Search results for: unit load device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6452

Search results for: unit load device

3482 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing

Procedia PDF Downloads 238
3481 The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)

Authors: Tuğrul Varol, Halil Barış Özel

Abstract:

In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (cover removal with human force, cover removal with Hitachi F20 Excavator, and cover removal with agricultural equipment mounted on a Ferguson 240S agriculture tractor) utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with human force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for man power, 788.70 TL for excavator and 2227.20 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed contol method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.

Keywords: artificial regeneration, weed control, oriental beech, productivity, mechanization, man power, cost analysis

Procedia PDF Downloads 413
3480 Stabilized Halogen Based Biocides for RO Membrane Application

Authors: Harshada Lohokare

Abstract:

Biofouling is major issue in Reverse Osmosis (RO) membranes operation. To address the biofouling issue in raw water as well as wastewater recycle / reuse application requires effective biofouling control program. Current biocides (2,2-dibromo-3-nitrilopropionamide, isothiazolinone) are costly and hence often under-dosed. The membrane compatibility, as well as the microbio efficiency of the RO membrane biocide was studied. Based on the biofouling potential, the biocide product and it’s dosage was studied. It was found that these products need to be dosed continuous as well as intermittent dosage based on the microbio load. This study shows that depending on the application and microbio fouling potential, products can be chosen to mitigate the biofouling issues and improve the RO membrane performance.

Keywords: reverse osmosis membrane, biofouling, biocide, stabilized halogen

Procedia PDF Downloads 67
3479 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition

Authors: M. Beusink, E. W. C. Coenen

Abstract:

The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.

Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures

Procedia PDF Downloads 231
3478 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle

Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan

Abstract:

The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.

Keywords: spring, mass, damper, knee joint

Procedia PDF Downloads 267
3477 Comparative Study on Different Type of Shear Connectors in Composite Slabs

Authors: S. Subrmanian, A. Siva, R. Raghul

Abstract:

In modern construction industry, usage of cold form composite slab has its scope widely due to its light weight, high structural properties and economic factor. To enhance the structural integrity, mechanical interlocking or frictional interlocking was introduced. The role of mechanical interlocking or frictional interlocking is to increase the longitudinal shear between the profiled sheet and concrete. This paper deals with the experimental evaluation of three types of mechanical interlocking devices namely normal stud shear connector, J-Type shear connector, U-Type shear connector. An attempt was made to evolve the shear connector which can be suitable for the composite slab as an interlocking device. Totally six number of composite slabs have been experimented with three types of shear connectors and comparison study is made. The outcome was compared with numerical model was created by ABAQUS software and analyzed for comparative purpose. The result was U-Type shear connector provided better performance and resistance.

Keywords: composite slabs, shear connector, end slip, longitudinal shear

Procedia PDF Downloads 320
3476 Indoor Temperature, Relative Humidity and CO₂ Level Assessment in a Publically Managed Hospital Building

Authors: Ayesha Asif, Muhammad Zeeshan

Abstract:

The sensitivity of hospital-microenvironments for all types of pollutants, due to the presence of patients with immune deficiencies, makes them complex indoor spaces. Keeping in view, this study investigated indoor air quality (IAQ) of two most sensitive places, i.e., operation theater (OT) and intensive care unit (ICU), of a publically managed hospital. Taking CO₂ concentration as air quality indicator and temperature (T) and relative humidity (RH) as thermal comfort parameters, continuous monitoring of the three variables was carried out. Measurements were recorded at an interval of 1 min for weekdays and weekends, including occupational and non-occupational hours. Outdoor T and RH measurements were also used in the analysis. Results show significant variation (p < 0.05) in CO₂, T and RH values over the day during weekdays while no significant variation (p > 0.05) have been observed during weekends of both the monitored sites. Maximum observed values of CO₂ in OT and ICU were found to be 2430 and 624 ppm, T as 24.7ºC and 28.9ºC and RH as 29.6% and 32.2% respectively.

Keywords: indoor air quality, CO₂ concentration, hospital building, comfort assessment

Procedia PDF Downloads 129
3475 Mixed Model Sequencing in Painting Production Line

Authors: Unchalee Inkampa, Tuanjai Somboonwiwat

Abstract:

Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit.

Keywords: sequencing, mixed model lines, painting process, electrode position paint

Procedia PDF Downloads 417
3474 Modification of Toothpaste Formula Using Pineapple Cobs and Eggshell Waste as a Way to Decrease Dental Caries

Authors: Achmad Buhori, Reza Imam Pratama, Tissa Wiraatmaja, Wanti Megawati

Abstract:

Data from many countries indicates that there is a marked increase of dental caries. The increases in caries appear to occur in lower socioeconomic groups. It is possible that the benefits of prevention of dental caries are not reaching these groups. However, there is a way to decrease dental caries by adding 5% of bromelain and calcium as an active agent in toothpaste. Bromelain can break glutamine-alanine bond and arginine-alanine bond which is a constituent of amino acid that causes dental plague which is one of the factors of dental caries. Calcium help rebuilds the teeth by strengthening and repairing enamel. Bromelain can be found from the extraction of pineapple (Ananas comosus) cobs (88.86-94.22 % of bromelain recovery during extraction based on the enzyme unit) and calcium can be taken from eggshell (95% of dry eggshell consist of calcium). The aim of this experiment is to make a toothpaste which contains bromelain and calcium as an effective, cheap, and healthy way to decrease dental caries around the world.

Keywords: bromelain, calcium, dental caries, dental plague, toothpaste

Procedia PDF Downloads 263
3473 Importance of Determining the Water Needs of Crops in the Management of Water Resources in the Province of Djelfa

Authors: Imessaoudene Y., Mouhouche B., Sengouga A., Kadir M.

Abstract:

The objective of this work is to determine the virtual water of main crops grown in the province of Djelfa and water use efficiency (W.U.E.), Which is essential to approach the application and better integration with the offer in the region. In the case of agricultural production, virtual water is the volume of water evapo-transpired by crops. It depends on particular on the expertise of its producers and its global production area, warm and dry climates induce higher consumption. At the scale of the province, the determination of the quantities of virtual water is done by calculating the unit water requirements related to water irrigated hectare and total rainfall over the crop using the Cropwat 8.0 F.A.O. software. Quantifying the volume of agricultural virtual water of crops practiced in the study area demonstrates the quantitative importance of these volumes of water in terms of available water resources in the province, so the advantages which can be the concept of virtual water as an analysis tool and decision support for the management and distribution of water in scarcity situation.

Keywords: virtual water, water use efficiency, water requirements, Djelfa

Procedia PDF Downloads 422
3472 Reliability and Availability Analysis of Satellite Data Reception System using Reliability Modeling

Authors: Ch. Sridevi, S. P. Shailender Kumar, B. Gurudayal, A. Chalapathi Rao, K. Koteswara Rao, P. Srinivasulu

Abstract:

System reliability and system availability evaluation plays a crucial role in ensuring the seamless operation of complex satellite data reception system with consistent performance for longer periods. This paper presents a novel approach for the same using a case study on one of the antenna systems at satellite data reception ground station in India. The methodology involves analyzing system's components, their failure rates, system's architecture, generation of logical reliability block diagram model and estimating the reliability of the system using the component level mean time between failures considering exponential distribution to derive a baseline estimate of the system's reliability. The model is then validated with collected system level field failure data from the operational satellite data reception systems that includes failure occurred, failure time, criticality of the failure and repair times by using statistical techniques like median rank, regression and Weibull analysis to extract meaningful insights regarding failure patterns and practical reliability of the system and to assess the accuracy of the developed reliability model. The study mainly focused on identification of critical units within the system, which are prone to failures and have a significant impact on overall performance and brought out a reliability model of the identified critical unit. This model takes into account the interdependencies among system components and their impact on overall system reliability and provides valuable insights into the performance of the system to understand the Improvement or degradation of the system over a period of time and will be the vital input to arrive at the optimized design for future development. It also provides a plug and play framework to understand the effect on performance of the system in case of any up gradations or new designs of the unit. It helps in effective planning and formulating contingency plans to address potential system failures, ensuring the continuity of operations. Furthermore, to instill confidence in system users, the duration for which the system can operate continuously with the desired level of 3 sigma reliability was estimated that turned out to be a vital input to maintenance plan. System availability and station availability was also assessed by considering scenarios of clash and non-clash to determine the overall system performance and potential bottlenecks. Overall, this paper establishes a comprehensive methodology for reliability and availability analysis of complex satellite data reception systems. The results derived from this approach facilitate effective planning contingency measures, and provide users with confidence in system performance and enables decision-makers to make informed choices about system maintenance, upgrades and replacements. It also aids in identifying critical units and assessing system availability in various scenarios and helps in minimizing downtime and optimizing resource allocation.

Keywords: exponential distribution, reliability modeling, reliability block diagram, satellite data reception system, system availability, weibull analysis

Procedia PDF Downloads 81
3471 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells

Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon

Abstract:

By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.

Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique

Procedia PDF Downloads 335
3470 Experimental Study of Vibration Isolators Made of Expanded Cork Agglomerate

Authors: S. Dias, A. Tadeu, J. Antonio, F. Pedro, C. Serra

Abstract:

The goal of the present work is to experimentally evaluate the feasibility of using vibration isolators made of expanded cork agglomerate. Even though this material, also known as insulation cork board (ICB), has mainly been studied for thermal and acoustic insulation purposes, it has strong potential for use in vibration isolation. However, the adequate design of expanded cork blocks vibration isolators will depend on several factors, such as excitation frequency, static load conditions and intrinsic dynamic behavior of the material. In this study, transmissibility tests for different static and dynamic loading conditions were performed in order to characterize the material. Since the material’s physical properties can influence the vibro-isolation performance of the blocks (in terms of density and thickness), this study covered four mass density ranges and four block thicknesses. A total of 72 expanded cork agglomerate specimens were tested. The test apparatus comprises a vibration exciter connected to an excitation mass that holds the test specimen. The test specimens under characterization were loaded successively with steel plates in order to obtain results for different masses. An accelerometer was placed at the top of these masses and at the base of the excitation mass. The test was performed for a defined frequency range, and the amplitude registered by the accelerometers was recorded in time domain. For each of the signals (signal 1- vibration of the excitation mass, signal 2- vibration of the loading mass) a fast Fourier transform (FFT) was applied in order to obtain the frequency domain response. For each of the frequency domain signals, the maximum amplitude reached was registered. The ratio between the amplitude (acceleration) of signal 2 and the amplitude of signal 1, allows the calculation of the transmissibility for each frequency. Repeating this procedure allowed us to plot a transmissibility curve for a certain frequency range. A number of transmissibility experiments were performed to assess the influence of changing the mass density and thickness of the expanded cork blocks and the experimental conditions (static load and frequency of excitation). The experimental transmissibility tests performed in this study showed that expanded cork agglomerate blocks are a good option for mitigating vibrations. It was concluded that specimens with lower mass density and larger thickness lead to better performance, with higher vibration isolation and a larger range of isolated frequencies. In conclusion, the study of the performance of expanded cork agglomerate blocks presented herein will allow for a more efficient application of expanded cork vibration isolators. This is particularly relevant since this material is a more sustainable alternative to other commonly used non-environmentally friendly products, such as rubber.

Keywords: expanded cork agglomerate, insulation cork board, transmissibility tests, sustainable materials, vibration isolators

Procedia PDF Downloads 330
3469 Non-Homogeneous Layered Fiber Reinforced Concrete

Authors: Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100 mm×100 mm×400 mm with layers of non-homogeneously distributed fibers inside them were fabricated. Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.

Keywords: fiber reinforced concrete, 4-point bending, steel fiber, construction engineering

Procedia PDF Downloads 363
3468 The Need for Educational Psychology in Teacher Education for Sustainable Transformation and Security in Nigeria

Authors: Kaltume Kabir Sharrif

Abstract:

Teacher education is the bedrock of educational growth and development of any nation. With development in education all human problems can be overcome. Educational Psychology, on the other hand, is in a strategic position for any programme in teacher education to be successful hence other aspects of societal issues. In other words, no teacher education can be of any help in ensuring transformation and security without adequate study in Educational Psychology. Without adequate knowledge and skills in Educational Psychology the teacher may not function effectively in the course of discharging his duty. It is in view of this, that the paper discusses some aspects of Educational Psychology that are of paramount importance in teacher education for sustainable transformation and security of Nigeria. Some recommendations were offered on the role educational psychology play in resolving security challenges facing the country. These include enriching educational psychology with topics from forensic psychology that will provide the teacher the skills of fighting crime in the school, Behavioural Science Unit should be established in each school to monitor the behavior of students, among others.

Keywords: transformation, security challenges, teacher education, educational psychology

Procedia PDF Downloads 500
3467 FESA: Fuzzy-Controlled Energy-Efficient Selective Allocation and Reallocation of Tasks Among Mobile Robots

Authors: Anuradha Banerjee

Abstract:

Energy aware operation is one of the visionary goals in the area of robotics because operability of robots is greatly dependent upon their residual energy. Practically, the tasks allocated to robots carry different priority and often an upper limit of time stamp is imposed within which the task needs to be completed. If a robot is unable to complete one particular task given to it the task is reallocated to some other robot. The collection of robots is controlled by a Central Monitoring Unit (CMU). Selection of the new robot is performed by a fuzzy controller called Task Reallocator (TRAC). It accepts the parameters like residual energy of robots, possibility that the task will be successfully completed by the new robot within stipulated time, distance of the new robot (where the task is reallocated) from distance of the old one (where the task was going on) etc. The proposed methodology increases the probability of completing globally assigned tasks and saves huge amount of energy as far as the collection of robots is concerned.

Keywords: energy-efficiency, fuzzy-controller, priority, reallocation, task

Procedia PDF Downloads 308
3466 Usage of Military Spending, Debt Servicing and Growth for Dealing with Emergency Plan of Indian External Debt

Authors: Sahbi Farhani

Abstract:

This study investigates the relationship between external debt and military spending in case of India over the period of 1970–2012. In doing so, we have applied the structural break unit root tests to examine stationarity properties of the variables. The Auto-Regressive Distributed Lag (ARDL) bounds testing approach is used to test whether cointegration exists in presence of structural breaks stemming in the series. Our results indicate the cointegration among external debt, military spending, debt servicing, and economic growth. Moreover, military spending and debt servicing add in external debt. Economic growth helps in lowering external debt. The Vector Error Correction Model (VECM) analysis and Granger causality test reveal that military spending and economic growth cause external debt. The feedback effect also exists between external debt and debt servicing in case of India.

Keywords: external debt, military spending, ARDL approach, India

Procedia PDF Downloads 290
3465 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters.  After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).

Keywords: Nd₂Zr₃(MoO₄)₉, powder x-ray diffraction, solid state synthesis, zirconium molybdates

Procedia PDF Downloads 394
3464 The Cardiac Diagnostic Prediction Applied to a Designed Holter

Authors: Leonardo Juan Ramírez López, Javier Oswaldo Rodriguez Velasquez

Abstract:

We have designed a Holter that measures the heart´s activity for over 24 hours, implemented a prediction methodology, and generate alarms as well as indicators to patients and treating physicians. Various diagnostic advances have been developed in clinical cardiology thanks to Holter implementation; however, their interpretation has largely been conditioned to clinical analysis and measurements adjusted to diverse population characteristics, thus turning it into a subjective examination. This, however, requires vast population studies to be validated that, in turn, have not achieved the ultimate goal: mortality prediction. Given this context, our Insight Research Group developed a mathematical methodology that assesses cardiac dynamics through entropy and probability, creating a numerical and geometrical attractor which allows quantifying the normalcy of chronic and acute disease as well as the evolution between such states, and our Tigum Research Group developed a holter device with 12 channels and advanced computer software. This has been shown in different contexts with 100% sensitivity and specificity results.

Keywords: attractor , cardiac, entropy, holter, mathematical , prediction

Procedia PDF Downloads 165
3463 Using the Timepix Detector at CERN Accelerator Facilities

Authors: Andrii Natochii

Abstract:

The UA9 collaboration in the last two years has installed two different types of detectors to investigate the channeling effect in the bent silicon crystals with high-energy particles beam on the CERN accelerator facilities: Cherenkov detector CpFM and silicon pixel detector Timepix. In the current work, we describe the main performances of the Timepix detector operation at the SPS and H8 extracted beamline at CERN. We are presenting some detector calibration results and tuning. Our research topics also cover a cluster analysis algorithm for the particle hits reconstruction. We describe the optimal acquisition setup for the Timepix device and the edges of its functionality for the high energy and flux beam monitoring. The measurements of the crystal parameters are very important for the future bent crystal applications and needs a track reconstruction apparatus. Thus, it was decided to construct a short range (1.2 m long) particle telescope based on the Timepix sensors and test it at H8 SPS extraction beamline. The obtained results will be shown as well.

Keywords: beam monitoring, channeling, particle tracking, Timepix detector

Procedia PDF Downloads 178
3462 A Concept Analysis of Control over Nursing Practice

Authors: Oznur Ispir, S. Duygulu

Abstract:

Health institutions are the places where fast and efficient decisions are required and mistakes and uncertainties are not tolerated due to the urgency of the services provided within the body of these institutions. Thus, in those institutions where patient care services are targeted to be provided quality and safety, the nurses attending the decisions, creating the solutions for problems, taking initiative and bearing the responsibility of results in brief having the control over practices are needed. Control over nursing practices is defined as affecting the employment and work environment at the unit level of the institution, perceived freedom for organizing and evaluating nursing practices, the ability to make independent decisions about patient care and accountability for the results of such decisions. This study scrutinizes the concept of control over nursing practices (organizational autonomy), which is frequently confused with other concepts (autonomy) in the literature, by reviewing the literature and making suggestions to improve nurses’ control over nursing practices.

Keywords: control over nursing practice, nurse, nursing, organizational autonomy

Procedia PDF Downloads 264
3461 Caged Compounds as Light-Dependent Initiators for Enzyme Catalysis Reactions

Authors: Emma Castiglioni, Nigel Scrutton, Derren Heyes, Alistair Fielding

Abstract:

By using light as trigger, it is possible to study many biological processes, such as the activity of genes, proteins, and other molecules, with precise spatiotemporal control. Caged compounds, where biologically active molecules are generated from an inert precursor upon laser photolysis, offer the potential to initiate such biological reactions with high temporal resolution. As light acts as the trigger for cleaving the protecting group, the ‘caging’ technique provides a number of advantages as it can be intracellular, rapid and controlled in a quantitative manner. We are developing caging strategies to study the catalytic cycle of a number of enzyme systems, such as nitric oxide synthase and ethanolamine ammonia lyase. These include the use of caged substrates, caged electrons and the possibility of caging the enzyme itself. In addition, we are developing a novel freeze-quench instrument to study these reactions, which combines rapid mixing and flashing capabilities. Reaction intermediates will be trapped at low temperatures and will be analysed by using electron paramagnetic resonance (EPR) spectroscopy to identify the involvement of any radical species during catalysis. EPR techniques typically require relatively long measurement times and very often, low temperatures to fully characterise these short-lived species. Therefore, common rapid mixing techniques, such as stopped-flow or quench-flow are not directly suitable. However, the combination of rapid freeze-quench (RFQ) followed by EPR analysis provides the ideal approach to kinetically trap and spectroscopically characterise these transient radical species. In a typical RFQ experiment, two reagent solutions are delivered to the mixer via two syringes driven by a pneumatic actuator or stepper motor. The new mixed solution is then sprayed into a cryogenic liquid or surface, and the frozen sample is then collected and packed into an EPR tube for analysis. The earliest RFQ instrument consisted of a hydraulic ram unit as a drive unit with direct spraying of the sample into a cryogenic liquid (nitrogen, isopentane or petroleum). Improvements to the RFQ technique have arisen from the design of new mixers in order to reduce both the volume and the mixing time. In addition, the cryogenic isopentane bath has been coupled to a filtering system or replaced by spraying the solution onto a surface that is frozen via thermal conductivity with a cryogenic liquid. In our work, we are developing a novel RFQ instrument which combines the freeze-quench technology with flashing capabilities to enable the studies of both thermally-activated and light-activated biological reactions. This instrument also uses a new rotating plate design based on magnetic couplings and removes the need for mechanical motorised rotation, which can otherwise be problematic at cryogenic temperatures.

Keywords: caged compounds, freeze-quench apparatus, photolysis, radicals

Procedia PDF Downloads 206
3460 Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control

Authors: M. R. Bengourina, M. Rahli, L. Hassaine, S. Saadi

Abstract:

In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach.

Keywords: shunt active power filter, VF-DPC, photovoltaic, MPPT

Procedia PDF Downloads 317
3459 A Cross-Sectional Study Assessing Communication Practices among Doctors at a University Hospital in Pakistan

Authors: Muhammad Waqas Baqai, Noman Shahzad, Rehman Alvi

Abstract:

Communication among health care givers is the essence of quality patient care and any compromise results in errors and inefficiency leading to cumbersome outcomes. The use of smartphone among health professionals has increased tremendously. Almost every health professional carries it and majority of them uses a third party communication software called whatsApp for work related communications. It gives instant access to the person responsible for any particular query and therefore helps in efficient and timely decision making. It is also an easy way of sharing medical documents, multimedia and provides platform for consensual decision making through group discussions. However clinical communication through whatsApp has some demerits too including reduction in verbal communication, worsening professional relations, unprofessional behavior, risk of confidentiality breach and threats from cyber-attacks. On the other hand the traditional pager device being used in many health care systems is a unidirectional communication that lacks the ability to convey any information other than the number to which the receiver has to respond. Our study focused on these two widely used modalities of communication among doctors of the largest tertiary care center of Pakistan i.e. The Aga Khan University Hospital. Our aim was to note which modality is considered better and has fewer threats to medical data. Approval from ethical review committee of the institute was taken prior to conduction of this study. We submitted an online survey form to all the interns and residents working at our institute and collected their response in a month’s time. 162 submissions were recorded and analyzed using descriptive statistics. Only 20% of them were comfortable with using pagers exclusively, 52% with whatsApp and 28% with both. 65% think that whatsApp is time-saving and quicker than pager. 54% of them considered whatsApp to be causing nuisance from work related notifications in their off-work hours. 60% think that they are more likely to miss information through pager system because of the unidirectional nature. Almost all (96%) of residents and interns found whatsApp to be useful in terms of saving information for future reference. For urgent issues, majority (70%) preferred pager over whatsApp and also pager was considered more valid in terms of hospital policies and legal issues. Among major advantages of whatsApp as listed by them were; easy mass communication, sharing of clinical pictures, universal access and no need of carrying additional device. However the major drawback of using whatsApp for clinical communication that everyone shared was threat to patients’ confidentiality as clinicians usually share pictures of wounds, clinical documents etc. Lastly we asked them if they think there is a need of a separate application for instant communication dedicated to clinical communication only and 90% responded positively. Therefore, we concluded that both modalities have their merits and demerits but the greatest drawback with whatsApp is the risk of breach in patients’ confidentiality and off-work disturbance. Hence, we recommend a more secure, institute-run application for all intra hospital communications where they can share documents, pictures etc. easily under a controlled environment.

Keywords: WhatsApp, pager, clinical communication, confidentiality

Procedia PDF Downloads 141
3458 Reduced Power Consumption by Randomization for DSI3

Authors: David Levy

Abstract:

The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines 3 modulation levels from which 16 valid symbols are coded. This structure creates power consumption variations depending on the transmitted data of a factor of more than 2 between minimum and maximum. The power generation unit has to consider therefore the worst case maximum consumption all the time and be built accordingly. This paper proposes a method to reduce both the average current consumption and worst case current consumption. The transmitter randomizes the data using several pseudo-random sequences. It then estimates the energy consumption of the generated frames and selects to transmit the one which consumes the least. The transmitter also prepends the index of the pseudo-random sequence, which is not randomized, to allow the receiver to recover the original data using the correct sequence. We show that in the case that the frame occupies most of the DSI3 synchronization period, we achieve average power consumption reduction by up to 13% and the worst case power consumption is reduced by 17.7%.

Keywords: DSI3, energy, power consumption, randomization

Procedia PDF Downloads 533
3457 Factors Related to Teachers’ Analysis of Classroom Assessments

Authors: Hussain A. Alkharusi, Said S. Aldhafri, Hilal Z. Alnabhani, Muna Alkalbani

Abstract:

Analysing classroom assessments is one of the responsibilities of the teacher. It aims improving teacher’s instruction and assessment as well as student learning. The present study investigated factors that might explain variation in teachers’ practices regarding analysis of classroom assessments. The factors considered in the investigation included gender, in-service assessment training, teaching load, teaching experience, knowledge in assessment, attitude towards quantitative aspects of assessment, and self-perceived competence in analysing assessments. Participants were 246 in-service teachers in Oman. Results of a stepwise multiple linear regression analysis revealed that self-perceived competence was the only significant factor explaining the variance in teachers’ analysis of assessments. Implications for research and practice are discussed.

Keywords: analysis of assessment, classroom assessment, in-service teachers, self-competence

Procedia PDF Downloads 330
3456 Modeling and Simulation of a Cycloconverter with a Bond Graph Approach

Authors: Gerardo Ayala-Jaimes, Gilberto Gonzalez-Avalos, Allen A. Castillo, Alejandra Jimenez

Abstract:

The modeling of a single-phase cycloconverter in Bond Graph is presented, which includes an alternating current power supply, hybrid dynamics, switch control, and resistive load; this approach facilitates the integration of systems across different energy domains and structural analysis. Cycloconverters, used in motor control, demonstrate the viability of graphical modeling. The use of Bonds is proposed to model the hybrid interaction of the system, and the results are displayed through simulations using 20Sim and Multisim software. The motivation behind developing these models with a graphical approach is to design and build low-cost energy converters, thereby making the main contribution of this document the modeling and simulation of a single-phase cycloconverter.

Keywords: bond graph, hybrid system, rectifier, cycloconverter, modelling

Procedia PDF Downloads 31
3455 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites

Authors: Mustafa Reşit Haboğlu, Ali Kurşun , Şafak Aksoy, Halil Aykul, Numan Behlül Bektaş

Abstract:

A thermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.

Keywords: laminated composites, thermo elastic stress, finite element method.

Procedia PDF Downloads 492
3454 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction

Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia

Abstract:

Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.

Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4

Procedia PDF Downloads 96
3453 Evaluation of Iron Oxide-Functionalized Multiwall Carbon Nanotube Self-Standing Electrode for Symmetric Supercapacitor Application

Authors: B. V. Bhaskara Rao, Rodrigo Espinoza

Abstract:

The rapid development of renewable energy sources has drawn great attention to energy storage devices, especially supercapacitors, because of their high power density and rate performance. This work focus on Fe₃O₄ nanoparticles synthesized by reverse co-precipitation and MWCNTs functionalized by –COOH acid functionalization. The results show that Optimized 25wt% Fe₃O₄@FMWCNT show high specific capacitance 100 mF/cm² at one mA/cm² whereas 15wt% Fe₃O₄@FMWCNT showed high stability (80% retention capacity) over 5000 cycles. The electrolyte used in the coin cell is LiPF6 and the thickness of the electrode is 30 microns. The optimized Fe₃O₄@FMWCNT bucky papers coin cell electrochemical studies suggest that 25wt% Fe₃O₄@FMWCNT could be a good candidate for high-capacity supercapacitor devices. This could be further tested for flexible and planar supercapacitor device application with gel electrolytes.

Keywords: self-standing electrode, Fe₃O4@FMWCNT, supercapacitor, symmetric coin-cell

Procedia PDF Downloads 152