Search results for: PLA based nanocomposites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28389

Search results for: PLA based nanocomposites

25419 Autism Spectrum Disorder Interventions, Problems and Solutions

Authors: Ammara Jabeen

Abstract:

This survey report aims to find the interventions and their effectiveness that are being used globally as well as in Pakistan to treat autistic kids. ‘Autism spectrum disorder (ASD) is a state associated with brain development that shows ‘how a person perceives and socializes with others, causing problems in social interaction and communication’. Besides these problems, these children suffer from restricted and repetitive behaviors too. The term ‘Spectrum’ in Autism Spectrum Disorder refers to the wide range of symptoms and severity. The main cause of this Autism Spectrum Disorder is not known yet, but the research showed that genetics and environmental factors play important roles. In this survey report, after a literature review, some of the possible solutions are suggested based on the most common problems that these children are currently facing in their daily lives. Based on this report, we are able to overcome the lack of the resources (e.g. language, cost, training etc.) that mostly exist in Pakistani culture.

Keywords: autism, interventions, spectrum, disorder

Procedia PDF Downloads 21
25418 Group Consensus of Hesitant Fuzzy Linguistic Variables for Decision-Making Problem

Authors: Chen T. Chen, Hui L. Cheng

Abstract:

Due to the different knowledge, experience and expertise of experts, they usually provide the different opinions in the group decision-making process. Therefore, it is an important issue to reach the group consensus of opinions of experts in group multiple-criteria decision-making (GMCDM) process. Because the subjective opinions of experts always are fuzziness and uncertainties, it is difficult to use crisp values to describe the real opinions of experts or decision-makers. It is reasonable for experts to use the linguistic variables to express their opinions. The hesitant fuzzy set are extended from the concept of fuzzy sets. Experts use the hesitant fuzzy sets can be flexible to describe their subjective opinions. In order to aggregate the hesitant fuzzy linguistic variables of all experts effectively, an adjustment method based on distance function will be presented in this paper. Based on the opinions adjustment method, this paper will present an effective approach to adjust the hesitant fuzzy linguistic variables of all experts to reach the group consensus. Then, a new hesitant linguistic GMCDM method will be presented based on the group consensus of hesitant fuzzy linguistic variables. Finally, an example will be implemented to illustrate the computational process to enhance the practical value of the proposed model.

Keywords: group multi-criteria decision-making, linguistic variables, hesitant fuzzy linguistic variables, distance function, group consensus

Procedia PDF Downloads 154
25417 Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis

Authors: Eyup Ozkan, Ozkan U. Nalbantoglu, Aycan Gundogdu, Mehmet Hora, A. Emre Onuk

Abstract:

The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation.

Keywords: coronary artery disease, blood microbiome, machine learning, angiography, next-generation sequencing

Procedia PDF Downloads 153
25416 Determining Coordinates of Ultra-Light Drones Based on the Time Difference of Arrival (TDOA) Method

Authors: Nguyen Huy Hoang, Do Thanh Quan, Tran Vu Kien

Abstract:

The use of the active radar to measure the coordinates of ultra-light drones is frequently difficult due to long-distance, absolutely small radar cross-section (RCS) and obstacles. Since ultra-light drones are usually controlled by the Time Difference of Arrival (RF), the paper proposed a method to measure the coordinates of ultra-light drones in the space based on the arrival time of the signal at receiving antennas and the time difference of arrival (TDOA). The experimental results demonstrate that the proposed method is really potential and highly accurate.

Keywords: ultra-light drone, TDOA, radar cross-section (RCS), RF

Procedia PDF Downloads 206
25415 A Study on the Measurement of Spatial Mismatch and the Influencing Factors of “Job-Housing” in Affordable Housing from the Perspective of Commuting

Authors: Daijun Chen

Abstract:

Affordable housing is subsidized by the government to meet the housing demand of low and middle-income urban residents in the process of urbanization and to alleviate the housing inequality caused by market-based housing reforms. It is a recognized fact that the living conditions of the insured have been improved while constructing the subsidized housing. However, the choice of affordable housing is mostly in the suburbs, where the surrounding urban functions and infrastructure are incomplete, resulting in the spatial mismatch of "jobs-housing" in affordable housing. The main reason for this problem is that the residents of affordable housing are more sensitive to the spatial location of their residence, but their selectivity and controllability to the housing location are relatively weak, which leads to higher commuting costs. Their real cost of living has not been effectively reduced. In this regard, 92 subsidized housing communities in Nanjing, China, are selected as the research sample in this paper. The residents of the affordable housing and their commuting Spatio-temporal behavior characteristics are identified based on the LBS (location-based service) data. Based on the spatial mismatch theory, spatial mismatch indicators such as commuting distance and commuting time are established to measure the spatial mismatch degree of subsidized housing in different districts of Nanjing. Furthermore, the geographically weighted regression model is used to analyze the influencing factors of the spatial mismatch of affordable housing in terms of the provision of employment opportunities, traffic accessibility and supporting service facilities by using spatial, functional and other multi-source Spatio-temporal big data. The results show that the spatial mismatch of affordable housing in Nanjing generally presents a "concentric circle" pattern of decreasing from the central urban area to the periphery. The factors affecting the spatial mismatch of affordable housing in different spatial zones are different. The main reasons are the number of enterprises within 1 km of the affordable housing district and the shortest distance to the subway station. And the low spatial mismatch is due to the diversity of services and facilities. Based on this, a spatial optimization strategy for different levels of spatial mismatch in subsidized housing is proposed. And feasible suggestions for the later site selection of subsidized housing are also provided. It hopes to avoid or mitigate the impact of "spatial mismatch," promote the "spatial adaptation" of "jobs-housing," and truly improve the overall welfare level of affordable housing residents.

Keywords: affordable housing, spatial mismatch, commuting characteristics, spatial adaptation, welfare benefits

Procedia PDF Downloads 106
25414 Concentric Circle Detection based on Edge Pre-Classification and Extended RANSAC

Authors: Zhongjie Yu, Hancheng Yu

Abstract:

In this paper, we propose an effective method to detect concentric circles with imperfect edges. First, the gradient of edge pixel is coded and a 2-D lookup table is built to speed up normal generation. Then we take an accumulator to estimate the rough center and collect plausible edges of concentric circles through gradient and distance. Later, we take the contour-based method, which takes the contour and edge intersection, to pre-classify the edges. Finally, we use the extended RANSAC method to find all the candidate circles. The center of concentric circles is determined by the two circles with the highest concentricity. Experimental results demonstrate that the proposed method has both good performance and accuracy for the detection of concentric circles.

Keywords: concentric circle detection, gradient, contour, edge pre-classification, RANSAC

Procedia PDF Downloads 129
25413 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping

Authors: Delowar Hossain, Genci Capi

Abstract:

This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.

Keywords: deep learning, genetic algorithm, object recognition, robot grasping

Procedia PDF Downloads 351
25412 Comparing the Efficacy of Quantitative Electroencephalogram-Based Neurofeedback Therapy Program versus Organizational Skills Training Program to Reduce the Core Symptoms among Children Group of ADHD

Authors: Radwa R. El-Saadany , Medhat Abu Zeid, Tarek Omar, Marwa S. Maqsoud

Abstract:

Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders characterized by attention deficit, hyperactivity, and impulsivity. Neurofeedback (NF) is one of the neurotherapy treatments that cause brain wave changes. Method: The current pseudo-experimental study with a pre–post-test design was conducted on a population of children with attention deficit hyperactivity disorder (ADHD).The sample size comprised of (30) children selected by random sampling method and assigned to two therapeutic groups: First therapeutic group received a neurofeedback program. Based on QEEG, it reached (10) children. The second therapeutic group received an organization skills training program, it reached (10) and the control group that did not receive programs, it reached (10) children. Results: There are significant differences between pre- and post-assessments among therapeutic groups in reducing the three core symptoms of ADHD in favor of post measurement. There are no significant differences between post-assessment and follow up measurement of the therapeutic groups.

Keywords: QEEG-based neurofeedback therapy program, organizational skills training program, attention deficit hyperactivity disorder

Procedia PDF Downloads 75
25411 Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation

Authors: Youngsun Moon, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel.

Keywords: aeroacoustics, acoustic source detection, time difference of arrival, direction of arrival, blind source separation, independent component analysis, drone

Procedia PDF Downloads 161
25410 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 5
25409 Application of Pyridine-based Water-soluble Corrosion Inhibitor in Offshore Sweet Oil Pipeline

Authors: M. S. Yalfani, J. Kohzadi, P. Ghadimi, S. Sobhani, M. Ghadimi

Abstract:

The use of oil and water-soluble corrosion inhibitors has been established in Iranian oil and gas production systems for a long time. Imidazoline and its derivatives are being extensively used which are known as conventional corrosion inhibitors. This type of product has shown significant performance and low side effects, so that could monopolize the market of inhibitors in this region. However, the price growth of imidazolines, as well as the development of new lower-cost components with similar or even higher performance than imidazoline, have influenced the exclusive market of imidazoline-based products. During the latest years, pyridine and its derivatives have challenged imidazoline due to their remarkable anticorrosive properties and lower prices as well. Recently, we presented a formulated water-soluble inhibitor based on pyridine - an alkyl pyridine quaternary salt (APQS) - which could successfully pass all lab tests and eventually succeeded in being applied in an offshore sweet oil pipeline. The product was able to achieve high corrosion protection (> 90 %) with the LPR technique at low dosages of 15-25 ppm under severe corrosion conditions. Moreover, the lab test results showed that the APQS molecule is able to form a strong and persistent bond with the metal surface. The product was later nominated to be evaluated through a field trial in an offshore sweet oil pipeline where PH2S < 0.05 psi and CO2 is 6.4 mol%. The three-month trial - extended to six months- resulted in remarkable internal protection obtained by continuous injection of 10 ppm inhibitor, which was as low as 1 mpy measured by both weight loss corrosion coupons and online ER probes. In addition, no side effects, such as tight emulsion and stable foaming, were observed. The residual of the corrosion inhibitor was measured at the end of the pipeline to ensure the full coverage of the inhibitor throughout the pipeline. Eventually, these promising results were able to convince the end user to consider pyridine-based inhibitors as a reliable alternative to imidazoline.

Keywords: corrosion inhibitor, pyridine, sweet oil, pipeline, offshore

Procedia PDF Downloads 5
25408 Adolescent Social Anxiety, School Satisfaction, and School Absenteeism; Findings from Young-HUNT3 and Norwegian National Education Data

Authors: Malik D. Halidu, Cathrine F. Moe, Tommy Haugan

Abstract:

Purpose: The demand for effective school-based interventions in shaping adolescents' unmet mental health needs is growing. Grounding in the functional contextualism approach, this study investigates the role of school satisfaction (SS) in serving as a buffer to school absenteeism (SAB) among adolescents experiencing social anxiety (SA). Methods: A unique and large population-based sample of adolescents (upper secondary school pupils; n= 1864) from the Young-HUNT 3 survey dataset merged with the national educational registry from Norway. Moderation regression analysis was performed using Stata 17. Results: We find a statistically significant moderating role of school satisfaction on the relationship between social anxiety and school absenteeism (β=-0.109,p<0.01) among upper secondary school pupils. Among socially anxious adolescents associated with a higher perceived quality of school life, it functions as a buffer by reducing the positive relationship between SA and SAB. But, there was no statistically significant difference between social anxiety and school absenteeism for adolescents with low school satisfaction. Conclusion: Overall, the study's hypothesis model was statistically supported and contributes to the discourse that school satisfaction as a target of school-based interventions can effectively improve school outcomes (e.g., reduced absenteeism) among socially anxious pupils.

Keywords: social anxiety, school satisfaction, school absenteeism, Norwegian adolescent

Procedia PDF Downloads 88
25407 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 136
25406 Tracy: A Java Library to Render a 3D Graphical Human Model

Authors: Sina Saadati, Mohammadreza Razzazi

Abstract:

Since Java is an object-oriented language, It can be used to solve a wide range of problems. One of the considerable usages of this language can be found in Agent-based modeling and simulation. Despite the significant power of Java, There is not an easy method to render a 3-dimensional human model. In this article, we are about to develop a library which helps modelers present a 3D human model and control it with Java. The library runs two server programs. The first one is a web page server that can connect to any browser and present an HTML code. The second server connects to the browser and controls the movement of the model. So, the modeler will be able to develop a simulation and display a good-looking human model without any knowledge of any graphical tools.

Keywords: agent-based modeling and simulation, human model, graphics, Java, distributed systems

Procedia PDF Downloads 109
25405 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 275
25404 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach

Authors: Helen L. Hein, Joachim Schwarte

Abstract:

As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.

Keywords: aerogel-based, insulating material, early development phase, interval arithmetic

Procedia PDF Downloads 139
25403 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 252
25402 A Needs-Based Top-Down Approach for a Tailor-Made Smart City Roadmap

Authors: Mustafa Eruyar, Ersoy Pehlivan, Fatih Kafalı, Fatih Gundogan

Abstract:

All megacities are not only under the pressure of common urbanization and growth problems but also dealing with different challenges according to their specific circumstances. However, the majority of cities focuses mainly on popular smart city projects, which are usually driven by strong private sector, regardless of their characteristics, each city needs to develop customized projects within a tailor-made smart city roadmap to be able to solve its own challenges. Smart city manifest, helps citizens to feel the action better than good reading smart city vision statements, which consists of five elements; namely purpose, values, mission, vision, and strategy. This study designs a methodology for smart city roadmap based on a top-down approach, breaking down of smart city manifest to feasible projects for a systematic smart city transformation. This methodology was implemented in Istanbul smart city transformation program which includes smart city literature review, current state analysis, roadmap, and architecture projects, respectively. Istanbul smart city roadmap project followed an extensive literature review of certain leading smart cities around the world and benchmarking of the city’s current state using well known smart city indices. In the project, needs of citizens and service providers of the city were identified via stakeholder, persona and social media analysis. The project aimed to develop smart city projects targeting fulfilling related needs by implementing a gap analysis between current state and foreseen plans. As a result, in 11 smart city domains and enablers; 24 strategic objectives, 50 programs, and 101 projects were developed with the support of 183 smart city stakeholder entities and based on 125 citizen persona profiles and last one-year social media analysis. In conclusion, the followed methodology helps cities to identify and prioritize their needs and plan for long-term sustainable development, despite limited resources.

Keywords: needs-based, manifest, roadmap, smart city, top-down approach

Procedia PDF Downloads 216
25401 Modification of Polymer Composite Based on Electromagnetic Radiation

Authors: Ananta R. Adhikari

Abstract:

In today's era, polymer composite utilization has witnessed a significant increase across various fronts of material science advancement. Despite the development of many highly sophisticated technologies aimed at modifying polymer composites, there persists a quest for a technology that is straightforward, energy-efficient, easily controllable, cost-effective, time-saving, and environmentally friendly. Microwave technology has emerged as a major technique in material synthesis and modification due to its unique characteristics such as rapid, selective, uniform heating, and, particularly, direct heating based on molecular interaction. This study will be about the utilization of microwave energy as an alternative technique for material processing. Specifically, we will explore ongoing research conducted in our laboratory, focusing on its applications in the medical field.

Keywords: polymer composites, material processing, microstructure, microwave radiation

Procedia PDF Downloads 43
25400 Bias Minimization in Construction Project Dispute Resolution

Authors: Keyao Li, Sai On Cheung

Abstract:

Incorporation of alternative dispute resolution (ADR) mechanism has been the main feature of current trend of construction project dispute resolution (CPDR). ADR approaches have been identified as efficient mechanisms and are suitable alternatives to litigation and arbitration. Moreover, the use of ADR in this multi-tiered dispute resolution process often leads to repeated evaluations of a same dispute. Multi-tiered CPDR may become a breeding ground for cognitive biases. When completed knowledge is not available at the early tier of construction dispute resolution, disputing parties may form preconception of the dispute matter or the counterpart. This preconception would influence their information processing in the subsequent tier. Disputing parties tend to search and interpret further information in a self-defensive way to confirm their early positions. Their imbalanced information collection would boost their confidence in the held assessments. Their attitudes would be hardened and difficult to compromise. The occurrence of cognitive bias, therefore, impedes efficient dispute settlement. This study aims to explore ways to minimize bias in CPDR. Based on a comprehensive literature review, three types of bias minimizing approaches were collected: strategy-based, attitude-based and process-based. These approaches were further operationalized into bias minimizing measures. To verify the usefulness and practicability of these bias minimizing measures, semi-structured interviews were conducted with ten CPDR third party neutral professionals. All of the interviewees have at least twenty years of experience in facilitating settlement of construction dispute. The usefulness, as well as the implications of the bias minimizing measures, were validated and suggested by these experts. There are few studies on cognitive bias in construction management in general and in CPDR in particular. This study would be the first of its type to enhance the efficiency of construction dispute resolution by highlighting strategies to minimize the biases therein.

Keywords: bias, construction project dispute resolution, minimization, multi-tiered, semi-structured interview

Procedia PDF Downloads 184
25399 Pushing the Boundary of Parallel Tractability for Ontology Materialization via Boolean Circuits

Authors: Zhangquan Zhou, Guilin Qi

Abstract:

Materialization is an important reasoning service for applications built on the Web Ontology Language (OWL). To make materialization efficient in practice, current research focuses on deciding tractability of an ontology language and designing parallel reasoning algorithms. However, some well-known large-scale ontologies, such as YAGO, have been shown to have good performance for parallel reasoning, but they are expressed in ontology languages that are not parallelly tractable, i.e., the reasoning is inherently sequential in the worst case. This motivates us to study the problem of parallel tractability of ontology materialization from a theoretical perspective. That is we aim to identify the ontologies for which materialization is parallelly tractable, i.e., in the NC complexity. Since the NC complexity is defined based on Boolean circuit that is widely used to investigate parallel computing problems, we first transform the problem of materialization to evaluation of Boolean circuits, and then study the problem of parallel tractability based on circuits. In this work, we focus on datalog rewritable ontology languages. We use Boolean circuits to identify two classes of datalog rewritable ontologies (called parallelly tractable classes) such that materialization over them is parallelly tractable. We further investigate the parallel tractability of materialization of a datalog rewritable OWL fragment DHL (Description Horn Logic). Based on the above results, we analyze real-world datasets and show that many ontologies expressed in DHL belong to the parallelly tractable classes.

Keywords: ontology materialization, parallel reasoning, datalog, Boolean circuit

Procedia PDF Downloads 269
25398 The Concept of Development: A Normative Restructured Model in the Light of Indian Political Thought and Classical Liberalism

Authors: Sarthak S. Salunke

Abstract:

Development, as a notion, is seen in perspective of western philosophical conceptions, and the western developed nations have become a yardstick for setting up development goals for developing and underdeveloped nations around the world. This blanket term of development becomes superficial and materialistic in context of the vast geopolitical, territorial, cultural and behavioral diversities existing in countries of the Africa and the Asia, and tends to undermine the atomistic aspect of development. Indian political theories, which are often seen as religious philosophies, have inherent structure of development of human being as an individual and as a part of the society, and, in result, development of the State. These theories, primarily individualistic in nature, have a combination of altruism and rationalism which guides human beings towards constructing a collectively developed and morally sustainable society. This research focuses on the application of this Indian thought in combination of classical liberal thought to tackle the issues of development in diverse societies. The proposed restructured model of development is based on molecular individualism, instead of atomic individual approach of liberalists, which lets development modelers to target meaningful clusters for designating goals for development based on the particular needs based on geopolitical, cultural and ethical requirements, and making it meaningful in conjunction with global development to establish a harmony between western and eastern worlds.

Keywords: Indian political thought, development, liberalism, molecular individualism

Procedia PDF Downloads 183
25397 Development of an Information System Based Airport Evaluation Method

Authors: Eniko Nagy, Csaba Csiszar

Abstract:

Satisfaction of air transportation passengers is significantly affected by the perceived quality of airport information services. The development potential of ICT is considerable. The traditional and new functions of ‘smart’ airports are realized by complex services aiding seamless, comfortable and less time-consuming travel. Based on the elements of the transportation chain the information management functions, their relationships and the technical solutions have been identified. The functions have been categorized by their development level and evaluation scores have been assigned to each category. Correction factors influencing the usefulness of the technology or the service have been introduced. A method for the calculation of ‘smart’ index in order to compare the airports in objective way has been developed; thus facilitating further developments. The method has been applied for the case study of Budapest.

Keywords: air transportation informatics, evaluation, information service, smart airport

Procedia PDF Downloads 212
25396 Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method

Authors: A. Tavangari, N. Salehzadeh

Abstract:

In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny-Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found.

Keywords: penny-shaped crack, stress intensity factor, fracture mechanics, Ritz method

Procedia PDF Downloads 365
25395 Genetic Characterization of Barley Genotypes via Inter-Simple Sequence Repeat

Authors: Mustafa Yorgancılar, Emine Atalay, Necdet Akgün, Ali Topal

Abstract:

In this study, polymerase chain reaction based Inter-simple sequence repeat (ISSR) from DNA fingerprinting techniques were used to investigate the genetic relationships among barley crossbreed genotypes in Turkey. It is important that selection based on the genetic base in breeding programs via ISSR, in terms of breeding time. 14 ISSR primers generated a total of 97 bands, of which 81 (83.35%) were polymorphic. The highest total resolution power (RP) value was obtained from the F2 (0.53) and M16 (0.51) primers. According to the ISSR result, the genetic similarity index changed between 0.64–095; Lane 3 with Line 6 genotypes were the closest, while Line 36 were the most distant ones. The ISSR markers were found to be promising for assessing genetic diversity in barley crossbreed genotypes.

Keywords: barley, crossbreed, genetic similarity, ISSR

Procedia PDF Downloads 346
25394 Evaluation of the Impact of Community Based Disaster Risk Management Applied In Landslide Prone Area; Reference to Badulla District

Authors: S. B. D. Samarasinghe, Malini Herath

Abstract:

Participatory planning is a very important process for decision making and choosing the best alternative options for community welfare, development of the society and its interactions among community and professionals. People’s involvement is considered as the key guidance in participatory planning. Presently, Participatory planning is being used in many fields. It's not only limited to planning but also to disaster management, poverty, housing, etc. In the past, Disaster management practice was a top-down approach, but it raised many issues as it was converted to a bottom-up approach. There are several approaches that can aid disaster management. Community-Based Disaster Risk Management (CBDRM) is a very successful participatory approach to risk management that is often successfully applied by other disaster-prone countries. In the local context, CBDRM has been applied to prevent Diseases as well as to prevent disasters such as landslides, tsunamis and floods. From three years before, Sri Lanka has initiated the CBDRM approach to minimize landslide vulnerability. Hence, this study mainly focuses on the impact of CBDRM approaches on landslide hazards. Also to identify their successes and failures from both implementing parties and community. This research is carried out based on a qualitative method combined with a descriptive research approach. A successful framework was prepared via a literature review. Case studies were selected considering landslide CBDRM programs which were implemented by Disaster Management Center and National Building Research Organization in Badulla. Their processes were evaluated. Data collection is done through interviews and informal discussions. Then their ideas were quantified by using the Relative Effectiveness index. The resulting numerical value was used to rank the program effectiveness and their success, failures and impacting factors. Results show that there are several failures among implementing parties and the community. Overcoming those factors can make way for better conduction of future CBDRM programs.

Keywords: community-based disaster risk management, disaster management, preparedness, landslide

Procedia PDF Downloads 146
25393 QSAR, Docking and E-pharmacophore Approach on Novel Series of HDAC Inhibitors with Thiophene Linker as Anticancer Agents

Authors: Harish Rajak, Preeti Patel

Abstract:

HDAC inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. The 3D-QSAR and Pharmacophore modeling studies were performed to identify important pharmacophoric features and correlate 3D-chemical structure with biological activity. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with well-assigned HDAC inhibitory activity was used for 3D-QSAR model development. Best 3D-QSAR model, which is a five PLS factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811) and standard deviation (0.0952). Molecular docking were performed using Histone Deacetylase protein (PDB ID: 1t69) and prepared series of hydroxamic acid based HDAC inhibitors. Docking study of compound 43 show significant binding interactions Ser 276 and oxygen atom of dioxine cap region, Gly 151 and amino group and Asp 267 with carboxyl group of CONHOH, which are essential for anticancer activity. On docking, most of the compounds exhibited better glide score values between -8 to -10.5. We have established structure activity correlation using docking, energetic based pharmacophore modelling, pharmacophore and atom based 3D QSAR model. The results of these studies were further used for the design and testing of new HDAC analogs.

Keywords: Docking, e-pharmacophore, HDACIs, QSAR, Suberoylanilidehydroxamic acid.

Procedia PDF Downloads 298
25392 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models

Authors: Reza Bazargan lari, Mohammad H. Fattahi

Abstract:

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN

Procedia PDF Downloads 368
25391 Topology-Based Character Recognition Method for Coin Date Detection

Authors: Xingyu Pan, Laure Tougne

Abstract:

For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.

Keywords: coin, detection, character recognition, topology

Procedia PDF Downloads 251
25390 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: bioremediation, Green Remediation, phytoremediation, remediation technologies, soil

Procedia PDF Downloads 228