaborating groups in the use of an innovative tool to develop and assess future scenarios, for the purpose of developing deeper understandings of possible futures and their challenges. The scenario planning tool chosen was ‘fictive scripting’, an analytical technique derived from Technology Forecasting and Innovation Studies. Fictive scripts are future projections that also take into account the present shape of the world and current developments. The process thus began with a critical diagnosis of the present, highlighting its tensions and frictions. The collaborative groups then developed fictive scripts, each group producing a future scenario that foregrounded different institutional missions, their implications and possible consequences. The scripts were analyzed with a view to identifying their potential contribution to the university’s strategic planning exercise. The unfolding fictive scripts revealed a number of insights in terms of unexpected benefits, unexpected challenges, and unexpected consequences. These insights were not evident in previous strategic planning exercises. The contribution that this study offers is to show how better choices can be made and potential pitfalls avoided through a systematic foresight exercise. When universities develop strategic planning documents, they are looking into the future. In this paper it is argued that the use of appropriate tools for future-oriented exercises, can help planners to understand more fully what achieving desired outcomes might entail, what challenges might be encountered, and what unexpected consequences might ensue.

Keywords: fictive scripts, scenarios, strategic planning, technological forecasting

Procedia PDF Downloads 121
667 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 86
666 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine

Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins

Abstract:

Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.

Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG

Procedia PDF Downloads 147
665 Performance Analysis of Vision-Based Transparent Obstacle Avoidance for Construction Robots

Authors: Siwei Chang, Heng Li, Haitao Wu, Xin Fang

Abstract:

Construction robots are receiving more and more attention as a promising solution to the manpower shortage issue in the construction industry. The development of intelligent control techniques that assist in controlling the robots to avoid transparency and reflected building obstacles is crucial for guaranteeing the adaptability and flexibility of mobile construction robots in complex construction environments. With the boom of computer vision techniques, a number of studies have proposed vision-based methods for transparent obstacle avoidance to improve operation accuracy. However, vision-based methods are also associated with disadvantages such as high computational costs. To provide better perception and value evaluation, this study aims to analyze the performance of vision-based techniques for avoiding transparent building obstacles. To achieve this, commonly used sensors, including a lidar, an ultrasonic sensor, and a USB camera, are equipped on the robotic platform to detect obstacles. A Raspberry Pi 3 computer board is employed to compute data collecting and control algorithms. The turtlebot3 burger is employed to test the programs. On-site experiments are carried out to observe the performance in terms of success rate and detection distance. Control variables include obstacle shapes and environmental conditions. The findings contribute to demonstrating how effectively vision-based obstacle avoidance strategies for transparent building obstacle avoidance and provide insights and informed knowledge when introducing computer vision techniques in the aforementioned domain.

Keywords: construction robot, obstacle avoidance, computer vision, transparent obstacle

Procedia PDF Downloads 80
664 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
663 Application of Finite Volume Method for Numerical Simulation of Contaminant Transfer in a Two-Dimensional Reservoir

Authors: Atousa Ataieyan, Salvador A. Gomez-Lopera, Gennaro Sepede

Abstract:

Today, due to the growing urban population and consequently, the increasing water demand in cities, the amount of contaminants entering the water resources is increasing. This can impose harmful effects on the quality of the downstream water. Therefore, predicting the concentration of discharged pollutants at different times and distances of the interested area is of high importance in order to carry out preventative and controlling measures, as well as to avoid consuming the contaminated water. In this paper, the concentration distribution of an injected conservative pollutant in a square reservoir containing four symmetric blocks and three sources using Finite Volume Method (FVM) is simulated. For this purpose, after estimating the flow velocity, classical Advection-Diffusion Equation (ADE) has been discretized over the studying domain by Backward Time- Backward Space (BTBS) scheme. Then, the discretized equations for each node have been derived according to the initial condition, boundary conditions and point contaminant sources. Finally, taking into account the appropriate time step and space step, a computational code was set up in MATLAB. Contaminant concentration was then obtained at different times and distances. Simulation results show how using BTBS differentiating scheme and FVM as a numerical method for solving the partial differential equation of transport is an appropriate approach in the case of two-dimensional contaminant transfer in an advective-diffusive flow.

Keywords: BTBS differentiating scheme, contaminant concentration, finite volume, mass transfer, water pollution

Procedia PDF Downloads 135