Search results for: text preprocessing
1192 Searching Linguistic Synonyms through Parts of Speech Tagging
Authors: Faiza Hussain, Usman Qamar
Abstract:
Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics
Procedia PDF Downloads 3081191 ExactData Smart Tool For Marketing Analysis
Authors: Aleksandra Jonas, Aleksandra Gronowska, Maciej Ścigacz, Szymon Jadczak
Abstract:
Exact Data is a smart tool which helps with meaningful marketing content creation. It helps marketers achieve this by analyzing the text of an advertisement before and after its publication on social media sites like Facebook or Instagram. In our research we focus on four areas of natural language processing (NLP): grammar correction, sentiment analysis, irony detection and advertisement interpretation. Our research has identified a considerable lack of NLP tools for the Polish language, which specifically aid online marketers. In light of this, our research team has set out to create a robust and versatile NLP tool for the Polish language. The primary objective of our research is to develop a tool that can perform a range of language processing tasks in this language, such as sentiment analysis, text classification, text correction and text interpretation. Our team has been working diligently to create a tool that is accurate, reliable, and adaptable to the specific linguistic features of Polish, and that can provide valuable insights for a wide range of marketers needs. In addition to the Polish language version, we are also developing an English version of the tool, which will enable us to expand the reach and impact of our research to a wider audience. Another area of focus in our research involves tackling the challenge of the limited availability of linguistically diverse corpora for non-English languages, which presents a significant barrier in the development of NLP applications. One approach we have been pursuing is the translation of existing English corpora, which would enable us to use the wealth of linguistic resources available in English for other languages. Furthermore, we are looking into other methods, such as gathering language samples from social media platforms. By analyzing the language used in social media posts, we can collect a wide range of data that reflects the unique linguistic characteristics of specific regions and communities, which can then be used to enhance the accuracy and performance of NLP algorithms for non-English languages. In doing so, we hope to broaden the scope and capabilities of NLP applications. Our research focuses on several key NLP techniques including sentiment analysis, text classification, text interpretation and text correction. To ensure that we can achieve the best possible performance for these techniques, we are evaluating and comparing different approaches and strategies for implementing them. We are exploring a range of different methods, including transformers and convolutional neural networks (CNNs), to determine which ones are most effective for different types of NLP tasks. By analyzing the strengths and weaknesses of each approach, we can identify the most effective techniques for specific use cases, and further enhance the performance of our tool. Our research aims to create a tool, which can provide a comprehensive analysis of advertising effectiveness, allowing marketers to identify areas for improvement and optimize their advertising strategies. The results of this study suggest that a smart tool for advertisement analysis can provide valuable insights for businesses seeking to create effective advertising campaigns.Keywords: NLP, AI, IT, language, marketing, analysis
Procedia PDF Downloads 871190 A System to Detect Inappropriate Messages in Online Social Networks
Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty
Abstract:
As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.Keywords: machine learning, online social networks, soft text classifier, support vector machine
Procedia PDF Downloads 5091189 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 1381188 Preserving Digital Arabic Text Integrity Using Blockchain Technology
Authors: Zineb Touati Hamad, Mohamed Ridda Laouar, Issam Bendib
Abstract:
With the massive development of technology today, the Arabic language has gained a prominent position among the languages most used for writing articles, expressing opinions, and also for citing in many websites, defying its growing sensitivity in terms of structure, language skills, diacritics, writing methods, etc. In the context of the spread of the Arabic language, the Holy Quran represents the most prevalent Arabic text today in many applications and websites for citation purposes or for the reading and learning rituals. The Quranic verses / surahs are published quickly and without cost, which may cause great concern to ensure the safety of the content from tampering and alteration. To protect the content of texts from distortion, it is necessary to refer to the original database and conduct a comparison process to extract the percentage of distortion. The disadvantage of this method is that it takes time, in addition to the lack of any guarantee on the integrity of the database itself as it belongs to one central party. Blockchain technology today represents the best way to maintain immutable content. Blockchain is a distributed database that stores information in blocks linked to each other through encryption, where the modification of each block can be easily known. To exploit these advantages, we seek in this paper to justify the use of this technique in preserving the integrity of Arabic texts sensitive to change by building a decentralized framework to authenticate and verify the integrity of the digital Quranic verses/surahs spread on websites.Keywords: arabic text, authentication, blockchain, integrity, quran, verification
Procedia PDF Downloads 1651187 Lab Support: A Computer Laboratory Class Management Support System
Authors: Eugenia P. Ramirez, Kevin Matthe Caramancion, Mia Eleazar
Abstract:
Getting the attention of students is a constant challenge to the instructors/lecturers. Although in the computer laboratories some networking and entertainment websites are blocked, yet, these websites have unlimited ways of attracting students to get into it. Thus, when an instructor gives a specific set of instructions, some students may not be able to follow sequentially the steps that are given. The instructor has to physically go to the specific remote terminal and show the student the details. Sometimes, during an examination in laboratory set-up, a proctor may prefer to give detailed and text-written instructions rather than verbal instructions. Even the mere calling of a specific student at any time will distract the whole class especially when activities are being performed. What is needed is : An application software that is able to lock the student's monitor and at the same time display the instructor’s screen; a software that is powerful enough to process in its side alone and manipulate a specific user’s terminal in terms of free configuration that is, without restrictions at the server level is a required functionality for a modern and optimal server structure; a software that is able to send text messages to students, per terminal or in group will be a solution. These features are found in LabSupport. This paper outlines the LabSupport application software framework to efficiently manage computer laboratory sessions and will include different modules: screen viewer, demonstration mode, monitor locking system, text messaging, and class management. This paper's ultimate aim is to provide a system that increases instructor productivity.Keywords: application software, broadcast messaging, class management, locking system
Procedia PDF Downloads 4391186 News Publication on Facebook: Emotional Analysis of Hooks
Authors: Gemma Garcia Lopez
Abstract:
The goal of this study is to perform an emotional analysis of the hooks used in Facebook by three of the most important daily newspapers in the USA. These hook texts are used to get the user's attention and invite him to read the news and linked contents. Thanks to the emotional analysis in text, made with the tool of IBM, Tone Analyzer, we discovered that more than 30% of the hooks can be classified emotionally as joy, sadness, anger or fear. This study gathered the publications made by The New York Times, USA Today and The Washington Post during a random day. The results show that the choice of words by the journalist, can expose the reader to different emotions before clicking on the content. In the three cases analyzed, the absence of emotions in some cases, and the presence of emotions in text in others, appear in very similar percentages. Therefore, beyond the objectivity and veracity of the content, a new factor could come into play: the emotional influence on the reader as a mediatic manipulation tool.Keywords: emotional analysis of newspapers hooks, emotions on Facebook, newspaper hooks on Facebook, news publication on Facebook
Procedia PDF Downloads 1551185 Identifying Concerned Citizen Communication Style During the State Parliamentary Elections in Bavaria
Authors: Volker Mittendorf, Andre Schmale
Abstract:
In this case study, we want to explore the Twitter-use of candidates during the state parliamentary elections-year 2018 in Bavaria, Germany. This paper focusses on the seven parties that probably entered the parliament. Against this background, the paper classifies the use of language as populism which itself is considered as a political communication style. First, we determine the election campaigns which started in the years 2017 on Twitter, after that we categorize the posting times of the different direct candidates in order to derive ideal types from our empirical data. Second, we have done the exploration based on the dictionary of concerned citizens which contains German political language of the right and the far right. According to that, we are analyzing the corpus with methods of text mining and social network analysis, and afterwards we display the results in a network of words of concerned citizen communication style (CCCS).Keywords: populism, communication style, election, text mining, social media
Procedia PDF Downloads 1491184 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 961183 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media
Procedia PDF Downloads 1061182 L1 Poetry and Moral Tales as a Factor Affecting L2 Acquisition in EFL Settings
Authors: Arif Ahmed Mohammed Al-Ahdal
Abstract:
Poetry, tales, and fables have always been a part of the L1 repertoire and one that takes the learners to another amazing and fascinating world of imagination. The storytelling class and the genre of poems are activities greatly enjoyed by all age groups. The very significant idea behind their inclusion in the language curriculum is to sensitize young minds to a wide range of human emotions that are believed to greatly contribute to building their social resilience, emotional stability, empathy towards fellow creatures, and literacy. Quite certainly, the learning objective at this stage is not language acquisition (though it happens as an automatic process) but getting the young learners to be acquainted with an entire spectrum of what may be called the ‘noble’ abilities of the human race. They enrich their very existence, inspiring them to unearth ‘selves’ that help them as adults and enable them to co-exist fruitfully and symbiotically with their fellow human beings. By extension, ‘higher’ training in these literature genres shows the universality of human emotions, sufferings, aspirations, and hopes. The current study is anchored on the Reader-Response-Theory in literature learning, which suggests that the reader reconstructs work and re-enacts the author's creative role. Reiteratingly, literary works provide clues or verbal symbols in a linguistic system, widely accepted by everyone who shares the language, but everyone reads their own life experiences and situations into them. The significance of words depends on the reader, even if they have a typical relationship. In every reading, there is an interaction between the reader and the text. The process of reading is an experience in which the reader tries to comprehend the literary work, which surpasses its full potential since it provides emotional and intellectual reactions that are not anticipated from the document but cannot be affirmed just by the reader as a part of the text. The idea is that the text forms the basis of a unifying experience. A reinterpretation of the literary text may transform it into a guiding principle to respond to actual experiences and personal memories. The impulses delivered to the reader vary according to poetry or texts; nevertheless, the readers differ considerably even with the same material. Previous studies confirm that poetry is a useful tool for learning a language. This present paper works on these hypotheses and proposes to study the impetus given to L2 learning as a factor of exposure to poetry and meaningful stories in L1. The driving force behind the choice of this topic is the first-hand experience that the researcher had while teaching a literary text to a group of BA students who, as a reaction to the text, initially burst into tears and ultimately turned the class into an interactive session. The study also intends to compare the performance of male and female students post intervention using pre and post-tests, apart from undertaking a detailed inquiry via interviews with college learners of English to understand how L1 literature plays a great role in the acquisition of L2.Keywords: SLA, literary text, poetry, tales, affective factors
Procedia PDF Downloads 781181 A New Method to Reduce 5G Application Layer Payload Size
Authors: Gui Yang Wu, Bo Wang, Xin Wang
Abstract:
Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.Keywords: 5G, JSON, payload size, service-based interface
Procedia PDF Downloads 1871180 Ancient Port Towns of Western Coastal Plain in Kerala, India: From Manuscripts to Material Remains
Authors: Saravanan R.
Abstract:
The landscape of Kerala was paved way for the growth of maritime contacts with foreigners. Pepper was the important exported item from here because this region only having pepper production on the West Coast of India. The paper is attempting to analysis the available references of ancient port town in Kerala. It is merely preliminary investigation about Early Historic urban centres with the available literary evidences and excavations reports that would help us to understand the ancient port town in Kerala coast. There were number of ancient port towns mentioned in classical Greek and Sangam literatures. For instance, Naura, Tyndis, Nelcynda, Bacare and Muziris were the major sites of Kerala which represented only in the text but not able to locate these sites on the ground so far. There are lot of studies on site based as well as state based regarding the various aspects of ancient port towns. But, it is mainly focussed on factual narration and theoretical interpretation.Keywords: urban centre, amphora, Muziris, port town, Sangam text and trade
Procedia PDF Downloads 711179 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document
Procedia PDF Downloads 1591178 Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules
Authors: Mohsen Maraoui
Abstract:
In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results.Keywords: concept extraction, conceptual network formalism, fuzzy association rules, multilingual thesaurus, semantic indexing
Procedia PDF Downloads 1411177 Direct Blind Separation Methods for Convolutive Images Mixtures
Authors: Ahmed Hammed, Wady Naanaa
Abstract:
In this paper, we propose a general approach to deal with the problem of a convolutive mixture of images. We use a direct blind source separation method by adding only one non-statistical justified constraint describing the relationships between different mixing matrix at the aim to make its resolution easy. This method can be applied, provided that this constraint is known, to degraded document affected by the overlapping of text-patterns and images. This is due to chemical and physical reactions of the materials (paper, inks,...) occurring during the documents aging, and other unpredictable causes such as humidity, microorganism infestation, human handling, etc. We will demonstrate that this problem corresponds to a convolutive mixture of images. Subsequently, we will show how the validation of our method through numerical examples. We can so obtain clear images from unreadable ones which can be caused by pages superposition, a phenomenon similar to that we find every often in archival documents.Keywords: blind source separation, convoluted mixture, degraded documents, text-patterns overlapping
Procedia PDF Downloads 3231176 Scattered Places in Stories Singularity and Pattern in Geographic Information
Abstract:
Increased knowledge about the nature of place and the conditions under which space becomes place is a key factor for better urban planning and place-making. Although there is a broad consensus on the relevance of this knowledge, difficulties remain in relating the theoretical framework about place and urban management. Issues related to representation of places are among the greatest obstacles to overcome this gap. With this critical discussion, based on literature review, we intended to explore, in a common framework for geographical analysis, the potential of stories to spell out place meanings, bringing together qualitative text analysis and text mining in order to capture and represent the singularity contained in each person's life history, and the patterns of social processes that shape places. The development of this reasoning is based on the extensive geographical thought about place, and in the theoretical advances in the field of Geographic Information Science (GISc).Keywords: discourse analysis, geographic information science place, place-making, stories
Procedia PDF Downloads 1991175 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction
Procedia PDF Downloads 3831174 Metadiscourse in EFL, ESP and Subject-Teaching Online Courses in Higher Education
Authors: Maria Antonietta Marongiu
Abstract:
Propositional information in discourse is made coherent, intelligible, and persuasive through metadiscourse. The linguistic and rhetorical choices that writers/speakers make to organize and negotiate content matter are intended to help relate a text to its context. Besides, they help the audience to connect to and interpret a text according to the values of a specific discourse community. Based on these assumptions, this work aims to analyse the use of metadiscourse in the spoken performance of teachers in online EFL, ESP, and subject-teacher courses taught in English to non-native learners in higher education. In point of fact, the global spread of Covid 19 has forced universities to transition their in-class courses to online delivery. This has inevitably placed on the instructor a heavier interactional responsibility compared to in-class courses. Accordingly, online delivery needs greater structuring as regards establishing the reader/listener’s resources for text understanding and negotiating. Indeed, in online as well as in in-class courses, lessons are social acts which take place in contexts where interlocutors, as members of a community, affect the ways ideas are presented and understood. Following Hyland’s Interactional Model of Metadiscourse (2005), this study intends to investigate Teacher Talk in online academic courses during the Covid 19 lock-down in Italy. The selected corpus includes the transcripts of online EFL and ESP courses and subject-teachers online courses taught in English. The objective of the investigation is, firstly, to ascertain the presence of metadiscourse in the form of interactive devices (to guide the listener through the text) and interactional features (to involve the listener in the subject). Previous research on metadiscourse in academic discourse, in college students' presentations in EAP (English for Academic Purposes) lessons, as well as in online teaching methodology courses and MOOC (Massive Open Online Courses) has shown that instructors use a vast array of metadiscoursal features intended to express the speakers’ intentions and standing with respect to discourse. Besides, they tend to use directions to orient their listeners and logical connectors referring to the structure of the text. Accordingly, the purpose of the investigation is also to find out whether metadiscourse is used as a rhetorical strategy by instructors to control, evaluate and negotiate the impact of the ongoing talk, and eventually to signal their attitudes towards the content and the audience. Thus, the use of metadiscourse can contribute to the informative and persuasive impact of discourse, and to the effectiveness of online communication, especially in learning contexts.Keywords: discourse analysis, metadiscourse, online EFL and ESP teaching, rhetoric
Procedia PDF Downloads 1291173 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3231172 The Oral Production of University EFL Students: An Analysis of Tasks, Format, and Quality in Foreign Language Development
Authors: Vera Lucia Teixeira da Silva, Sandra Regina Buttros Gattolin de Paula
Abstract:
The present study focuses on academic literacy and addresses the impact of semantic-discursive resources on the constitution of genres that are produced in such context. The research considers the development of writing in the academic context in Portuguese. Researches that address academic literacy and the characteristics of the texts produced in this context are rare, mainly with focus on the development of writing, considering three variables: the constitution of the writer, the perception of the reader/interlocutor and the organization of the informational text flow. The research aims to map the semantic-discursive resources of the written register in texts of several genres and produced by students in the first semester of the undergraduate course in Letters. The hypothesis raised is that writing in the academic environment is not a recurrent literacy practice for these learners and can be explained by the ontogenetic and phylogenetic nature of language development. Qualitative in nature, the present research has as empirical data texts produced in a half-yearly course of Reading and Textual Production; these data result from the proposition of four different writing proposals, in a total of 600 texts. The corpus is analyzed based on semantic-discursive resources, seeking to contemplate relevant aspects of language (grammar, discourse and social context) that reveal the choices made in the reader/writer interrelationship and the organizational flow of the Text. Among the semantic-discursive resources, the analysis includes three resources, including (a) appraisal and negotiation to understand the attitudes negotiated (roles of the participants of the discourse and their relationship with the other); (b) ideation to explain the construction of the experience (activities performed and participants); and (c) periodicity to outline the flow of information in the organization of the text according to the genre it instantiates. The results indicate the organizational difficulties of the flow of the text information. Cartography contributes to the understanding of the way writers use language in an effort to present themselves, evaluate someone else’s work, and communicate with readers.Keywords: academic writing, Portuguese mother tongue, semantic-discursive resources, academic context
Procedia PDF Downloads 1281171 Topic-to-Essay Generation with Event Element Constraints
Authors: Yufen Qin
Abstract:
Topic-to-Essay generation is a challenging task in Natural language processing, which aims to generate novel, diverse, and topic-related text based on user input. Previous research has overlooked the generation of articles under the constraints of event elements, resulting in issues such as incomplete event elements and logical inconsistencies in the generated results. To fill this gap, this paper proposes an event-constrained approach for a topic-to-essay generation that enforces the completeness of event elements during the generation process. Additionally, a language model is employed to verify the logical consistency of the generated results. Experimental results demonstrate that the proposed model achieves a better BLEU-2 score and performs better than the baseline in terms of subjective evaluation on a real dataset, indicating its capability to generate higher-quality topic-related text.Keywords: event element, language model, natural language processing, topic-to-essay generation.
Procedia PDF Downloads 2371170 Examining the Dubbing Strategies Used in the Egyptian Dubbed Version of Mulan (1998)
Authors: Shaza Melies, Saadeya Salem, Seham Kareh
Abstract:
Cartoon films are multisemiotic as various modes integrate in the production of meaning. This study aims to examine the cultural and linguistic specific references in the Egyptian dubbed cartoon film Mulan. The study examines the translation strategies implemented in the Egyptian dubbed version of Mulan to meet the cultural preferences of the audience. The study reached the following findings: Using the traditional translation strategies does not deliver the intended meaning of the source text and causes loss in the intended humor. As a result, the findings showed that in the dubbed version, translators tend to omit, change, or add information to the target text to be accepted by the audience. The contrastive analysis of the Mulan (English and dubbed versions) proves the connotations that the dubbing has taken to be accepted by the target audience. Cartoon films are multisemiotic as various modes integrate in the production of meaning. This study aims to examine the cultural and linguistic specific references in the Egyptian dubbed cartoon film Mulan. The study examines the translation strategies implemented in the Egyptian dubbed version of Mulan to meet the cultural preferences of the audience. The study reached the following findings: Using the traditional translation strategies does not deliver the intended meaning of the source text and causes loss in the intended humor. As a result, the findings showed that in the dubbed version, translators tend to omit, change, or add information to the target text to be accepted by the audience. The contrastive analysis of the Mulan (English and dubbed versions) proves the connotations that the dubbing has taken to be accepted by the target audience.Keywords: domestication, dubbing, Mulan, translation theories
Procedia PDF Downloads 1371169 Translation Quality Assessment: Proposing a Linguistic-Based Model for Translation Criticism with Considering Ideology and Power Relations
Authors: Mehrnoosh Pirhayati
Abstract:
In this study, the researcher tried to propose a model of Translation Criticism (TC) regarding the phenomenon of Translation Quality Assessment (TQA). With changing the general view on re/writing as an illegal act, the researcher defined a scale for the act of translation and determined the redline of translation with other products. This research attempts to show TC as a related phenomenon to TQA. This study shows that TQA with using the rules and factors of TC as depicted in both product-oriented analysis and process-oriented analysis, determines the orientation or the level of the quality of translation. This study also depicts that TC, regarding TQA’s perspective, reveals the aim of the translation of original text and the root of ideological manipulation and re/writing. On the other hand, this study stresses the existence of a direct relationship between the linguistic materials and semiotic codes of a text or book. This study can be fruitful for translators, scholars, translation criticizers, and translation quality assessors, and also it is applicable in the area of pedagogy.Keywords: a model of translation criticism, a model of translation quality assessment, critical discourse analysis (CDA), re/writing, translation criticism (TC), translation quality assessment (TQA)
Procedia PDF Downloads 3211168 Intentionality and Context in the Paradox of Reward and Punishment in the Meccan Surahs
Authors: Asmaa Fathy Mohamed Desoky
Abstract:
The subject of this research is the inference of intentionality and context from the verses of the Meccan surahs, which include the paradox of reward and punishment, applied to the duality of disbelief and faith; The Holy Quran is the most important sacred linguistic reference in the Arabic language because it is rich in all the rules of the language in addition to the linguistic miracle. the Quranic text is a first-class intentional text, sent down to convey something to the recipient (Muhammad first and then communicates it to Muslims) and influence and convince him, which opens the door to many Ijtihad; a desire to reach the will of Allah and his intention from his words Almighty. Intentionality as a term is one of the most important deliberative terms, but it will be modified to suit the Quranic discourse, especially since intentionality is related to intention-as it turned out earlier - that is, it turns the reader or recipient into a predictor of the unseen, and this does not correspond to the Quranic discourse. Hence, in this research, a set of dualities will be identified that will be studied in order to clarify the meaning of them according to the opinions of previous interpreters in accordance with the sanctity of the Quranic discourse, which is intentionally related to the dualities of reward and punishment, such as: the duality of disbelief and faith, noting that it is a duality that combines opposites and Paradox on one level, because it may be an external paradox between action and reaction, and may be an internal paradox in matters related to faith, and may be a situational paradox in a specific event or a certain fact. It should be noted that the intention of the Qur'anic text is fully realized in form and content, in whole and in part, and this research includes a presentation of some applied models of the issues of intention and context that appear in the verses of the paradox of reward and punishment in the Meccan surahs in Quraan.Keywords: intentionality, context, the paradox, reward, punishment, Meccan surahs
Procedia PDF Downloads 801167 Switching to the Latin Alphabet in Kazakhstan: A Brief Overview of Character Recognition Methods
Authors: Ainagul Yermekova, Liudmila Goncharenko, Ali Baghirzade, Sergey Sybachin
Abstract:
In this article, we address the problem of Kazakhstan's transition to the Latin alphabet. The transition process started in 2017 and is scheduled to be completed in 2025. In connection with these events, the problem of recognizing the characters of the new alphabet is raised. Well-known character recognition programs such as ABBYY FineReader, FormReader, MyScript Stylus did not recognize specific Kazakh letters that were used in Cyrillic. The author tries to give an assessment of the well-known method of character recognition that could be in demand as part of the country's transition to the Latin alphabet. Three methods of character recognition: template, structured, and feature-based, are considered through the algorithms of operation. At the end of the article, a general conclusion is made about the possibility of applying a certain method to a particular recognition process: for example, in the process of population census, recognition of typographic text in Latin, or recognition of photos of car numbers, store signs, etc.Keywords: text detection, template method, recognition algorithm, structured method, feature method
Procedia PDF Downloads 1881166 Unsupervised Domain Adaptive Text Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, unsupervised training, text retrieval
Procedia PDF Downloads 731165 A Method for Clinical Concept Extraction from Medical Text
Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg
Abstract:
Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization
Procedia PDF Downloads 1351164 Artificial Intelligence Applications in Kahoot!
Authors: Jana, Walah, Salma, Dareen
Abstract:
This study looks at how the game-based learning platform Kahoot! has changed education, with a particular emphasis on how it incorporates artificial intelligence (AI). From humanly made questions to AI-driven features that improve the learning process, Kahoot! has changed since its 2013 introduction. The software successfully engages educators and students by delivering adaptive learning paths, regulating content, and offering individualized tests. This study also highlights the AI features of Kahoot! by contrasting it with comparable platforms like Quizizz, Socrative, Gimkit, and Nearpod. User satisfaction with Kahoot!'s "PDF to Story" and "Story Text Enhancer" functions ranges from moderate to high, according to a review of user input; yet, there are still issues with consistent accuracy and usability. The results demonstrate how AI can improve learning's effectiveness, adaptability, and interactivity while offering useful insights for educators and developers seeking to optimize educational tools.Keywords: PDF to story feature, story text enhancer, AI-driven learning, interactive content creation
Procedia PDF Downloads 61163 Use and Relationship of Shell Nouns as Cohesive Devices in the Quality of Second Language Writing
Authors: Kristine D. de Leon, Junifer A. Abatayo, Jose Cristina M. Pariña
Abstract:
The current study is a comparative analysis of the use of shell nouns as a cohesive device (CD) in an English for Second Language (ESL) setting in order to identify their use and relationship in the quality of second language (L2) writing. As these nouns were established to anticipate the meaning within, across or outside the text, their use has fascinated writing researchers. The corpus of the study included published articles from reputable journals and graduate students’ papers in order to analyze the frequency of shell nouns using “highly prevalent” nouns in the academic community, to identify the different lexicogrammatical patterns where these nouns occur and to the functions connected with these patterns. The result of the study implies that published authors used more shell nouns in their paper than graduate students. However, the functions of the different lexicogrammatical patterns for the frequently occurring shell nouns are somewhat similar. These results could help students in enhancing the cohesion of their text and in comprehending it.Keywords: anaphoric, cataphoric, lexico-grammatical, shell nouns
Procedia PDF Downloads 188