Search results for: squid processing by-products
3509 Neural Rendering Applied to Confocal Microscopy Images
Authors: Daniel Li
Abstract:
We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing
Procedia PDF Downloads 6553508 Biologic Materials- Ecological Living Network
Authors: Ina Dajci
Abstract:
Biologic Materials presents groundbreaking transdisciplinary research aimed at fostering new collaborative models across the Built Environment, Forestry, and Agriculture sectors. This initiative seeks to establish innovative paradigms for local and global material flows by developing a biocompatible, regenerative material economy. The project focuses on creating materials derived from biowaste and silvicultural practices, ensuring the preservation of endangered indigenous and vernacular techniques through the integration of emerging biosciences. By utilizing biomaterials sourced from agricultural waste and forest byproducts, the initiative incorporates fabrication methods recognized by UNESCO as ‘intangible cultural heritage of humanity,’ which are currently at risk. The structural, mechanical, and environmental properties of these materials are enhanced through advanced CAD-CAM fabrication, along with energy-efficient biochemical and bacterial processes that promote healthy indigo coloration. Furthermore, the integration of AI technologies in species selection facilitates a novel partnership model, enabling designers to collaborate effectively with forest managers and silviculture practitioners. This collaborative approach not only optimizes the use of plant-based materials but also enhances biodiversity and climate resilience in regional ecosystems. Overall, this project embodies a holistic strategy for addressing environmental challenges while revitalizing traditional practices and fostering sustainable innovation.Keywords: material, architecture, culture, heritage, ecology, environment
Procedia PDF Downloads 93507 Vision Aided INS for Soft Landing
Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj
Abstract:
The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering
Procedia PDF Downloads 4653506 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms
Authors: Samantha Rix
Abstract:
The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.Keywords: cognitive processing, language learners, language proficiency, learning strategies
Procedia PDF Downloads 4733505 A Taxonomic Study on Cephalopods (Mollusca: Cephalopoda) from the Northern Bay of Bengal
Authors: Foyezunnesa Setu, S. M. Sharifuzzaman
Abstract:
Cephalopods, belonging to the taxonomic class Cephalopoda under the phylum Mollusca, have a global distribution and are particularly common in the coastal waters of Bangladesh, specifically in the southeast and southwest regions. Identifying them can be difficult due to their pliable anatomical characteristics. Due to the presence of concealed cephalopod species within the orders Sepioidea, Teuthoidea, and Octopoda, these groupings of invertebrates, which share common characteristics, are frequently misidentified as distinct entities. Until now, cephalopods have been ignored because there is not enough knowledge about the specific species and the necessary preliminary research has not been done. This study offers a systematic description of various cephalopod species found along the south eastern coast of Bangladesh. A combined total of 25 cuttlefish specimens, four squid specimens, and five octopus specimens were gathered from the shores of Saint Martin's Island and Cox's Bazar. Based on morphological analysis, a total of 14 cephalopod species are identified. These species include Sepia aculeata, Sepia esculenta, Sepia pharaonis, Sepia prashadi, Sepiella inermis, Sepiella japonica, Uroteuthis duvauceli, Doryteuthis singhalensis, Sepioteuthis sepioidea, Eupryma stenodactyla, Amphioctopus aegina, Callistoctopus macropus, Octopus ceynea, and Octopus vulgaris. Six newly discovered species, including Sepia prashadi, Sepiella japonica, Sepioteuthis sepioidea, Eupryma stenodactyla, Callistoctopus macropus, and Octopus ceynea, have been identified in Bangladesh. Taxonomically, the identification of cephalopods is difficult due to the significant resemblance between species and the scarcity of information and preparatory research. This study offers significant insights about the cephalopod fauna found in the northern region of the Bay of Bengal.Keywords: cephalopods, new records, northern bay of bengal, taxonomic identification
Procedia PDF Downloads 873504 Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods
Authors: Mohammad Khosravi, Ali Kiani, Behroz Dastar, Parvin Showrang
Abstract:
Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.Keywords: antitrypsin, gamma anti-nutritional components, phytic acid, radiation
Procedia PDF Downloads 3423503 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor
Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles
Procedia PDF Downloads 3133502 Analyzing the Risk Based Approach in General Data Protection Regulation: Basic Challenges Connected with Adapting the Regulation
Authors: Natalia Kalinowska
Abstract:
The adoption of the General Data Protection Regulation, (GDPR) finished the four-year work of the European Commission in this area in the European Union. Considering far-reaching changes, which will be applied by GDPR, the European legislator envisaged two-year transitional period. Member states and companies have to prepare for a new regulation until 25 of May 2018. The idea, which becomes a new look at an attitude to data protection in the European Union is risk-based approach. So far, as a result of implementation of Directive 95/46/WE, in many European countries (including Poland) there have been adopted very particular regulations, specifying technical and organisational security measures e.g. Polish implementing rules indicate even how long password should be. According to the new approach from May 2018, controllers and processors will be obliged to apply security measures adequate to level of risk associated with specific data processing. The risk in GDPR should be interpreted as the likelihood of a breach of the rights and freedoms of the data subject. According to Recital 76, the likelihood and severity of the risk to the rights and freedoms of the data subject should be determined by reference to the nature, scope, context and purposes of the processing. GDPR does not indicate security measures which should be applied – in recitals there are only examples such as anonymization or encryption. It depends on a controller’s decision what type of security measures controller considered as sufficient and he will be responsible if these measures are not sufficient or if his identification of risk level is incorrect. Data protection regulation indicates few levels of risk. Recital 76 indicates risk and high risk, but some lawyers think, that there is one more category – low risk/now risk. Low risk/now risk data processing is a situation when it is unlikely to result in a risk to the rights and freedoms of natural persons. GDPR mentions types of data processing when a controller does not have to evaluate level of risk because it has been classified as „high risk” processing e.g. processing on a large scale of special categories of data, processing with using new technologies. The methodology will include analysis of legal regulations e.g. GDPR, the Polish Act on the Protection of personal data. Moreover: ICO Guidelines and articles concerning risk based approach in GDPR. The main conclusion is that an appropriate risk assessment is a key to keeping data safe and avoiding financial penalties. On the one hand, this approach seems to be more equitable, not only for controllers or processors but also for data subjects, but on the other hand, it increases controllers’ uncertainties in the assessment which could have a direct impact on incorrect data protection and potential responsibility for infringement of regulation.Keywords: general data protection regulation, personal data protection, privacy protection, risk based approach
Procedia PDF Downloads 2513501 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 1513500 Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds
Authors: А. V. Panko, Е. V. Ablets, I. G. Kovzun, М. А. Ilyashov
Abstract:
Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nano technological initiatives in improvement of such processes. Considered ideas of role of nano particles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities excelling known methods of direct iron reduction from iron ores and metallurgical slimes.Keywords: iron ores, solid-phase reduction, nanoparticles in reduction and purification of iron from silicon and phosphorus, wasteless method of ores processing
Procedia PDF Downloads 4843499 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality
Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye
Abstract:
When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.Keywords: word embeddings, k-mer embedding, dimensionality reduction
Procedia PDF Downloads 1353498 Cost Effective Real-Time Image Processing Based Optical Mark Reader
Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar
Abstract:
In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding
Procedia PDF Downloads 1713497 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance
Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar
Abstract:
The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth
Procedia PDF Downloads 3303496 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear
Procedia PDF Downloads 2963495 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor
Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis
Procedia PDF Downloads 2713494 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 123493 High-Temperature Behavior of Boiler Steel by Friction Stir Processing
Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar
Abstract:
High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing
Procedia PDF Downloads 2353492 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples
Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann
Abstract:
Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing
Procedia PDF Downloads 2823491 Understanding the Heart of the Matter: A Pedagogical Framework for Apprehending Successful Second Language Development
Authors: Cinthya Olivares Garita
Abstract:
Untangling language processing in second language development has been either a taken-for-granted and overlooked task for some English language teaching (ELT) instructors or a considerable feat for others. From the most traditional language instruction to the most communicative methodologies, how to assist L2 learners in processing language in the classroom has become a challenging matter in second language teaching. Amidst an ample array of methods, strategies, and techniques to teach a target language, finding a suitable model to lead learners to process, interpret, and negotiate meaning to communicate in a second language has imposed a great responsibility on language teachers; committed teachers are those who are aware of their role in equipping learners with the appropriate tools to communicate in the target language in a 21stcentury society. Unfortunately, one might find some English language teachers convinced that their job is only to lecture students; others are advocates of textbook-based instruction that might hinder second language processing, and just a few might courageously struggle to facilitate second language learning effectively. Grounded on the most representative empirical studies on comprehensible input, processing instruction, and focus on form, this analysis aims to facilitate the understanding of how second language learners process and automatize input and propose a pedagogical framework for the successful development of a second language. In light of this, this paper is structured to tackle noticing and attention and structured input as the heart of processing instruction, comprehensible input as the missing link in second language learning, and form-meaning connections as opposed to traditional grammar approaches to language teaching. The author finishes by suggesting a pedagogical framework involving noticing-attention-comprehensible-input-form (NACIF based on their acronym) to support ELT instructors, teachers, and scholars on the challenging task of facilitating the understanding of effective second language development.Keywords: second language development, pedagogical framework, noticing, attention, comprehensible input, form
Procedia PDF Downloads 263490 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents
Authors: Subir Gupta, Subhas Ganguly
Abstract:
In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure
Procedia PDF Downloads 1973489 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.Keywords: fake news detection, natural language processing, machine learning, classification techniques.
Procedia PDF Downloads 1653488 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods
Authors: Abdelghani Chahmi
Abstract:
This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation
Procedia PDF Downloads 1383487 Normalized P-Laplacian: From Stochastic Game to Image Processing
Authors: Abderrahim Elmoataz
Abstract:
More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems
Procedia PDF Downloads 5113486 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.Keywords: connected components, embrace threads, local weighted kernel, structuring elements
Procedia PDF Downloads 4373485 Parallel Processing in near Absence of Attention: A Study Using Dual-Task Paradigm
Authors: Aarushi Agarwal, Tara Singh, I.L Singh, Anju Lata Singh, Trayambak Tiwari
Abstract:
Simple discrimination in near absence of attention has been widely observed. Dual-task studies with natural scenes studies have been claimed as being preattentive in nature that facilitated categorization simultaneously with the attentional demanding task. So in this study, multiple images at the periphery are presented, initiating parallel processing in near absence of attention. For the central demanding task rotated letters were presented in both conditions, while in periphery natural and animal images were presented. To understand the breakpoint of ability to perform in near absence of attention one, two and three peripheral images were presented simultaneously with central task and subjects had to respond when all belong to the same category. Individual participant performance did not show a significant difference in both conditions central and peripheral task when the single peripheral image was shown. In case of two images high-level parallel processing could take place with little attentional resources. The eye tracking results supports the evidence as no major saccade was made in a large number of trials. Three image presentations proved to be a breaking point of the capacities to perform outside attentional assistance as participants showed a confused eye gaze pattern which failed to make the natural and animal image discriminations. Thus, we can conclude attention and awareness being independent mechanisms having limited capacities.Keywords: attention, dual task pardigm, parallel processing, break point, saccade
Procedia PDF Downloads 2173484 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm
Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.
Abstract:
Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control
Procedia PDF Downloads 1283483 Viability of Rice Husk Ash Concrete Brick/Block from Green Electricity in Bangladesh
Authors: Mohammad A. N. M. Shafiqul Karim
Abstract:
As a developing country, Bangladesh has to face numerous challenges. Self Independence in electricity, contributing to climate change by reducing carbon emission and bringing the backward population of society to the mainstream is more challenging for them. Therefore, it is essential to ensure recycled use of local products to the maximum level in every sector. Some private organizations have already worked alongside government to bring the backward population to the mainstream by developing their financial capacities. As rice husk is the largest single category of the total energy supply in Bangladesh. As part of this strategy, rice husk can play a great as a promising renewable energy source, which is readily available, has considerable environmental benefits and can produce electricity and ensure multiple uses of byproducts in construction technology. For the first time in Bangladesh, an experimental multidimensional project depending on Rice Husk Electricity and Rice Husk Ash (RHA) concrete brick/block under Green Eco-Tech Limited has already been started. Project analysis, opportunity, sustainability, the high monitoring component, limitations and finally evaluated data reflecting the viability of establishing more projects using rice husk are discussed in this paper. The by-product of rice husk from the production of green electricity, RHA, can be used for making, in particular, RHA concrete brick/block in Bangladeshi aspects is also discussed here.Keywords: project analysis, rice husk, rice husk ash concrete brick/block, compressive strength of rice husk ash concrete brick/block
Procedia PDF Downloads 2953482 Short-Term Effects of an Open Monitoring Meditation on Cognitive Control and Information Processing
Authors: Sarah Ullrich, Juliane Rolle, Christian Beste, Nicole Wolff
Abstract:
Inhibition and cognitive flexibility are essential parts of executive functions in our daily lives, as they enable the avoidance of unwanted responses or selectively switch between mental processes to generate appropriate behavior. There is growing interest in improving inhibition and response selection through brief mindfulness-based meditations. Arguably, open-monitoring meditation (OMM) improves inhibitory and flexibility performance by optimizing cognitive control and information processing. Yet, the underlying neurophysiological processes have been poorly studied. Using the Simon-Go/Nogo paradigm, the present work examined the effect of a single 15-minute smartphone app-based OMM on inhibitory performance and response selection in meditation novices. We used both behavioral and neurophysiological measures (event-related potentials, ERPs) to investigate which subprocesses of response selection and inhibition are altered after OMM. The study was conducted in a randomized crossover design with N = 32 healthy adults. We thereby investigated Go and Nogo trials in the paradigm. The results show that as little as 15 minutes of OMM can improve response selection and inhibition at behavioral and neurophysiological levels. More specifically, OMM reduces the rate of false alarms, especially during Nogo trials regardless of congruency. It appears that OMM optimizes conflict processing and response inhibition compared to no meditation, also reflected in the ERP N2 and P3 time windows. The results may be explained by the meta control model, which argues in terms of a specific processing mode with increased flexibility and inclusive decision-making under OMM. Importantly, however, the effects of OMM were only evident when there was the prior experience with the task. It is likely that OMM provides more cognitive resources, as the amplitudes of these EKPs decreased. OMM novices seem to induce finer adjustments during conflict processing after familiarization with the task.Keywords: EEG, inhibition, meditation, Simon Nogo
Procedia PDF Downloads 2053481 Efficient Ni(II)-Containing Layered Triple Hydroxide-Based Catalysts: Synthesis, Characterisation and Their Role in the Heck Reaction
Authors: Gabor Varga, Krisztina Karadi, Zoltan Konya, Akos Kukovecz, Pal Sipos, Istvan Palinko
Abstract:
Nickel can efficiently replace palladium in the Heck, Suzuki and Negishi reactions. This study focuses on the synthesis and catalytic application of Ni(II)-containing layered double hydroxides (LDHs) and layered triple hydroxides (LTHs). Our goals were to incorporate Ni(II) ions among the layers of LDHs or LTHs, or binding it to their surface or building it into their layers in such a way that their catalytic activities are maintained or even increased. The LDHs and LTHs were prepared by the co-precipitation method using ethylene glycol as co-solvent. In several cases, post-synthetic modifications (e.g., thermal treatment) were performed. After optimizing the synthesis conditions, the composites displayed good crystallinity and were free of byproducts. The success of the syntheses and the post-synthetic modifications was confirmed by relevant characterization methods (XRD, SEM, SEM-EDX and combined IR techniques). Catalytic activities of the produced and well-characterized solids were investigated through the Heck reaction. The composites behaved as efficient, recyclable catalysts in the Heck reaction between 4-bromoanisole and styrene. Through varying the reaction parameters, we were able to obtain acceptable conversions under mild conditions. Our study highlights the possibility of the application of Ni(II)-containing composites as efficient catalysts in coupling reactions.Keywords: layered double hydroxide, layered triple hydroxide, heterogeneous catalysis, heck reaction
Procedia PDF Downloads 1733480 Increasing Added-Value of Salak Fruit by Freezing Frying to Improve the Welfare of Farmers: Case Study of Sleman Regency, Yogyakarta-Indonesia
Authors: Sucihatiningsih Dian Wisika Prajanti, Himawan Arif Susanto
Abstract:
Fruits are perishable products and have relatively low price, especially at harvest time. Generally, farmers only sell the products shortly after the harvest time without any processing. Farmers also only play role as price takers leading them to have less power to set the price. Sometimes, farmers are manipulated by middlemen, especially during abundant harvest. Therefore, it requires an effort to cultivate fruits and create innovation to make them more durable and have higher economic value. The purpose of this research is how to increase the added- value of fruits that have high economic value. The research involved 60 farmers of Salak fruit as the sample. Then, descriptive analysis was used to analyze the data in this study. The results showed the selling price of Salak fruit is very low. Hence, to increase the added-value of the fruits, fruit processing is carried out by freezing - frying which can cause the fruits last longer. In addition to increase these added-value, the products can be accommodated for further processed without worrying about their crops rotted or unsold.Keywords: fruits processing, Salak fruit, freezing frying, farmer’s welfare, Sleman, Yogyakarta
Procedia PDF Downloads 346