Search results for: lithium rich oxide cathode
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3161

Search results for: lithium rich oxide cathode

161 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 110
160 Accessible Facilities in Home Environment for Elderly Family Members in Sri Lanka

Authors: M. A. N. Rasanjalee Perera

Abstract:

The world is facing several problems due to increasing elderly population. In Sri Lanka, along with the complexity of the modern society and structural and functional changes of the family, “caring for elders” seems as an emerging social problem. This situation may intensify as the county is moving into a middle income society. Seeking higher education and related career opportunities, and urban living in modern housing are new trends, through which several problems are generated. Among many issues related with elders, “lack of accessible and appropriate facilities in their houses as well as public buildings” can be identified as a major problem. This study argues that welfare facilities provided for the elderly people, particularly in the home environment, in the country are not adequate. Modern housing features such as bathrooms, pantries, lobbies, and leisure areas etc. are questionable as to whether they match with elders’ physical and mental needs. Consequently, elders have to face domestic accidents and many other difficulties within their living environments. Records of hospitals in the country also proved this fact. Therefore, this study tries to identify how far modern houses are suited with elders’ needs. The study further questioned whether “aging” is a considerable matter when people are buying, planning and renovating houses. A randomly selected sample of 50 houses were observed and 50 persons were interviewed around the Maharagama urban area in Colombo district to obtain primary data, while relevant secondary data and information were used to have a depth analysis. The study clearly found that none of the houses included to the sample are considering elders’ needs in planning, renovating, or arranging the home. Instead, most of the families were giving priority to the rich and elegant appearance and modern facilities of the houses. Particularly, to the bathrooms, pantry, large setting areas, balcony, parking slots for two vehicles, ad parapet walls with roller-gates are the main concerns. A significant factor found here is that even though, many children of the aged are in middle age and reaching their older years at present, they do not plan their future living within a safe and comfortable home, despite that they are hoping to spent the latter part of their lives in the their current homes. This fact highlights that not only the other responsible parts of the society, but also those who are reaching their older ages are ignoring the problems of the aged. At the same time, it was found that more than 80% of old parents do not like to stay at their children’s homes as the living environments in such modern homes are not familiar or convenient for them. Due to this context, the aged in Sri Lanka may have to be alone in their own homes due to current trend of society of migrating to urban living in modern houses. At the same time, current urban families who live in modern houses may have to face adding accessible facilities in their home environment, as current modern housing facilities may not be appropriate them for a better life in their latter part of life.

Keywords: aging population, elderly care, home environment, housing facilities

Procedia PDF Downloads 109
159 Dimethyl fumarate Alleviates Valproic Acid-Induced Autism in Wistar Rats via Activating NRF-2 and Inhibiting NF-κB Pathways

Authors: Sandy Elsayed, Aya Mohamed, Noha Nassar

Abstract:

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behavior. Multiple studies suggest that oxidative stress and neuroinflammation are key factors in the etiology of ASD and often associated with worsening of ASD-related behaviors. Nuclear factor erythroid 2-related factor 2 (NRF-2) is a transcription factor that promotes expression of antioxidant response element genes in oxidative stress. In ASD subjects, decreased expression of NRF-2 in frontal cortex shifted the redox homeostasis towards oxidative stress, and resulted in inflammation evidenced by elevation of nuclear factor kappa B (NF-κB) transcriptional activity. Dimethyl fumarate (DMF) is a NRF-2 activator that is used in the treatment of psoriasis and multiple sclerosis. It participates in the transcriptional control of inflammatory factors via inhibition of NF-κB and its downstream targets. This study aimed to investigate the role of DMF in alleviating the cognitive impairments and behavior deficits associated with ASD through mitigation of oxidative stress and inflammation in prenatal valproic acid (VPA) rat model of autism. Methods: Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic oral gavage of DMF (150mg/kg/day) started from postnatal day (PND) 24 till PND62 (39 days). Prenatal VPA exposure elicited autistic behaviors including decreased social interaction and stereotyped behavior. Social interaction was evaluated using three-chamber sociability test and calculation of sociability index (SI), while stereotyped repetitive behavior and anxiety associated with ASD were assessed using marble burying test (MBT). Biochemical analyses were done on prefrontal cortex homogenates including NRF-2, and NF-κB expression. Moreover, inducible nitric oxide synthase (iNOS) gene expression and tumor necrosis factor (TNF-) protein expression were evaluated as markers of inflammation. Results: Prenatal VPA elicited decreased social interaction shown by decreased SI compared to control group (p < 0.001) and DMF enhanced SI (p < 0.05). In MBT, prenatal injection of VPA manifested stereotyped behavior and enhanced number of buried marbles compared to control (p < 0.05) and DMF reduced the anxiety-related behavior in rats exhibiting ASD-like behaviors (p < 0.05). In prefrontal cortex, NRF-2 expression was downregulated in prenatal VPA model (p < 0.0001) and DMF reversed this effect (p < 0.0001). The inflammatory transcription factor NF-κB was elevated in prenatal VPA model (p < 0.0001) and reduced (p < 0.0001) upon NRF-2 activation by DMF. Prenatal VPA expressed higher levels of proinflammatory cytokine TNF- compared to control group (p < 0.0001) and DMF reduced it (p < 0.0001). Finally, the gene expression of iNOS was downregulated upon NRF-2 activation by DMF (p < 0.01). Conclusion: This study proposes that DMF is a potential agent that can be used to ameliorate autistic-like-changes through NRF-2 activation along with NF-κB downregulation and therefore, it is a promising novel therapy for ASD.

Keywords: autism spectrum disorders, dimethyl fumarate, neuroinflammation, NRF-2

Procedia PDF Downloads 25
158 Review of the Nutritional Value of Spirulina as a Potential Replacement of Fishmeal in Aquafeed

Authors: Onada Olawale Ahmed

Abstract:

As the intensification of aquaculture production increases on global scale, the growing concern of fish farmers around the world is related to cost of fish production, where cost of feeding takes substantial percentage. Fishmeal (FM) is one of the most expensive ingredients, and its high dependence in aqua-feed production translates to high cost of feeding of stocked fish. However, to reach a sustainable aquaculture, new alternative protein sources including cheaper plant or animal origin proteins are needed to be introduced for stable aqua-feed production. Spirulina is a cyanobacterium that has good nutrient profile that could be useful in aquaculture. This review therefore emphasizes on the nutritional value of Spirulina as a potential replacement of FM in aqua-feed. Spirulina is a planktonic photosynthetic filamentous cyanobacterium that forms massive populations in tropical and subtropical bodies of water with high levels of carbonate and bicarbonate. Spirulina grows naturally in nutrient rich alkaline lake with water salinity ( > 30 g/l) and high pH (8.5–11.0). Its artificial production requires luminosity (photo-period 12/12, 4 luxes), temperature (30 °C), inoculum, water stirring device, dissolved solids (10–60 g/litre), pH (8.5– 10.5), good water quality, and macro and micronutrient presence (C, N, P, K, S, Mg, Na, Cl, Ca and Fe, Zn, Cu, Ni, Co, Se). Spirulina has also been reported to grow on agro-industrial waste such as sugar mill waste effluent, poultry industry waste, fertilizer factory waste, and urban waste and organic matter. Chemical composition of Spirulina indicates that it has high nutritional value due to its content of 55-70% protein, 14-19% soluble carbohydrate, high amount of polyunsaturated fatty acids (PUFAs), 1.5–2.0 percent of 5–6 percent total lipid, all the essential minerals are available in spirulina which contributes about 7 percent (average range 2.76–3.00 percent of total weight) under laboratory conditions, β-carotene, B-group vitamin, vitamin E, iron, potassium and chlorophyll are also available in spirulina. Spirulina protein has a balanced composition of amino acids with concentration of methionine, tryptophan and other amino acids almost similar to those of casein, although, this depends upon the culture media used. Positive effects of spirulina on growth, feed utilization and stress and disease resistance of cultured fish have been reported in earlier studies. Spirulina was reported to replace up to 40% of fishmeal protein in tilapia (Oreochromis mossambicus) diet and even higher replacement of fishmeal was possible in common carp (Cyprinus carpio), partial replacement of fish meal with spirulina in diets for parrot fish (Oplegnathus fasciatus) and Tilapia (Orechromis niloticus) has also been conducted. Spirulina have considerable potential for development, especially as a small-scale crop for nutritional enhancement and health improvement of fish. It is important therefore that more research needs to be conducted on its production, inclusion level in aqua-feed and its possible potential use of aquaculture.

Keywords: aquaculture, spirulina, fish nutrition, fish feed

Procedia PDF Downloads 511
157 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit

Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini

Abstract:

Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.

Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift

Procedia PDF Downloads 279
156 Navigating Complex Communication Dynamics in Qualitative Research

Authors: Kimberly M. Cacciato, Steven J. Singer, Allison R. Shapiro, Julianna F. Kamenakis

Abstract:

This study examines the dynamics of communication among researchers and participants who have various levels of hearing, use multiple languages, have various disabilities, and who come from different social strata. This qualitative methodological study focuses on the strategies employed in an ethnographic research study examining the communication choices of six sets of parents who have Deaf-Disabled children. The participating families varied in their communication strategies and preferences including the use of American Sign Language (ASL), visual-gestural communication, multiple spoken languages, and pidgin forms of each of these. The research team consisted of two undergraduate students proficient in ASL and a Deaf principal investigator (PI) who uses ASL and speech as his main modes of communication. A third Hard-of-Hearing undergraduate student fluent in ASL served as an objective facilitator of the data analysis. The team created reflexive journals by audio recording, free writing, and responding to team-generated prompts. They discussed interactions between the members of the research team, their evolving relationships, and various social and linguistic power differentials. The researchers reflected on communication during data collection, their experiences with one another, and their experiences with the participating families. Reflexive journals totaled over 150 pages. The outside research assistant reviewed the journals and developed follow up open-ended questions and prods to further enrich the data. The PI and outside research assistant used NVivo qualitative research software to conduct open inductive coding of the data. They chunked the data individually into broad categories through multiple readings and recognized recurring concepts. They compared their categories, discussed them, and decided which they would develop. The researchers continued to read, reduce, and define the categories until they were able to develop themes from the data. The research team found that the various communication backgrounds and skills present greatly influenced the dynamics between the members of the research team and with the participants of the study. Specifically, the following themes emerged: (1) students as communication facilitators and interpreters as barriers to natural interaction, (2) varied language use simultaneously complicated and enriched data collection, and (3) ASL proficiency and professional position resulted in a social hierarchy among researchers and participants. In the discussion, the researchers reflected on their backgrounds and internal biases of analyzing the data found and how social norms or expectations affected the perceptions of the researchers in writing their journals. Through this study, the research team found that communication and language skills require significant consideration when working with multiple and complex communication modes. The researchers had to continually assess and adjust their data collection methods to meet the communication needs of the team members and participants. In doing so, the researchers aimed to create an accessible research setting that yielded rich data but learned that this often required compromises from one or more of the research constituents.

Keywords: American Sign Language, complex communication, deaf-disabled, methodology

Procedia PDF Downloads 105
155 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol

Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya

Abstract:

Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.

Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol

Procedia PDF Downloads 243
154 The Potential Role of Some Nutrients and Drugs in Providing Protection from Neurotoxicity Induced by Aluminium in Rats

Authors: Azza A. Ali, Abeer I. Abd El-Fattah, Shaimaa S. Hussein, Hanan A. Abd El-Samea, Karema Abu-Elfotuh

Abstract:

Background: Aluminium (Al) represents an environmental risk factor. Exposure to high levels of Al causes neurotoxic effects and different diseases. Vinpocetine is widely used to improve cognitive functions, it possesses memory-protective and memory-enhancing properties and has the ability to increase cerebral blood flow and glucose uptake. Cocoa bean represents a rich source of iron as well as a potent antioxidant. It can protect from the impact of free radicals, reduces stress as well as depression and promotes better memory and concentration. Wheatgrass is primarily used as a concentrated source of nutrients. It contains vitamins, minerals, carbohydrates, amino acids and possesses antioxidant and anti-inflammatory activities. Coenzyme Q10 (CoQ10) is an intracellular antioxidant and mitochondrial membrane stabilizer. It is effective in improving cognitive disorders and has been used as anti-aging. Zinc is a structural element of many proteins and signaling messenger that is released by neural activity at many central excitatory synapses. Objective: To study the role of some nutrients and drugs as Vinpocetine, Cocoa, Wheatgrass, CoQ10 and Zinc against neurotoxicity induced by Al in rats as well as to compare between their potency in providing protection. Methods: Seven groups of rats were used and received daily for three weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except for the control group which received saline. All groups of Al-toxicity model except one group (non-treated) were co-administered orally together with AlCl3 the following treatments; Vinpocetine (20mg/kg), Cocoa powder (24mg/kg), Wheat grass (100mg/kg), CoQ10 (200mg/kg) or Zinc (32mg/kg). Biochemical changes in the rat brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups besides histopathological examinations in different brain regions. Results: Neurotoxicity and neurodegenerations in the rat brain after three weeks of Al exposure were indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the significant decrease in SOD, TAC, BDNF and confirmed by the histopathological changes in the brain. On the other hand, co-administration of each of Vinpocetine, Cocoa, Wheatgrass, CoQ10 or Zinc together with AlCl3 provided protection against hazards of neurotoxicity and neurodegenerations induced by Al, their protection were indicated by the decrease in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the increase in SOD, TAC, BDNF and confirmed by the histopathological examinations of different brain regions. Vinpocetine and Cocoa showed the most pronounced protection while Zinc provided the least protective effects than the other used nutrients and drugs. Conclusion: Different degrees of protection from neurotoxicity and neuronal degenerations induced by Al could be achieved through the co-administration of some nutrients and drugs during its exposure. Vinpocetine and Cocoa provided the most protection than Wheat grass, CoQ10 or Zinc which showed the least protective effects.

Keywords: aluminum, neurotoxicity, vinpocetine, cocoa, wheat grass, coenzyme Q10, Zinc, rats

Procedia PDF Downloads 239
153 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour

Authors: Deepak Loura

Abstract:

Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.

Keywords: climate change, global warming, crop production, climate resilient agriculture

Procedia PDF Downloads 65
152 Cultivating Students’ Competences through Social Innovation Education

Authors: Ioanna Garefi, Irene Kalemaki

Abstract:

Education is not solely about preparing young people for the world of work but also about equipping them with competences that will enable them to become socially proactive, empowered, responsible, and engaged citizens who will collectively contribute to and benefit from an inclusive and sustainable future. Hence, progress assessment towards competence development is an ongoing process where continuous efforts are needed. This paper abstract presents the work of the H2020 NEMESIS project that aims to investigate, experiment and co-create together with schools a model for introducing and embedding social innovation education (SIE henceforth) in European primary and secondary schools. All in all, during the 2018-2019 academic year, 8 schools from 5 European countries involving 56 teachers, 1030 students, and 80 external stakeholders, experimented with different methodologies for embedding SIE in their contexts. This paper captures briefly the impact of these efforts towards the cultivation and progression of students’ social innovation (SI henceforth) competences. As part of the model, 14 SI competences, whose progress was evaluated, have been introduced falling under 3 interrelated categories: competences for identifying opportunities for social and collective value creation, competences for developing collaborations and building meaningful relations and competences for taking action both on an individual and collective level. Methodologically wise, the evaluation strategy employed was informed by a realist approach, enabling the researchers to go beyond synthesizing 'what happened' and towards understanding 'why it happened', delving into ‘what works, for whom and in what circumstances’. The reason for choosing such an approach was because it goes beyond attempting to answer the basic yes or no question of evaluation and focus on an ‘explanatory quest’ tracing the limits of when and where intervention is effective. A rich mix of sources of evidence have been employed, from focus groups with 80 people from the 5 EU countries to an online survey to 206 students, classroom observations, students’ narratives granting them with the opportunity to freely express their opinions, short stories letting students express their feelings through their imagination and also, drawings so that younger children can express their perception of reality. All these evidences offered insights on the impact of SIE on the development of students’ competences. Research findings showed that students progressed in all 14 SI competences through their involvement in the different activities. This positive progression is attributed to the model’s three core principles: 1) the student-centered approach, rendering students active and self-determined producers of their own learning, 2) the co-creation process fostering intergenerational interactions, empowering thus students by making their voices heard and valued and also, 3) the transformative social action whereby through their projects, students are able to witness the impact they are bringing about with their actions. Concluding, these initial findings, together with the forthcoming evaluation research to a pool of 30 schools around Europe, have the potential to raise the dynamics of the under-investigated field of SIE and encourage its embeddedness in more schools around Europe.

Keywords: competence development, education, social innovation, students

Procedia PDF Downloads 89
151 Requirements for the Development of Competencies to Mentor Trainee Teachers: A Case Study of Vocational Education Cooperating Teachers in Quebec

Authors: Nathalie Gagnon, Andréanne Gagné, Julie Courcy

Abstract:

Quebec's vocational education teachers experience an atypical induction process into the workplace and thus face unique challenges. In contrast to elementary and high school teachers, who must undergo initial teacher training in order to access the profession, vocational education teachers, in most cases, are hired based on their professional expertise in the trade they are teaching, without prior pedagogical training. In addition to creating significant stress, which does not foster the acquisition of teaching roles and skills, this approach also forces recruits into a particular posture during their practical training: that of juggling their dual identities as teacher and trainee simultaneously. Recruits are supported by Cooperating Teachers (CPs) who, as experienced educators, take a critical and constructive look at their practices, observe them in the classroom, give them constructive feedback, and encourage them in their reflective practice. Thus, the vocational setting CP also assumes a distinctive posture and role due to the characteristics of the trainees they support. Although it is recognized that preparation, training, and supervision of CPs are essential factors in improving the support provided to trainees, there is little research about how CPs develop their support skills, and very little research focuses on the distinct posture they occupy. However, in order for them to be properly equipped for the important role they play in recruits’ practical training, it is vital to know more about their experience. An individual’s competencies cannot be studied without first examining what characterizes their experience, how they experience any given situation on cognitive, emotional, and motivational levels, in addition to how they act and react in situ. Depending on its nature, the experience will or will not promote the development of a specific competency. The research from which this communication originates focuses on describing the overall experience of vocational education CP in an effort to better understand the mechanisms linked to the development of their mentoring competencies. Experience and competence were, therefore, the two main theoretical concepts leading the research. As per methodology choices, case study methods were used since it proves to be adequate to describe in a rich and detailed way contemporary phenomena within contexts of life. The set of data used was collected from semi-structured interviews conducted with 15 vocational education CP in Quebec (Canada), followed by the use of a data-driven semi-inductive analysis approach to let the categories emerge organically. Focusing on the development needs of vocational education CP to improve their mentoring skills, this paper presents the results of our research, namely the importance of adequate training, better support offered by university supervisors, greater recognition of their role, and specific time slots dedicated to trainee support. The knowledge resulting from this research could improve the quality of support for trainee teachers in vocational education settings and to a more successful induction into the workplace. This communication also presents recommendations regarding the development of training systems that meet the specific needs of vocational education CP.

Keywords: development of competencies, cooperating teacher, mentoring trainee teacher, practical training, vocational education

Procedia PDF Downloads 98
150 Case Report on Anaesthesia for Ruptured Ectopic with Severe Pulmonary Hypertension in a Mute Patient

Authors: Pamela Chia, Tay Yoong Chuan

Abstract:

Introduction: Severe pulmonary hypertension (PH) patients requiring non-cardiac surgery risk have increased mortality rates ranging. These patients are plagued with cardiorespiratory failure, dysrhythmias and anticoagulation potentially with concurrent sepsis and renal insufficiency, perioperative morbidity. We present a deaf-mute patient with severe idiopathic PH emergently prepared for ruptured ectopic laparotomy. Case Report: A 20 year-old female, 62kg (BMI 25 kg/m2) with severe idiopathic PH (2DE Ejection Fraction was 41%, Pulmonary Artery Systolic Pressure (PASP) 105 mmHg, Right ventricle strain and hypertrophy) and selective mutism was rushed in for emergency laparotomy after presenting to the emergency department for abdominal pain. The patient had an NYHA Class II with room air SpO2 93-95%. While awaiting lung transplant, the patient takes warfarin, Sildanefil, Macitentan and even Selexipag for rising PASP. At presentation, vital signs: BP 95/63, HR 119 SpO2 88% (room air). Despite decreasing haemoglobin 14 to 10g/dL, INR 2.59 was reversed with prothrombin concentrate, and Vitamin K. ECG revealed Right Bundle Branch Block with right ventricular strain and x-ray showed cardiomegaly, dilated Right Ventricle, Pulmonary Arteries, basal atelectasis. Arterial blood gas showed compensated metabolic acidosis pH 7.4 pCO2 32 pO2 53 HCO3 20 BE -4 SaO2 88%. The cardiothoracic surgeon concluded no role for Extracorporeal Membrane Oxygenation (ECMO). We inserted invasive arterial and central venous lines with blood transfusion via an 18G cannula before the patient underwent a midline laparotomy, haemostasis of ruptured ovarian cyst with 2.4L of clots under general anesthesia and FloTrac cardiac output monitoring. Rapid sequence induction was done with Midazolam/Propofol, remifentanil infusion, and rocuronium. The patient was maintained on Desflurane. Blood products and colloids were transfused for further 1.5L blood loss. Postoperatively, the patient was transferred to the intensive care unit and was extubated uneventfully 7hours later. The patient went home a week later. Discussion: Emergency hemostasis laparotomy in anticoagulated WHO Class I PH patient awaiting lung transplant with no ECMO backup poses tremendous stress on the deaf-mute patient and the anesthesiologist. Balancing hemodynamics avoiding hypotension while awaiting hemostasis in the presence of pulmonary arterial dilators and anticoagulation requires close titration of volatiles, which decreases RV contractility. We review the contraindicated anesthetic agents (ketamine, N2O), choice of vasopressors in hypotension to maintain Aortic-right ventricular pressure gradients and nitric oxide use perioperatively. Conclusion: Interdisciplinary communication with a deaf-mute moribund patient and anesthesia considerations pose many rare challenges worth sharing.

Keywords: pulmonary hypertension, case report, warfarin reversal, emergency surgery

Procedia PDF Downloads 198
149 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes

Authors: Karolina Wieczorek, Sophie Wiliams

Abstract:

Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.

Keywords: automated, algorithm, NLP, COVID-19

Procedia PDF Downloads 88
148 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 222
147 Convergence of Strategic Tasks of Business Tourism and Hotel Industry Development: The Case of Georgia

Authors: Nana Katsitadze, Tamar Atanelishvili, Mariam Kutateladze, Alexandre Tushishvili

Abstract:

In the modern world, tourism has emerged as one of the most powerful economic sectors, and due to its high economic performance, it is attractive to the countries with various levels of economic development. The purpose of the present paper, dedicated to discussing the current problems of tourism development, is to find ways which will contribute to bringing more benefits to the country from the sector. Georgia has been successfully developing leisure tourism for the last ten years, and at the next stage of development business, tourism gains particular importance for Georgia as a means of mitigating the negative socio-economic effects caused by the seasonality of tourism and as a high-cost tourism market. Therefore, the object of the paper is to study the factors that contribute to the development of business tourism. The paper uses the research methods such as system analysis, synthesis, analogy, as well as historical, comparative, economic, and statistical methods of analysis. The information base for the research is made up of the statistics on the functioning of the tourism market of Georgia and foreign countries as well as official data provided by international organizations in the field of tourism. Based on the experience of business tourism around the world and identifying the successful start of business tourism development in Georgia and its causing factors, a business tourism development model for Georgia has been developed. The model might be useful as a methodological material for developing a business tourism development concept for the countries with limited financial resources but rich in tourism resources like Georgia. On the initial stage of development (in absence of conventional centers), the suggested concept of business tourism development involves organizing small and medium-sized meetings both in large cities and in regions by using high-class hotel infrastructure and event management services. Relocation of small meetings to the regions encourages inclusive development of the sector based on increasing the awareness of these regions as tourist sites as well as the increase in employment and sales of other tourism or consumer products. Business tourism increases the number of hotel visitors in the non-seasonal period and improves hotel performance indicators, which enhances the attractiveness of investing in the hotel business. According to the present concept of business tourism development, at the initial stage, development of business tourism is based on the existing markets, including internal market, neighboring markets and the markets of geographically relatively near countries and at the next stage, the concept involves generating tourists from other relatively distant target markets. As a result, by gaining experience in business tourism, enhancing professionalism, increasing awareness and stimulating infrastructure development, the country will prepare the basis to move to a higher stage of tourism development. In addition, the experience showed that for attracting large customers, peculiarities of the field require activation of state policy and active use of marketing mechanisms and tools of the state.

Keywords: hotel industry development, MICE model, MICE strategy, MICE tourism in Georgia

Procedia PDF Downloads 142
146 The Production of Biofertilizer from Naturally Occurring Microorganisms by Using Nuclear Technologies

Authors: K. S. Al-Mugren, A. Yahya, S. Alodah, R. Alharbi, S. H. Almsaid , A. Alqahtani, H. Jaber, A. Basaqer, N. Alajra, N. Almoghati, A. Alsalman, Khalid Alharbi

Abstract:

Context: The production of biofertilizers from naturally occurring microorganisms is an area of research that aims to enhance agricultural practices by utilizing local resources. This research project focuses on isolating and screening indigenous microorganisms with PK-fixing and phosphate solubilizing characteristics from local sources. Research Aim: The aim of this project is to develop a biofertilizer product using indigenous microorganisms and composted agro waste as a carrier. The objective is to enhance crop productivity and soil fertility through the application of biofertilizers. Methodology: The research methodology includes several key steps. Firstly, indigenous microorganisms will be isolated from local resources using the ten-fold serial dilutions technique. Screening assays will be conducted to identify microorganisms with phosphate solubilizing and PK-fixing activities. Agro-waste materials will be collected from local agricultural sources, and composting experiments will be conducted to convert them into organic matter-rich compost. Physicochemical analysis will be performed to assess the composition of the composted agro-waste. Gamma and X-ray irradiation will be used to sterilize the carrier material. The sterilized carrier will be tested for sterility using the ten-fold serial dilutions technique. Finally, selected indigenous microorganisms will be developed into biofertilizer products. Findings: The research aims to find suitable indigenous microorganisms with phosphate solubilizing and PK-fixing characteristics for biofertilizer production. Additionally, the research aims to assess the suitability of composted agro waste as a carrier for biofertilizers. The impact of gamma irradiation sterilization on pathogen elimination will also be investigated. Theoretical Importance: This research contributes to the understanding of utilizing indigenous microorganisms and composted agro waste for biofertilizer production. It expands knowledge on the potential benefits of biofertilizers in enhancing crop productivity and soil fertility. Data Collection and Analysis Procedures: The data collection process involves isolating indigenous microorganisms, conducting screening assays, collecting and composting agro waste, analyzing the physicochemical composition of composted agro waste, and testing carrier sterilization. The analysis procedures include assessing the abilities of indigenous microorganisms, evaluating the composition of composted agro waste, and determining the sterility of the carrier material. Conclusion: The research project aims to develop biofertilizer products using indigenous microorganisms and composted agro waste as a carrier. Through the isolation and screening of indigenous microorganisms, the project aims to enhance crop productivity and soil fertility by utilizing local resources. The research findings will contribute to the understanding of the suitability of composted agro waste as a carrier and the efficacy of gamma irradiation sterilization. The research outcomes will have theoretical importance in the field of biofertilizer production and agricultural practices.

Keywords: biofertilizer, microorganisms, agro waste, nuclear technologies

Procedia PDF Downloads 108
145 Interactions between Sodium Aerosols and Fission Products: A Theoretical Chemistry and Experimental Approach

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

Safety requirements for Generation IV nuclear reactor designs, especially the new generation sodium-cooled fast reactors (SFR) require a risk-informed approach to model severe accidents (SA) and their consequences in case of outside release. In SFRs, aerosols are produced during a core disruptive accident when primary system sodium is ejected into the containment and burn in contact with the air; producing sodium aerosols. One of the key aspects of safety evaluation is the in-containment sodium aerosol behavior and their interaction with fission products. The study of the effects of sodium fires is essential for safety evaluation as the fire can both thermally damage the containment vessel and cause an overpressurization risk. Besides, during the fire, airborne fission product first dissolved in the primary sodium can be aerosolized or, as it can be the case for fission products, released under the gaseous form. The objective of this work is to study the interactions between sodium aerosols and fission products (Iodine, toxic and volatile, being the primary concern). Sodium fires resulting from an SA would produce aerosols consisting of sodium peroxides, hydroxides, carbonates, and bicarbonates. In addition to being toxic (in oxide form), this aerosol will then become radioactive. If such aerosols are leaked into the environment, they can pose a danger to the ecosystem. Depending on the chemical affinity of these chemical forms with fission products, the radiological consequences of an SA leading to containment leak tightness loss will also be affected. This work is split into two phases. Firstly, a method to theoretically understand the kinetics and thermodynamics of the heterogeneous reaction between sodium aerosols and fission products: I2 and HI are proposed. Ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package are carried out to develop an understanding of the surfaces of sodium carbonate (Na2CO3) aerosols and hence provide insight on its affinity towards iodine species. A comprehensive study of I2 and HI adsorption, as well as bicarbonate formation on the calculated lowest energy surface of Na2CO3, was performed which provided adsorption energies and description of the optimized configuration of adsorbate on the stable surface. Secondly, the heterogeneous reaction between (I2)g and Na2CO3 aerosols were investigated experimentally. To study this, (I2)g was generated by heating a permeation tube containing solid I2, and, passing it through a reaction chamber containing Na2CO3 aerosol deposit. The concentration of iodine was then measured at the exit of the reaction chamber. Preliminary observations indicate that there is an effective uptake of (I2)g on Na2CO3 surface, as suggested by our theoretical chemistry calculations. This work is the first step in addressing the gaps in knowledge of in-containment and atmospheric source term which are essential aspects of safety evaluation of SFR SA. In particular, this study is aimed to determine and characterize the radiological and chemical source term. These results will then provide useful insights for the developments of new models to be implemented in integrated computer simulation tool to analyze and evaluate SFR safety designs.

Keywords: iodine adsorption, sodium aerosols, sodium cooled reactor, DFT calculations, sodium carbonate

Procedia PDF Downloads 205
144 Eco-Friendly Cultivation

Authors: Shah Rucksana Akhter Urme

Abstract:

Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.

Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming

Procedia PDF Downloads 49
143 Identification of ω-3 Fatty Acids Using GC-MS Analysis in Extruded Spelt Product

Authors: Jelena Filipovic, Marija Bodroza-Solarov, Milenko Kosutic, Nebojsa Novkovic, Vladimir Filipovic, Vesna Vucurovic

Abstract:

Spelt wheat is suitable raw material for extruded products such as pasta, special types of bread and other products of altered nutritional characteristics compared to conventional wheat products. During the process of extrusion, spelt is exposed to high temperature and high pressure, during which raw material is also mechanically treated by shear forces. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and in marginal areas of cultivation. So it can be used for organic and health safe food. Pasta is the most popular foodstuff; its consumption has been observed to rise. Pasta quality depends mainly on the properties of flour raw materials, especially protein content and its quality but starch properties are of a lesser importance. Pasta is characterized by significant amounts of complex carbohydrates, low sodium, total fat fiber, minerals, and essential fatty acids and its nutritional value can be improved with additional functional component. Over the past few decades, wheat pasta has been successfully formulated using different ingredients in pasta to cater health-conscious consumers who prefer having a product rich in protein, healthy lipids and other health benefits. Flaxseed flour is used in the production of bakery and pasta products that have properties of functional foods. However, it should be taken into account that food products retain the technological and sensory quality despite the added flax seed. Flaxseed contains important substances in its composition such as vitamins and minerals elements, and it is also an excellent source of fiber and one of the best sources of ω-3 fatty acids and lignin. In this paper, the quality and identification of spelt extruded product with the addition of flax seed, which is positively contributing to the nutritive and technology changes of the product, is investigated. ω-3 fatty acids are polyunsaturated essential fatty acids, and they must be taken with food to satisfy the recommended daily intake. Flaxseed flour is added in the quantity of 10/100 g of sample and 20/100 g of sample on farina. It is shown that the presence of ω-3 fatty acids in pasta can be clearly distinguished from other fatty acids by gas chromatography with mass spectrometry. Addition of flax seed flour influence chemical content of pasta. The addition of flax seed flour in spelt pasta in the quantities of 20g/100 g significantly increases the share of ω-3 fatty acids, which results in improved ratio of ω-6/ω-3 1:2.4 and completely satisfies minimum daily needs of ω-3 essential fatty acids (3.8 g/100 g) recommended by FDA. Flex flour influenced the pasta quality by increasing of hardness (2377.8 ± 13.3; 2874.5 ± 7.4; 3076.3 ± 5.9) and work of shear (102.6 ± 11.4; 150.8 ± 11.3; 165.0 ± 18.9) and increasing of adhesiveness (11.8 ± 20.6; 9.,98 ± 0.12; 7.1 ± 12.5) of the final product. Presented data point at good indicators of technological quality of spelt pasta with flax seed and that GC-MS analysis can be used in the quality control for flax seed identification. Acknowledgment: The research was financed by the Ministry of Education and Science of the Republic of Serbia (Project No. III 46005).

Keywords: GC-MS analysis, ω-3 fatty acids, flex seed, spelt wheat, daily needs

Procedia PDF Downloads 146
142 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 382
141 Structural, Spectral and Optical Properties of Boron-Aluminosilicate Glasses with High Dy₂O₃ and Er₂O₃ Content for Faraday Rotator Operating at 2µm

Authors: Viktor D. Dubrovin, Masoud Mollaee, Jie Zong, Xiushan Zhu, Nasser Peyghambarian

Abstract:

Glasses doped with high rare-earth (RE) elements concentration attracted considerable attention since the middle of the 20th century due to their particular magneto-optical properties. Such glasses exhibit the Faraday effect in which the polarization plane of a linearly polarized light beam is rotated by the interaction between the incident light and the magneto-optical material. That effect found application in optical isolators that are useful for laser systems, which can prevent back reflection of light into lasers or optical amplifiers and reduce signal instability and noise. Glasses are of particular interest since they are cost-effective and can be formed into fibers, thus breaking the limits of traditional bulk optics requiring optical coupling for use with fiber-optic systems. The advent of high-power fiber lasers operating near 2µm revealed a necessity in the development of all fiber isolators for this region. Ce³⁺, Pr³⁺, Dy³⁺, and Tb³⁺ ions provide the biggest contribution to the Verdet constant value of optical materials among the RE. It is known that Pr³⁺ and Tb³⁺ ions have strong absorption bands near 2 µm, thus making Dy³⁺ and Ce³⁺ the only prospective candidates for fiber isolator operating in that region. Due to the high tendency of Ce³⁺ ions pass to Ce⁴⁺ during the synthesis, glasses with high cerium content usually suffers from Ce⁴⁺ ions absorption extending from visible to IR. Additionally, Dy³⁺ (₆H¹⁵/²) same as Ho³⁺ (⁵I₈) ions, have the largest effective magnetic moment (µeff = 10.6 µB) among the RE ions that starts to play the key role if the operating region is far from 4fⁿ→ 4fⁿ⁻¹5 d¹ electric-dipole transition relevant to the Faraday Effect. Considering the high effective magnetic moment value of Er³⁺ ions (µeff = 9.6 µB) that is 3rd after Dy³⁺/ Ho³⁺ and Tb³⁺, it is possible to assume that Er³⁺ doped glasses should exhibit Verdet constant value near 2µm that is comparable with one of Dy doped glasses. Thus, partial replacement of Dy³⁺ on Er³⁺ ions has been performed, keeping the overall concentration of Re₂O₃ equal to 70 wt.% (30.6 mol.%). Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ (RE= Er, Dy) glasses had been synthesized, and their thermal, spectral, optical, structural, and magneto-optical properties had been studied. Glasses synthesis had been conducted in Pt crucibles for 3h at 1500 °C. The obtained melt was poured into preheated up to 400 °C mold and annealed from 800 oC to room temperature for 12h with 1h dwell. The mass of obtained glass samples was about 200g. Shown that the difference between crystallization and glass transition temperature is about 150 oC, even taking into account the fact that high content of RE₂O₃ leads to glass network depolymerization. Verdet constant of Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses for wavelength 1950 nm can reach more than 5.9 rad/(T*m), which is among the highest number reported for a paramagnetic glass at this wavelength. The refractive index value was found to be equal to 1.7545 at 633 nm. Our experimental results show that Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses with high Dy₂O₃ content are expected to be promising material for use as highly effective Faraday isolators and modulators of electromagnetic radiation in the 2μm region.

Keywords: oxide glass, magneto-optical, dysprosium, erbium, Faraday rotator, boron-aluminosilicate system

Procedia PDF Downloads 101
140 Evaluation of Herbal Extracts for Their Potential Application as Skin Prebiotics

Authors: Anja I. Petrov, Milica B. Veljković, Marija M. Ćorović, Ana D. Milivojević, Milica B. Simović, Katarina M. Banjanac, Dejan I. Bezbradica

Abstract:

One of the fundamental requirements for overall human well-being is a stable and balanced microbiome. Aside from the microorganisms that reside within the body, a large number of microorganisms, especially bacteria, swarming the human skin is in homeostasis with the host and represents a skin microbiota. Even though the immune system of the skin is capable of distinguishing between commensal and potentially harmful transient bacteria, the cutaneous microbial balance can be disrupted under certain circumstances. In that case, a reduction in the skin microbiota diversity, as well as changes in metabolic activity, results in dermal infections and inflammation. Probiotics and prebiotics have the potential to play a significant role in the treatment of these skin disorders. The most common resident bacteria found on the skin, Staphylococcus epidermidis, can act as a potential skin probiotic, contributing to the protection of healthy skin from pathogen colonization, such as Staphylococcus aureus, which is related to atopic dermatitis exacerbation. However, as it is difficult to meet regulations in cosmetic products, another therapy approach could be topical prebiotic supplementation of the skin microbiota. In recent research, polyphenols are attracting scientists' interest as biomolecules with possible prebiotic effects on the skin microbiota. This research aimed to determine how herbal extracts rich in different polyphenolic compounds (lemon balm, St. John's wort, coltsfoot, pine needle, and yarrow) affected the growth of S. epidermidis and S. aureus. The first part of the study involved screening plants to determine if they could be regarded as probable candidates to be skin prebiotics. The effect of each plant on bacterial growth was examined by supplementing the nutrient medium with their extracts and comparing it with control samples (without extract). The results obtained after 24 h of incubation showed that all tested extracts influenced the growth of the examined bacteria to some extent. Since lemon balm and St. John's wort extracts displayed bactericidal activity against S. epidermidis, whereas coltsfoot inhibited both bacteria equally, they were not explored further. On the other hand, pine needles and yarrow extract led to an increase in S. epidermidis/S. aureus ratio, making them prospective candidates to be used as skin prebiotics. By examining the prebiotic effect of two extracts at different concentrations, it was revealed that, in the case of yarrow, 0.1% of extract dry matter in the fermentation medium was optimal, while for the pine needle extract, a concentration of 0.05% was preferred, since it selectively stimulated S. epidermidis growth and inhibited S. aureus proliferation. Additionally, the total polyphenols and flavonoid content of the two extracts were determined, revealing different concentrations and polyphenol profiles. Since yarrow and pine extracts affected the growth of skin bacteria in a dose-dependent manner, by carefully selecting the quantities of these extracts, and thus polyphenols content, it is possible to achieve desirable alterations of skin microbiota composition, which may be suitable for the treatment of atopic dermatitis.

Keywords: herbal extracts, polyphenols, skin microbiota, skin prebiotics

Procedia PDF Downloads 161
139 Ascribing Identities and Othering: A Multimodal Discourse Analysis of a BBC Documentary on YouTube

Authors: Shomaila Sadaf, Margarethe Olbertz-Siitonen

Abstract:

This study looks at identity and othering in discourses around sensitive issues in social media. More specifically, the study explores the multimodal resources and narratives through which the other is formed, and identities are ascribed in online spaces. As an integral part of social life, media spaces have become an important site for negotiating and ascribing identities. In line with recent research, identity is seen hereas constructions of belonging which go hand in hand with processes of in- and out-group formations that in some cases may lead to othering. Previous findings underline that identities are neither fixed nor limited but rather contextual, intersectional, and interactively achieved. The goal of this study is to explore and develop an understanding of how people co-construct the ‘other’ and ascribe certain identities in social media using multiple modes. In the beginning of the year 2018, the British government decided to include relationships, sexual orientation, and sex education into the curriculum of state funded primary schools. However, the addition of information related to LGBTQ+in the curriculum has been met with resistance, particularly from religious parents.For example, the British Muslim community has voiced their concerns and protested against the actions taken by the British government. YouTube has been used by news companies to air video stories covering the protest and narratives of the protestors along with the position ofschool officials. The analysis centers on a YouTube video dealing with the protest ofa local group of parents against the addition of information about LGBTQ+ in the curriculum in the UK. The video was posted in 2019. By the time of this study, the videos had approximately 169,000 views andaround 6000 comments. In deference to multimodal nature of YouTube videos, this study utilizes multimodal discourse analysis as a method of choice. The study is still ongoing and therefore has not yet yielded any final results. However, the initial analysis indicates a hierarchy of ascribing identities in the data. Drawing on multimodal resources, the media works with social categorizations throughout the documentary, presenting and classifying involved conflicting parties in the light of their own visible and audible identifications. The protesters can be seen to construct a strong group identity as Muslim parents (e.g., clothing and reference to shared values). While the video appears to be designed as a documentary that puts forward facts, the media does not seem to succeed in taking a neutral position consistently throughout the video. At times, the use of images, soundsand language contributes to the formation of “us” vs. “them”, where the audience is implicitly encouraged to pick a side. Only towards the end of the documentary this problematic opposition is addressed and critically reflected through an expert interview that is – interestingly – visually located outside the previously presented ‘battlefield’. This study contributes to the growing understanding of the discursive construction of the ‘other’ in social media. Videos available online are a rich source for examining how the different social actors ascribe multiple identities and form the other.

Keywords: identity, multimodal discourse analysis, othering, youtube

Procedia PDF Downloads 103
138 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 137
137 Population Diversity Studies in Dendrocalamus strictus Roxb. (Nees.) Through Morphological Parameters

Authors: Anugrah Tripathi, H. S. Ginwal, Charul Kainthola

Abstract:

Bamboos are considered as valuable resources which have the potential of meeting current economic, environmental and social needs. Bamboo has played a key role in humankind and its livelihood since ancient time. Distributed in diverse areas across the globe, bamboo makes an important natural resource for hundreds of millions of people across the world. In some of the Asian countries and northeast part of India, bamboo is the basis of life on many horizons. India possesses the largest bamboo-bearing area across the world and a great extent of species richness, but this rich genetic resource and its diversity have dwindled in the natural forest due to forest fire, over exploitation, lack of proper management policies, and gregarious flowering behavior. Bamboos which are well known for their peculiar, extraordinary morphology, show a lot of variation in many scales. Among the various bamboo species, Dendrocalamus strictus is the most abundant bamboo resource in India, which is a deciduous, solid, and densely tufted bamboo. This species can thrive in wide gradients of geographical as well as climatic conditions. Due to this, it exhibits a significant amount of variation among the populations of different origins for numerous morphological features. Morphological parameters are the front-line criteria for the selection and improvement of any forestry species. Study on the diversity among eight important morphological characters of D. strictus was carried out, covering 16 populations from wide geographical locations of India following INBAR standards. Among studied 16 populations, three populations viz. DS06 (Gaya, Bihar), DS15 (Mirzapur, Uttar Pradesh), and DS16 (Bhogpur, Pinjore, Haryana) were found as superior populations with higher mean values for parametric characters (clump height, no. of culms/ clump, circumference of clump, internode diameter and internode length) and with the higher sum of ranks in non-parametric characters (straightness, disease, and pest incidence and branching pattern). All of these parameters showed an ample amount of variations among the studied populations and revealed a significant difference among the populations. Variation in morphological characters is very common in a species having wide distribution and is usually evident at various levels, viz., between and within the populations. They are of paramount importance for growth, biomass, and quick production gains. Present study also gives an idea for the selection of the population on the basis of these morphological parameters. From this study on morphological parameters and their variation, we may find an overview of best-performing populations for growth and biomass accumulation. Some of the studied parameters also provide ideas to standardize mechanisms of selecting and sustainable harvesting of the clumps by applying simpler silvicultural systems so that they can be properly managed in homestead gardens for the community utilization as well as by commercial growers to meet the requirement of industries and other stakeholders.

Keywords: Dendrocalamus strictus, homestead garden, gregarious flowering, stakeholders, INBAR

Procedia PDF Downloads 63
136 Chemopreventive Efficacy of Andrographolide in Rat Colon Carcinogenesis Model Using Aberrant Crypt Foci (ACF) as Endpoint Marker

Authors: Maryam Hajrezaie, Mahmood Ameen Abdulla, Nazia Abdul Majid, Hapipa Mohd Ali, Pouya Hassandarvish, Maryam Zahedi Fard

Abstract:

Background: Colon cancer is one of the most prevalent cancers in the world and is the third leading cause of death among cancers in both males and females. The incidence of colon cancer is ranked fourth among all cancers but varies in different parts of the world. Cancer chemoprevention is defined as the use of natural or synthetic compounds capable of inducing biological mechanisms necessary to preserve genomic fidelity. Andrographolide is the major labdane diterpenoidal constituent of the plant Andrographis paniculata (family Acanthaceae), used extensively in the traditional medicine. Extracts of the plant and their constituents are reported to exhibit a wide spectrum of biological activities of therapeutic importance. Laboratory animal model studies have provided evidence that Andrographolide play a role in inhibiting the risk of certain cancers. Objective: Our aim was to evaluate the chemopreventive efficacy of the Andrographolide in the AOM induced rat model. Methods: To evaluate inhibitory properties of andrographolide on colonic aberrant crypt foci (ACF), five groups of 7-week-old male rats were used. Group 1 (control group) were fed with 10% Tween 20 once a day, Group 2 (cancer control) rats were intra-peritoneally injected with 15 mg/kg Azoxymethan, Gropu 3 (drug control) rats were injected with 15 mg/kg azoxymethan and 5-Flourouracil, Group 4 and 5 (experimental groups) were fed with 10 and 20 mg/kg andrographolide each once a day. After 1 week, the treatment group rats received subcutaneous injections of azoxymethane, 15 mg/kg body weight, once weekly for 2 weeks. Control rats were continued on Tween 20 feeding once a day and experimental groups 10 and 20 mg/kg andrographolide feeding once a day for 8 weeks. All rats were sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated grossly and histopathologically for ACF. Results: Administration of 10 mg/kg and 20 mg/kg andrographolide were found to be effectively chemoprotective, as evidenced microscopily and biochemically. Andrographolide suppressed total colonic ACF formation up to 40% to 60%, respectively, when compared with control group. Pre-treatment with andrographolide, significantly reduced the impact of AOM toxicity on plasma protein and urea levels as well as on plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activities. Grossly, colorectal specimens revealed that andrographolide treatments decreased the mean score of number of crypts in AOM-treated rats. Importantly, rats fed andrographolide showed 75% inhibition of foci containing four or more aberrant crypts. The results also showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE2) activities and a decrease in malondialdehyde (MDA) level. Histologically all treatment groups showed a significant decrease of dysplasia as compared to control group. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. Conclusion: The current study demonstrated that Andrographolide reduce the number of ACF. According to these data, Andrographolide might be a promising chemoprotective activity, in a model of AOM-induced in ACF.

Keywords: chemopreventive, andrographolide, colon cancer, aberrant crypt foci (ACF)

Procedia PDF Downloads 422
135 Clothing Features of Greek Orthodox Woman Immigrants in Konya (Iconium)

Authors: Kenan Saatcioglu, Fatma Koc

Abstract:

When the immigration is considered, it has been found that communities were continuously influenced by the immigrations from the date of the emergence of mankind until the day. The political, social and economic reasons seen at the various periods caused the communities go to new places from where they have lived before. Immigrations have occurred as a result of unequal opportunities among communities, social exclusion and imposition, compulsory homeland emerging politically, exile and war. Immigration is a social tool that is defined as a geographical relocation of people from a housing unit (city, village etc.) to another to spend all or part of their future lives. Immigrations have an effect on the history of humanity directly or indirectly, revealing new dimensions for communities to evaluate the concept of homeland. With these immigrations, communities carried their cultural values to their new settlements leading to a new interaction process. With this interaction process both migrant and native community cultures were reshaped and richer cultural values emerged. The clothes of these communities are amongst the most important visual evidence of this rich cultural interaction. As a result of these immigrations, communities affected each other culture’s clothing mutually and they started adding features of other cultures to the garments of its own, resulting new clothing cultures in time. The cultural and historical differences between these communities are seem to be the most influential factors of keeping the clothing cultures of the people alive. The most important and tragic of these immigrations took place after the Turkish War of Independence that was fought against Greece in 1922. The concept of forced immigration was a result of Lausanne Peace Treaty, which was signed between Turkish and Greek governments on 30th January 1923. As a result Greek Orthodoxes, who lived in Turkey (Anatolia and Thrace) and Muslim Turks, who lived in Greece were forced to immigrate. In this study, clothing features of Greek Orthodox woman immigrants who emigrated from Turkey to Greece in the period of the ‘1923 Greek-Turkish Population Exchange’ are aimed to be examined. In the study using the descriptive research method, before the ‘1923 Greek-Turkish Population Exchange’, the clothings belong to Greek Orthodox woman immigrants who lived in ‘Konya (Iconium)’ region in the Ottoman Empire, are discussed. In the study that is based on two different clothings belonging to ‘Konya (Iconium)’ region in the clothing collection archive at the ‘National Historical Museum’ in Greece, clothings of the Greek Orthodox woman immigrants are discussed with cultural norms, beliefs, values as well as in terms of form, ornamentation and dressing styles. Technical drawings are provided demonstrating formal features of the clothing parts that formed clothing integrity and their properties are described with the use of related literature in this study. This study is of importance that that it contains Greek Orthodox refugees’ clothings that are found in the clothing collection archive at the ‘National Historical Museum’ in Greece reflecting the cultural identities, providing information and documentation on the clothing features of the ‘1923 Greek-Turkish Population Exchange’.

Keywords: clothing, Greece, Greek Orthodoxes, immigration, national historical museum, Turkey

Procedia PDF Downloads 236
134 Accelerated Carbonation of Construction Materials by Using Slag from Steel and Metal Production as Substitute for Conventional Raw Materials

Authors: Karen Fuchs, Michael Prokein, Nils Mölders, Manfred Renner, Eckhard Weidner

Abstract:

Due to the high CO₂ emissions, the energy consumption for the production of sand-lime bricks is of great concern. Especially the production of quicklime from limestone and the energy consumption for hydrothermal curing contribute to high CO₂ emissions. Hydrothermal curing is carried out under a saturated steam atmosphere at about 15 bar and 200°C for 12 hours. Therefore, we are investigating the opportunity to replace quicklime and sand in the production of building materials with different types of slag as calcium-rich waste from steel production. We are also investigating the possibility of substituting conventional hydrothermal curing with CO₂ curing. Six different slags (Linz-Donawitz (LD), ferrochrome (FeCr), ladle (LS), stainless steel (SS), ladle furnace (LF), electric arc furnace (EAF)) provided by "thyssenkrupp MillServices & Systems GmbH" were ground at "Loesche GmbH". Cylindrical blocks with a diameter of 100 mm were pressed at 12 MPa. The composition of the blocks varied between pure slag and mixtures of slag and sand. The effects of pressure, temperature, and time on the CO₂ curing process were studied in a 2-liter high-pressure autoclave. Pressures between 0.1 and 5 MPa, temperatures between 25 and 140°C, and curing times between 1 and 100 hours were considered. The quality of the CO₂-cured blocks was determined by measuring the compressive strength by "Ruhrbaustoffwerke GmbH & Co. KG." The degree of carbonation was determined by total inorganic carbon (TIC) and X-ray diffraction (XRD) measurements. The pH trends in the cross-section of the blocks were monitored using phenolphthalein as a liquid pH indicator. The parameter set that yielded the best performing material was tested on all slag types. In addition, the method was scaled to steel slag-based building blocks (240 mm x 115 mm x 60 mm) provided by "Ruhrbaustoffwerke GmbH & Co. KG" and CO₂-cured in a 20-liter high-pressure autoclave. The results show that CO₂ curing of building blocks consisting of pure wetted LD slag leads to severe cracking of the cylindrical specimens. The high CO₂ uptake leads to an expansion of the specimens. However, if LD slag is used only proportionally to replace quicklime completely and sand proportionally, dimensionally stable bricks with high compressive strength are produced. The tests to determine the optimum pressure and temperature show 2 MPa and 50°C as promising parameters for the CO₂ curing process. At these parameters and after 3 h, the compressive strength of LD slag blocks reaches the highest average value of almost 50 N/mm². This is more than double that of conventional sand-lime bricks. Longer CO₂ curing times do not result in higher compressive strengths. XRD and TIC measurements confirmed the formation of carbonates. All tested slag-based bricks show higher compressive strengths compared to conventional sand-lime bricks. However, the type of slag has a significant influence on the compressive strength values. The results of the tests in the 20-liter plant agreed well with the results of the 2-liter tests. With its comparatively moderate operating conditions, the CO₂ curing process has a high potential for saving CO₂ emissions.

Keywords: CO₂ curing, carbonation, CCU, steel slag

Procedia PDF Downloads 94
133 Synchrotron Based Techniques for the Characterization of Chemical Vapour Deposition Overgrowth Diamond Layers on High Pressure, High Temperature Substrates

Authors: T. N. Tran Thi, J. Morse, C. Detlefs, P. K. Cook, C. Yıldırım, A. C. Jakobsen, T. Zhou, J. Hartwig, V. Zurbig, D. Caliste, B. Fernandez, D. Eon, O. Loto, M. L. Hicks, A. Pakpour-Tabrizi, J. Baruchel

Abstract:

The ability to grow boron-doped diamond epilayers of high crystalline quality is a prerequisite for the fabrication of diamond power electronic devices, in particular high voltage diodes and metal-oxide-semiconductor (MOS) transistors. Boron and intrinsic diamond layers are homoepitaxially overgrown by microwave assisted chemical vapour deposition (MWCVD) on single crystal high pressure, high temperature (HPHT) grown bulk diamond substrates. Various epilayer thicknesses were grown, with dopant concentrations ranging from 1021 atom/cm³ at nanometer thickness in the case of 'delta doping', up 1016 atom/cm³ and 50µm thickness or high electric field drift regions. The crystalline quality of these overgrown layers as regards defects, strain, distortion… is critical for the device performance through its relation to the final electrical properties (Hall mobility, breakdown voltage...). In addition to the optimization of the epilayer growth conditions in the MWCVD reactor, other important questions related to the crystalline quality of the overgrown layer(s) are: 1) what is the dependence on the bulk quality and surface preparation methods of the HPHT diamond substrate? 2) how do defects already present in the substrate crystal propagate into the overgrown layer; 3) what types of new defects are created during overgrowth, what are their growth mechanisms, and how can these defects be avoided? 4) how can we relate in a quantitative manner parameters related to the measured crystalline quality of the boron doped layer to the electronic properties of final processed devices? We describe synchrotron-based techniques developed to address these questions. These techniques allow the visualization of local defects and crystal distortion which complements the data obtained by other well-established analysis methods such as AFM, SIMS, Hall conductivity…. We have used Grazing Incidence X-ray Diffraction (GIXRD) at the ID01 beamline of the ESRF to study lattice parameters and damage (strain, tilt and mosaic spread) both in diamond substrate near surface layers and in thick (10–50 µm) overgrown boron doped diamond epi-layers. Micro- and nano-section topography have been carried out at both the BM05 and ID06-ESRF) beamlines using rocking curve imaging techniques to study defects which have propagated from the substrate into the overgrown layer(s) and their influence on final electronic device performance. These studies were performed using various commercially sourced HPHT grown diamond substrates, with the MWCVD overgrowth carried out at the Fraunhofer IAF-Germany. The synchrotron results are in good agreement with low-temperature (5°K) cathodoluminescence spectroscopy carried out on the grown samples using an Inspect F5O FESEM fitted with an IHR spectrometer.

Keywords: synchrotron X-ray diffaction, crystalline quality, defects, diamond overgrowth, rocking curve imaging

Procedia PDF Downloads 249
132 Destruction of History and the Syrian Conflict: Upholding the Cultural Integrity of Dura Europos

Authors: Justine A. Lloyd

Abstract:

Since the onset of the Syrian Civil War in 2011, the ancient city of Dura-Europos has faced widespread destruction and looting. The site is one of many places in the country the terrorist group ISIS has specifically targeted, allegedly due to its particular representations of Syrian history and culture. However, looted art and artifacts are the extremist group’s second largest source of income, only after oil. The protection of this site is important to both academics and the millions who have called Syria a home, as it aids in the nation’s sense of identity, reveals developments in the arts, and contributes to humanity’s collective history. At a time when Syria’s culture is being flattened, this sense of cultural expression is especially important to maintain. Creating an awareness of the magnitude of the issue at hand begins with an examination of the rich history of the ancient fortress city. Located on the western bank of the Euphrates River, Dura-Europos contains artifacts dating back to the Hellenistic, Parthian, and Roman periods. Though a great deal of the art and artifacts have remained safe in institutions such as the National Museum of Damascus and the Yale University Art Gallery, hundreds of looting pits and use of heavy machinery on the site has severely set back the investigative progress made by archaeologists over the last century, as well as the prospect of future excavation. Further research draws on the current destruction of the site by both ISIS and opportunists involved with the black market. Because Dura-Europos is located in a war stricken region, the acquisition of data and possibility of immediate action is particularly challenging. Resources gained from local reports, in addition to technology such as satellite imagery, however, have provided a firm starting point for the evaluation of the state of the site. The Syrian Ministry of Culture, UNESCO, and numerous Syrian and global organizations provide insight into the historic city’s past, present issues, and future plans to ensure that the cultural integrity of the site is upheld. Though over seventy percent of Dura-Europos has been completely decimated, this research challenges the notion that physically destroyed sites are lost forever. This paper assesses preventative measures that can take place to ensure the preservation of the site’s art and architecture, including examining possible solutions to the damage, such as digital reconstruction, replication, and distribution of information through exhibitions and other forms of publically accessible information. In order to investigate any possible retribution, research also includes the necessary information pertaining the global laws and regulations dealing with cultural heritage, as it directly affects the ways in which this situation can be dealt with. With the countless experts and citizens dedicated to the importance of cultural heritage, the prospect of honoring and valuing elements of Dura-Europos is possible—whether physically preserved or otherwise.

Keywords: antiquities law, archaeological sites, restitution, Syrian Civil War

Procedia PDF Downloads 154