Search results for: models synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8841

Search results for: models synthesis

5811 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing

Authors: Ahmed Elaksher, Islam Omar

Abstract:

Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.

Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition

Procedia PDF Downloads 63
5810 ALEF: An Enhanced Approach to Arabic-English Bilingual Translation

Authors: Abdul Muqsit Abbasi, Ibrahim Chhipa, Asad Anwer, Saad Farooq, Hassan Berry, Sonu Kumar, Sundar Ali, Muhammad Owais Mahmood, Areeb Ur Rehman, Bahram Baloch

Abstract:

Accurate translation between structurally diverse languages, such as Arabic and English, presents a critical challenge in natural language processing due to significant linguistic and cultural differences. This paper investigates the effectiveness of Facebook’s mBART model, fine-tuned specifically for sequence-tosequence (seq2seq) translation tasks between Arabic and English, and enhanced through advanced refinement techniques. Our approach leverages the Alef Dataset, a meticulously curated parallel corpus spanning various domains to capture the linguistic richness, nuances, and contextual accuracy essential for high-quality translation. We further refine the model’s output using advanced language models such as GPT-3.5 and GPT-4, which improve fluency, coherence, and correct grammatical errors in translated texts. The fine-tuned model demonstrates substantial improvements, achieving a BLEU score of 38.97, METEOR score of 58.11, and TER score of 56.33, surpassing widely used systems such as Google Translate. These results underscore the potential of mBART, combined with refinement strategies, to bridge the translation gap between Arabic and English, providing a reliable, context-aware machine translation solution that is robust across diverse linguistic contexts.

Keywords: natural language processing, machine translation, fine-tuning, Arabic-English translation, transformer models, seq2seq translation, translation evaluation metrics, cross-linguistic communication

Procedia PDF Downloads 9
5809 A Sub-Conjunctiva Injection of Rosiglitazone for Anti-Fibrosis Treatment after Glaucoma Filtration Surgery

Authors: Yang Zhao, Feng Zhang, Xuanchu Duan

Abstract:

Trans-differentiation of human Tenon fibroblasts (HTFs) to myo-fibroblasts and fibrosis of episcleral tissue are the most common reasons for the failure of glaucoma filtration surgery, with limited treatment options like antimetabolites which always have side-effects such as leakage of filter bulb, infection, hypotony, and endophthalmitis. Rosiglitazone, a specific thiazolidinedione is a synthetic high-affinity ligand for PPAR-r, which has been used in the treatment of type2 diabetes, and found to have pleiotropic functions against inflammatory response, cell proliferation and tissue fibrosis and to benefit to a variety of diseases in animal myocardium models, steatohepatitis models, etc. Here, in vitro we cultured primary HTFs and stimulated with TGF- β to induced myofibrogenic, then treated cells with Rosiglitazone to assess for fibrogenic response. In vivo, we used rabbit glaucoma model to establish the formation of post- trabeculectomy scarring. Then we administered subconjunctival injection with Rosiglitazone beside the filtering bleb, later protein, mRNA and immunofluorescence of fibrogenic markers are checked, and filtering bleb condition was measured. In vitro, we found Rosiglitazone could suppressed proliferation and migration of fibroblasts through macroautophagy via TGF- β /Smad signaling pathway. In vivo, on postoperative day 28, the mean number of fibroblasts in Rosiglitazone injection group was significantly the lowest and had the least collagen content and connective tissue growth factor. Rosiglitazone effectively controlled human and rabbit fibroblasts in vivo and in vitro. Its subconjunctiiva application may represent an effective, new avenue for the prevention of scarring after glaucoma surgery.

Keywords: fibrosis, glaucoma, macroautophagy, rosiglitazone

Procedia PDF Downloads 274
5808 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications

Authors: Aymen Laadhari

Abstract:

The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.

Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell

Procedia PDF Downloads 252
5807 Synthesis and Characterization of Biodegradable Elastomeric Polyester Amide for Tissue Engineering Applications

Authors: Abdulrahman T. Essa, Ahmed Aied, Omar Hamid, Felicity R. A. J. Rose, Kevin M. Shakesheff

Abstract:

Biodegradable poly(ester amide)s are promising polymers for biomedical applications such as drug delivery and tissue engineering because of their optimized chemical and physical properties. In this study, we developed a biodegradable polyester amide elastomer poly(serinol sebacate) (PSS) composed of crosslinked networks based on serinol and sebacic acid. The synthesized polymers were characterized to evaluate their chemical structures, mechanical properties, degradation behaviors and in vitro cytocompatibility. Analysis of proton nuclear magnetic resonance and Fourier transform infrared spectroscopy revealed the structure of the polymer. The PSS exhibit excellent solubility in a variety of solvents such as methanol, dimethyl sulfoxide and dimethylformamide. More importantly, the mechanical properties of PSS could be tuned by changing the curing conditions. In addition, the 3T3 fibroblast cells cultured on the PSS demonstrated good cell attachment and high viability.

Keywords: biodegradable, biomaterial, elastomer, mechanical properties, poly(serinol sebacate)

Procedia PDF Downloads 354
5806 Ecosystem Model for Environmental Applications

Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru

Abstract:

This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision-making.

Keywords: ecosystem model, environmental security, fuzzy logic, sustainability of habitable regions

Procedia PDF Downloads 420
5805 Mature Field Rejuvenation Using Hydraulic Fracturing: A Case Study of Tight Mature Oilfield with Reveal Simulator

Authors: Amir Gharavi, Mohamed Hassan, Amjad Shah

Abstract:

The main characteristics of unconventional reservoirs include low-to ultra low permeability and low-to-moderate porosity. As a result, hydrocarbon production from these reservoirs requires different extraction technologies than from conventional resources. An unconventional reservoir must be stimulated to produce hydrocarbons at an acceptable flow rate to recover commercial quantities of hydrocarbons. Permeability for unconventional reservoirs is mostly below 0.1 mD, and reservoirs with permeability above 0.1 mD are generally considered to be conventional. The hydrocarbon held in these formations naturally will not move towards producing wells at economic rates without aid from hydraulic fracturing which is the only technique to assess these tight reservoir productions. Horizontal well with multi-stage fracking is the key technique to maximize stimulated reservoir volume and achieve commercial production. The main objective of this research paper is to investigate development options for a tight mature oilfield. This includes multistage hydraulic fracturing and spacing by building of reservoir models in the Reveal simulator to model potential development options based on sidetracking the existing vertical well. To simulate potential options, reservoir models have been built in the Reveal. An existing Petrel geological model was used to build the static parts of these models. A FBHP limit of 40bars was assumed to take into account pump operating limits and to maintain the reservoir pressure above the bubble point. 300m, 600m and 900m lateral length wells were modelled, in conjunction with 4, 6 and 8 stages of fracs. Simulation results indicate that higher initial recoveries and peak oil rates are obtained with longer well lengths and also with more fracs and spacing. For a 25year forecast, the ultimate recovery ranging from 0.4% to 2.56% for 300m and 1000m laterals respectively. The 900m lateral with 8 fracs 100m spacing gave the highest peak rate of 120m3/day, with the 600m and 300m cases giving initial peak rates of 110m3/day. Similarly, recovery factor for the 900m lateral with 8 fracs and 100m spacing was the highest at 2.65% after 25 years. The corresponding values for the 300m and 600m laterals were 2.37% and 2.42%. Therefore, the study suggests that longer laterals with 8 fracs and 100m spacing provided the optimal recovery, and this design is recommended as the basis for further study.

Keywords: unconventional, resource, hydraulic, fracturing

Procedia PDF Downloads 298
5804 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem

Authors: Bidzina Matsaberidze

Abstract:

It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.

Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions

Procedia PDF Downloads 92
5803 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data

Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa

Abstract:

A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.

Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation

Procedia PDF Downloads 202
5802 A Novel Rapid Well Control Technique Modelled in Computational Fluid Dynamics Software

Authors: Michael Williams

Abstract:

The ability to control a flowing well is of the utmost important. During the kill phase, heavy weight kill mud is circulated around the well. While increasing bottom hole pressure near wellbore formation, the damage is increased. The addition of high density spherical objects has the potential to minimise this near wellbore damage, increase bottom hole pressure and reduce operational time to kill the well. This operational time saving is seen in the rapid deployment of high density spherical objects instead of building high density drilling fluid. The research aims to model the well kill process using a Computational Fluid Dynamics software. A model has been created as a proof of concept to analyse the flow of micron sized spherical objects in the drilling fluid. Initial results show that this new methodology of spherical objects in drilling fluid agrees with traditional stream lines seen in non-particle flow. Additional models have been created to demonstrate that areas of higher flow rate around the bit can lead to increased probability of wash out of formations but do not affect the flow of micron sized spherical objects. Interestingly, areas that experience dimensional changes such as tool joints and various BHA components do not appear at this initial stage to experience increased velocity or create areas of turbulent flow, which could lead to further borehole stability. In conclusion, the initial models of this novel well control methodology have not demonstrated any adverse flow patterns, which would conclude that this model may be viable under field conditions.

Keywords: well control, fluid mechanics, safety, environment

Procedia PDF Downloads 171
5801 Modeling Route Selection Using Real-Time Information and GPS Data

Authors: William Albeiro Alvarez, Gloria Patricia Jaramillo, Ivan Reinaldo Sarmiento

Abstract:

Understanding the behavior of individuals and the different human factors that influence the choice when faced with a complex system such as transportation is one of the most complicated aspects of measuring in the components that constitute the modeling of route choice due to that various behaviors and driving mode directly or indirectly affect the choice. During the last two decades, with the development of information and communications technologies, new data collection techniques have emerged such as GPS, geolocation with mobile phones, apps for choosing the route between origin and destination, individual service transport applications among others, where an interest has been generated to improve discrete choice models when considering the incorporation of these developments as well as psychological factors that affect decision making. This paper implements a discrete choice model that proposes and estimates a hybrid model that integrates route choice models and latent variables based on the observation on the route of a sample of public taxi drivers from the city of Medellín, Colombia in relation to its behavior, personality, socioeconomic characteristics, and driving mode. The set of choice options includes the routes generated by the individual service transport applications versus the driver's choice. The hybrid model consists of measurement equations that relate latent variables with measurement indicators and utilities with choice indicators along with structural equations that link the observable characteristics of drivers with latent variables and explanatory variables with utilities.

Keywords: behavior choice model, human factors, hybrid model, real time data

Procedia PDF Downloads 152
5800 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 278
5799 Economic and Social Well-Being for Migrant Workers: Asian Experiences

Authors: Mohsin Reza, Thirunaukarasu Subramaniam, M. Rezaul Islam

Abstract:

In Asia, economic and social well-being issues are rarely addressed. The major characteristics of the migrant workers in Asian countries are seriously exploited, marginalized, and infrequently looked from human rights perspective. This paper explored the opportunities and shortages of economic and social well-being for the migrant workers in Asia. A Qualitative Interpretative Meta-Synthesis (QIMS) was conducted to analyze the contextual socio-economic factors that characterized migrant workers’ economic and social well-being. It is perceived that in most of the recruiting countries, there are lacks of government commitments to the international protocols, conventions and laws that they ratified towards safeguarding migrant workers’ economic and social well-being. Results showed that the migrant workers had lack of job security, poor salary, long working hours, low access to the public services, poor health, poor living and working conditions, lack of legal rights, physical and mental threats. The finding would be important guideline to the governments, policy makers, legal rights practitioners, and human rights organizations.

Keywords: Asia, economic well-being, social well-being, migrant workers, human rights

Procedia PDF Downloads 323
5798 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 248
5797 Gender Differences in E-Society: The Case of Slovenia

Authors: Mitja Dečman

Abstract:

The ever-increasing presence and use of information and communication technology (ICT) influences the different social relationships of today's society. Gender differences are especially important from the viewpoint of modern society since ICT can either deepen the existing inequalities or diminish them. In a developed Western world, gender equality has been a well-focused area for decades in many parts of society including education, employment or politics and has led to a decrease in the inequality of women and men in these and other areas. The area of digital equality, or inequality for that matter, is one of the areas where gender differences still exist in many countries of the world. The research presented in this paper focuses on Slovenia, one of the smallest EU member states, being an average achiever in the area of e-society according to the many different European benchmarking indexes. On the other hand, Slovenia is working in an alignment with many European gender equality guidelines and showing good results. The results of our research are based on the analysis of survey data from 2014 to 2017 dealing with Slovenian citizens and their households and the use of ICT. Considering gender issues, the synthesis showed that cultural differences influence some measured ICT indicators but on the other hand the differences are low and only sometimes statistically significant.

Keywords: digital divide, gender inequality, Slovenia, e-society

Procedia PDF Downloads 168
5796 Novel Self-Healing Eco-Friendly Coatings with Antifouling and Anticorrosion Properties for Maritime Applications

Authors: K. N. Kipreou, E. Efthmiadou, G. Kordas

Abstract:

Biofouling represents one of the most crucial problems in the present maritime industries when its control still challenges the researchers all over the world. The present work is referred to the synthesis and characterization CeMo and Cu2O nanocontainers by using a wide range of techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for marine applications. The above nanosystems will be loaded with active monomers and corrosion rendering healing ability to marine paints. The objective of this project is their ability for self-healing, self-polishing and finally for anti-corrosion activity. One of the driving forces for the exploration of CeMo, is the unique anticorrosive behavior, which will be confirmed by the electrochemistry methodology. It has be highlighted that the nanocontainers of Cu2O with the appropriate antibacterial inhibitor will improve the hydrophobicity and the morphology of the coating surfaces reducing the water friction. In summary, both novel nanoc will increase the lifetime of the paints releasing the antifouling agent in a control manner.

Keywords: marinepaints, nanocontainer, antifouling, anticorrosion, copper, electrochemistry, coating, biofouling, inhibitors, copper oxide, coating, SEM

Procedia PDF Downloads 338
5795 Running the Athena Vortex Lattice Code in JAVA through the Java Native Interface

Authors: Paul Okonkwo, Howard Smith

Abstract:

This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft.

Keywords: aerodynamics, automation, optimisation, AVL, JNI

Procedia PDF Downloads 565
5794 Kinetic Study of Physical Quality Changes on Jumbo Squid (Dosidicus gigas) Slices during Application High-Pressure Impregnation

Authors: Mario Perez-Won, Roberto Lemus-Mondaca, Fernanda Marin, Constanza Olivares

Abstract:

This study presents the simultaneous application of high hydrostatic pressure (HHP) and osmotic dehydration of jumbo squid (Dosidicus gigas) slice. Diffusion coefficients for both components water and solids were improved by the process pressure, being influenced by pressure level. The working conditions were different pressures such as 100, 250, 400 MPa and pressure atmospheric (0.1 MPa) for time intervals from 30 to 300 seconds and a 15% NaCl concentration. The mathematical expressions used for mass transfer simulations both water and salt were those corresponding to Newton, Henderson and Pabis, Page and Weibull models, where the Weibull and Henderson-Pabis models presented the best fitted to the water and salt experimental data, respectively. The values for water diffusivity coefficients varied from 1.62 to 8.10x10⁻⁹ m²/s whereas that for salt varied among 14.18 to 36.07x10⁻⁹ m²/s for selected conditions. Finally, as to quality parameters studied under the range of experimental conditions studied, the treatment at 250 MPa yielded on the samples a minimum hardness, whereas springiness, cohesiveness and chewiness at 100, 250 and 400 MPa treatments presented statistical differences regarding to unpressurized samples. The colour parameters L* (lightness) increased, however, but b* (yellowish) and a* (reddish) parameters decreased when increasing pressure level. This way, samples presented a brighter aspect and a mildly cooked appearance. The results presented in this study can support the enormous potential of hydrostatic pressure application as a technique important for compounds impregnation under high pressure.

Keywords: colour, diffusivity, high pressure, jumbo squid, modelling, texture

Procedia PDF Downloads 344
5793 A Systematic Review in the Impacts of Skilled Parent Migration on Left-Behind Children: Gaps in the Existing Knowledge

Authors: Yassir Mohammed

Abstract:

The study examines the impact of skilled parental migration on left-behind children. It uses the SCOPUS database to evaluate the existing literature from 1972 to 2022 and synthesizes data using the PRISMA framework and bibliometric method of analysis. 49 articles out of 202 papers were involved in the synthesis. International migration, outcome migration, consequence, parental migration, high-skill and left-behind children, and left-behind preschool were all searched. The research found that mental health issues, self-isolation, and physical harm have negative impacts, while sending children to good schools, having good academic records, and better medical care have positive impacts. The study also found that gender gaps increase in some countries while decreasing in others. Further research is needed on child maltreatment, academic performance, subjective well-being, societal effects, behavioral difficulties, and quality of life. The study only included peer-reviewed English publications in the final analysis.

Keywords: parental migration, impact of migration, systematic review, left-behind children

Procedia PDF Downloads 72
5792 Polypropylene Fibres Dyeable with Acid Dyes

Authors: H. M. Wang, C. J. Chang

Abstract:

As the threat of global climate change is more seriously, "net zero emissions by 2050" has become a common global goal. In order to reduce the consumption of petrochemical raw materials and reduce carbon emissions, low-carbon fiber materials have become key materials in the future global textile supply chain. This project uses polyolefin raw materials to modify through synthesis and amination to develop low-temperature dyeable polypropylene fibers, endow them with low-temperature dyeability and high color fastness that can be combined with acid dyes, and improve the problem of low coloring strength. The color fastness to washing can reach the requirement of commerce with 3.5 level or more. Therefore, we realize the entry of polypropylene fiber into the clothing textile supply chain, replace existing fiber raw materials, solve the problem of domestic chemical fiber, textile, and clothing industry's plight of no low-carbon alternative new material sources, and provide the textile industry with a solution to achieve the goal of net zero emissions in 2050.

Keywords: acid dyes, dyeing, low-temperature, polypropylene fiber

Procedia PDF Downloads 87
5791 Evaluating Probable Bending of Frames for Near-Field and Far-Field Records

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

Most reinforced concrete structures are designed only under heavy loads have large transverse reinforcement spacing values, and therefore suffer severe failure after intense ground movements. The main goal of this paper is to compare the shear- and axial failure of concrete bending frames available in Tehran using incremental dynamic analysis under near- and far-field records. For this purpose, IDA analyses of 5, 10, and 15-story concrete structures were done under seven far-fault records and five near-faults records. The results show that in two-dimensional models of short-rise, mid-rise and high-rise reinforced concrete frames located on Type-3 soil, increasing the distance of the transverse reinforcement can increase the maximum inter-story drift ratio values up to 37%. According to the existing results on 5, 10, and 15-story reinforced concrete models located on Type-3 soil, records with characteristics such as fling-step and directivity create maximum drift values between floors more than far-fault earthquakes. The results indicated that in the case of seismic excitation modes under earthquake encompassing directivity or fling-step, the probability values of failure and failure possibility increasing rate values are much smaller than the corresponding values of far-fault earthquakes. However, in near-fault frame records, the probability of exceedance occurs at lower seismic intensities compared to far-fault records.

Keywords: IDA, failure curve, directivity, maximum floor drift, fling step, evaluating probable bending of frames, near-field and far-field earthquake records

Procedia PDF Downloads 108
5790 Explicable Enzymatic Mechanism of H-Ido to Oxidise Tryptophan by Employing Various Substrates

Authors: Ali Bahri Lubis

Abstract:

The study of dioxygenase enzymatic mechanism on tryptophan oxidation has been a wide interest since the reaction is rate-limiting step of kynurenine pathway. In this research, observation of tryptophan oxidation through h-IDO enzyme along with synthesis of enzyme products was conducted in order to comprehend how the enzyme works on distinct substrates. UV-vis spectrophotometry, LC-MS, H-NMR and HSQC measurement were carried out to characterise enzyme product. It is found that while tryptophan was oxidised to form Nformylkynurenine (NFK) as a major product and hydroxypyrroloindole amine carboxylic acid (HPIC) in cis and trans confirmed in HSQC, N-methyl tryptophan substrate was converted to NFK and trans HPIC only. Other intriguing results showed that 5-hydroxy- tryptophan and Stryptophan was degraded to become NFK and epoxide cyclic respectively. The formation of NFK was considered through dioxygenation pathway, however HPIC was formed via monooxygenation. The epoxide cyclic—considered as intermediate compound in the mechanism— from S-tryptophan was not able to cleave the epoxide ring since bond energy of epoxide was probably much stronger. This validates the enzymatic mechanism where the intermediate compound in the enzymatic mechanism is epoxide cyclic.

Keywords: tryptophan oxidation, heme-dioxygenases, N-formylkynurenine, hydroxypyrrroloindoleamine, monooxidation

Procedia PDF Downloads 89
5789 The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts

Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi -N- TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 378
5788 Seismic Behavior of Existing Reinforced Concrete Buildings in California under Mainshock-Aftershock Scenarios

Authors: Ahmed Mantawy, James C. Anderson

Abstract:

Numerous cases of earthquakes (main-shocks) that were followed by aftershocks have been recorded in California. In 1992 a pair of strong earthquakes occurred within three hours of each other in Southern California. The first shock occurred near the community of Landers and was assigned a magnitude of 7.3 then the second shock occurred near the city of Big Bear about 20 miles west of the initial shock and was assigned a magnitude of 6.2. In the same year, a series of three earthquakes occurred over two days in the Cape-Mendocino area of Northern California. The main-shock was assigned a magnitude of 7.0 while the second and the third shocks were both assigned a value of 6.6. This paper investigates the effect of a main-shock accompanied with aftershocks of significant intensity on reinforced concrete (RC) frame buildings to indicate nonlinear behavior using PERFORM-3D software. A 6-story building in San Bruno and a 20-story building in North Hollywood were selected for the study as both of them have RC moment resisting frame systems. The buildings are also instrumented at multiple floor levels as a part of the California Strong Motion Instrumentation Program (CSMIP). Both buildings have recorded responses during past events such as Loma-Prieta and Northridge earthquakes which were used in verifying the response parameters of the numerical models in PERFORM-3D. The verification of the numerical models shows good agreement between the calculated and the recorded response values. Then, different scenarios of a main-shock followed by a series of aftershocks from real cases in California were applied to the building models in order to investigate the structural behavior of the moment-resisting frame system. The behavior was evaluated in terms of the lateral floor displacements, the ductility demands, and the inelastic behavior at critical locations. The analysis results showed that permanent displacements may have happened due to the plastic deformation during the main-shock that can lead to higher displacements during after-shocks. Also, the inelastic response at plastic hinges during the main-shock can change the hysteretic behavior during the aftershocks. Higher ductility demands can also occur when buildings are subjected to trains of ground motions compared to the case of individual ground motions. A general conclusion is that the occurrence of aftershocks following an earthquake can lead to increased damage within the elements of an RC frame buildings. Current code provisions for seismic design do not consider the probability of significant aftershocks when designing a new building in zones of high seismic activity.

Keywords: reinforced concrete, existing buildings, aftershocks, damage accumulation

Procedia PDF Downloads 280
5787 Hybrid Velocity Control Approach for Tethered Aerial Vehicle

Authors: Lovesh Goyal, Pushkar Dave, Prajyot Jadhav, GonnaYaswanth, Sakshi Giri, Sahil Dharme, Rushika Joshi, Rishabh Verma, Shital Chiddarwar

Abstract:

With the rising need for human-robot interaction, researchers have proposed and tested multiple models with varying degrees of success. A few of these models performed on aerial platforms are commonly known as Tethered Aerial Systems. These aerial vehicles may be powered continuously by a tether cable, which addresses the predicament of the short battery life of quadcopters. This system finds applications to minimize humanitarian efforts for industrial, medical, agricultural, and service uses. However, a significant challenge in employing such systems is that it necessities attaining smooth and secure robot-human interaction while ensuring that the forces from the tether remain within the standard comfortable range for the humans. To tackle this problem, a hybrid control method that could switch between two control techniques: constant control input and the steady-state solution, is implemented. The constant control approach is implemented when a person is far from the target location, and error is thought to be eventually constant. The controller switches to the steady-state approach when the person reaches within a specific range of the goal position. Both strategies take into account human velocity feedback. This hybrid technique enhances the outcomes by assisting the person to reach the desired location while decreasing the human's unwanted disturbance throughout the process, thereby keeping the interaction between the robot and the subject smooth.

Keywords: unmanned aerial vehicle, tethered system, physical human-robot interaction, hybrid control

Procedia PDF Downloads 98
5786 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes

Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra

Abstract:

Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.

Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity

Procedia PDF Downloads 349
5785 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms

Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.

Abstract:

Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.

Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment

Procedia PDF Downloads 402
5784 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
5783 Quasi–Periodicity of Tonic Intervals in Octave and Innovation of Themes in Music Compositions

Authors: R. C. Tyagi

Abstract:

Quasi-periodicity of frequency intervals observed in Shruti based Absolute Scale of Music has been used to graphically identify the Anchor notes ‘Vadi’ and ‘Samvadi’ which are nodal points for expansion, elaboration and iteration of the emotional theme represented by the characteristic tonic arrangement in Raga compositions. This analysis leads to defining the Tonic parameters in the octave including the key-note frequency, tonic intervals’ anchor notes and the on-set and range of quasi-periodicities as exponents of 2. Such uniformity of representation of characteristic data would facilitate computational analysis and synthesis of music compositions and also help develop noise suppression techniques. Criteria for tuning of strings for compatibility with placement of frets on finger boards is discussed. Natural Rhythmic cycles in music compositions are analytically shown to lie between 3 and 126 beats.

Keywords: absolute scale, anchor notes, computational analysis, frets, innovation, noise suppression, Quasi-periodicity, rhythmic cycle, tonic interval, Shruti

Procedia PDF Downloads 304
5782 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column

Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan

Abstract:

Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.

Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill

Procedia PDF Downloads 75