Search results for: spatial data mining
26729 Assessment of Spatial Development in Peri Urban Villages of Baramati
Authors: Rutuja Rajendra Ghadage
Abstract:
Villages surrounding the city undergo the process of peri urbanization, which transforms their original village character. These villages undergo fast and unplanned physical growth and development. Due to the expansion of urban activities, peri-urban villages are experiencing extensive changes. Focusing on the peri-urban villages of Baramati city in Maharashtra, India, this paper assesses the nature and extent of spatial development and identifies the factors contributing to the rapid development of eleven sample Peri-urban villages. After reviewing similar studies, four indicators are selected to assess the spatial development of peri-urban villages; 1) population, 2) road network, 3) land use landcover change, and 4) built-up distribution. The spatial development of peri-urban villages of Baramati is uneven as few villages are still expanding or growing while few villages have started intensifying. The main factor for this development is the presence of industries and educational institutions. They have affected spatial development directly as well as indirectly. In the future, most of the peri-urban villages of Baramati will be in the intensification phase, so if this happens in an unplanned manner, it will create stress on services and facilities.Keywords: factors and indicators of spatial development, peri urban villages, peri urbanization, spatial development
Procedia PDF Downloads 21726728 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana
Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor
Abstract:
Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution
Procedia PDF Downloads 30126727 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System
Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal
Abstract:
Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks
Procedia PDF Downloads 39626726 Gold, Power, Protest, Examining How Digital Media and PGIS are Used to Protest the Mining Industry in Colombia
Authors: Doug Specht
Abstract:
This research project sought to explore the links between digital media, PGIS and social movement organisations in Tolima, Colombia. The primary aim of the research was to examine how knowledge is created and disseminated through digital media and GIS in the region, and whether there exists the infrastructure to allow for this. The second strand was to ascertain if this has had a significant impact on the way grassroots movements work and produce collective actions. The third element is a hypothesis about how digital media and PGIS could play a larger role in activist activities, particularly in reference to the extractive industries. Three theoretical strands have been brought together to provide a basis for this research, namely (a) the politics of knowledge, (b) spatial management and inclusion, and (c) digital media and political engagement. Quantitative data relating to digital media and mobile internet use was collated alongside qualitative data relating to the likelihood of using digital media in activist campaigns, with particular attention being given to grassroots movements working against extractive industries in the Tolima region of Colombia. Through interviews, surveys and GIS analysis it has been possible to build a picture of online activism and the role of PPGIS within protest movement in the region of Tolima, Colombia. Results show a gap between the desires of social movements to use digital media and the skills and finances required to implement programs that utilise it. Maps and GIS are generally reserved for legal cases rather than for informing the lay person. However, it became apparent that the combination of digital/social media and PPGIS could play a significant role in supporting the work of grassroots movements.Keywords: PGIS, GIS, social media, digital media, mining, colombia, social movements, protest
Procedia PDF Downloads 42726725 The Impact of Data Science on Geography: A Review
Authors: Roberto Machado
Abstract:
We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.Keywords: data science, geography, systematic review, optimization algorithms, supervised learning
Procedia PDF Downloads 3426724 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 50026723 Smart in Performance: More to Practical Life than Hardware and Software
Authors: Faten Hatem
Abstract:
This paper promotes the importance of focusing on spatial aspects and affective factors that impact smart urbanism. This helps to better inform city governance, spatial planning, and policymaking to focus on what Smart does and what it can achieve for cities in terms of performance rather than on using the notion for prestige in a worldwide trend towards becoming a smart city. By illustrating how this style of practice compromises the social aspects and related elements of space making through an interdisciplinary comparative approach, the paper clarifies the impact of this compromise on the overall smart city performance. In response, this paper recognizes the importance of establishing a new meaning for urban progress by moving beyond improving basic services of the city to enhance the actual human experience which is essential for the development of authentic smart cities. The topic is presented under five overlooked areas that discuss the relation between smart cities’ potential and efficiency paradox, the social aspect, connectedness with nature, the human factor, and untapped resources. However, these themes are not meant to be discussed in silos, instead, they are presented to collectively examine smart cities in performance, arguing there is more to the practical life of smart cities than software and hardware inventions. The study is based on a case study approach, presenting Milton Keynes as a living example to learn from while engaging with various methods for data collection including multi-disciplinary semi-structured interviews, field observations, and data mining.Keywords: smart design, the human in the city, human needs and urban planning, sustainability, smart cities, smart
Procedia PDF Downloads 10726722 Multi-Class Text Classification Using Ensembles of Classifiers
Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari
Abstract:
Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost
Procedia PDF Downloads 23526721 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects
Authors: Victor Radich, Tania Basso, Regina Moraes
Abstract:
Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring
Procedia PDF Downloads 8926720 Social Media Mining with R. Twitter Analyses
Authors: Diana Codat
Abstract:
Tweets' analysis is part of text mining. Each document is a written text. It's possible to apply the usual text search techniques, in particular by switching to the bag-of-words representation. But the tweets induce peculiarities. Some may enrich the analysis. Thus, their length is calibrated (at least as far as public messages are concerned), special characters make it possible to identify authors (@) and themes (#), the tweet and retweet mechanisms make it possible to follow the diffusion of the information. Conversely, other characteristics may disrupt the analyzes. Because space is limited, authors often use abbreviations, emoticons to express feelings, and they do not pay much attention to spelling. All this creates noise that can complicate the task. The tweets carry a lot of potentially interesting information. Their exploitation is one of the main axes of the analysis of the social networks. We show how to access Twitter-related messages. We will initiate a study of the properties of the tweets, and we will follow up on the exploitation of the content of the messages. We will work under R with the package 'twitteR'. The study of tweets is a strong focus of analysis of social networks because Twitter has become an important vector of communication. This example shows that it is easy to initiate an analysis from data extracted directly online. The data preparation phase is of great importance.Keywords: data mining, language R, social networks, Twitter
Procedia PDF Downloads 18526719 Quantification of GHGs Emissions from Electricity and Diesel Fuel Consumption in Basalt Mining Industry in Thailand
Authors: S. Kittipongvises, A. Dubsok
Abstract:
The mineral and mining industry is necessary for countries to have an adequate and reliable supply of materials to meet their socio-economic development. Despite its importance, the environmental impacts from mineral exploration are hugely significant. This study aimed to investigate and quantify the amount of GHGs emissions emitted from both electricity and diesel vehicle fuel consumption in basalt mining in Thailand. Plant A, located in the northeastern region of Thailand, was selected as a case study. Results indicated that total GHGs emissions from basalt mining and operation (Plant A) were approximately 2,501,086 kgCO2e and 1,997,412 kgCO2e in 2014 and 2015, respectively. The estimated carbon intensity ranged between 1.824 kgCO2e to 2.284 kgCO2e per ton of rock product. Scope 1 (direct emissions) was the dominant driver of its total GHGs compared to scope 2 (indirect emissions). As such, transport related combustion of diesel fuels generated the highest GHGs emission (65%) compared to emissions from purchased electricity (35%). Some of the potential implications for mining entities were also presented.Keywords: basalt mining, diesel fuel, electricity, GHGs emissions, Thailand
Procedia PDF Downloads 26726718 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 42826717 Tactile Cues and Spatial Navigation in Mice
Authors: Rubaiyea Uddin
Abstract:
The hippocampus, located in the limbic system, is most commonly known for its role in memory and spatial navigation (as cited in Brain Reward and Pathways). It maintains an especially important role in specifically episodic and declarative memory. The hippocampus has also recently been linked to dopamine, the reward pathway’s primary neurotransmitter. Since research has found that dopamine also contributes to memory consolidation and hippocampal plasticity, this neurotransmitter is potentially responsible for contributing to the hippocampus’s role in memory formation. In this experiment we tested to see the effect of tactile cues on spatial navigation for eight different mice. We used a radial arm that had one designated 'reward' arm containing sucrose. The presence or absence of bedding was our tactile cue. We attempted to see if the memory of that cue would enhance the mice’s memory of having received the reward in that arm. The results from our study showed there was no significant response from the use of tactile cues on spatial navigation on our 129 mice. Tactile cues therefore do not influence spatial navigation.Keywords: mice, radial arm maze, memory, spatial navigation, tactile cues, hippocampus, reward, sensory skills, Alzheimer’s, neurodegnerative disease
Procedia PDF Downloads 64926716 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 11226715 Focus-Latent Dirichlet Allocation for Aspect-Level Opinion Mining
Authors: Mohsen Farhadloo, Majid Farhadloo
Abstract:
Aspect-level opinion mining that aims at discovering aspects (aspect identification) and their corresponding ratings (sentiment identification) from customer reviews have increasingly attracted attention of researchers and practitioners as it provides valuable insights about products/services from customer's points of view. Instead of addressing aspect identification and sentiment identification in two separate steps, it is possible to simultaneously identify both aspects and sentiments. In recent years many graphical models based on Latent Dirichlet Allocation (LDA) have been proposed to solve both aspect and sentiment identifications in a single step. Although LDA models have been effective tools for the statistical analysis of document collections, they also have shortcomings in addressing some unique characteristics of opinion mining. Our goal in this paper is to address one of the limitations of topic models to date; that is, they fail to directly model the associations among topics. Indeed in many text corpora, it is natural to expect that subsets of the latent topics have higher probabilities. We propose a probabilistic graphical model called focus-LDA, to better capture the associations among topics when applied to aspect-level opinion mining. Our experiments on real-life data sets demonstrate the improved effectiveness of the focus-LDA model in terms of the accuracy of the predictive distributions over held out documents. Furthermore, we demonstrate qualitatively that the focus-LDA topic model provides a natural way of visualizing and exploring unstructured collection of textual data.Keywords: aspect-level opinion mining, document modeling, Latent Dirichlet Allocation, LDA, sentiment analysis
Procedia PDF Downloads 9526714 Study on the Layout of 15-Minute Community-Life Circle in the State of “Community Segregation” Based on Poi: Shengwei Community and Other Two Communities in Chongqing
Authors: Siyuan Cai
Abstract:
This paper takes community segregation during major infectious diseases as the background, based on the physiological needs and safety needs of citizens during home segregation, and based on the selection of convenient facilities and medical facilities as the main research objects. Based on the POI data of public facilities in Chongqing, the spatial distribution characteristics of the convenience and medical facilities in the 15-minute living circle centered on three neighborhoods in Shapingba, namely Shengwei Community, Anju Commmunity and Fengtian Garden Community, were explored by means of GIS spatial analysis. The results show that the spatial distribution of convenience and medical facilities in this area has significant clustering characteristics, with a point-like distribution pattern of "dense in the west and sparse in the east", and a grouped and multi-polar spatial structure. The spatial structure is multi-polar and has an obvious tendency to the intersections and residential areas with dense pedestrian flow. This study provides a preliminary exploration of the distribution of medical and convenience facilities within the 15-minute living circle of a segregated community, which makes up for the lack of spatial research in this area.Keywords: ArcGIS, community segregation, convenient facilities; distribution pattern, medical facilities, POI, 15-minute community life circle
Procedia PDF Downloads 12226713 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 43326712 Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia
Authors: Aroma Elmina Martha
Abstract:
Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life.Keywords: abration, environmental damage, mining, shoreline
Procedia PDF Downloads 32326711 Assessing Carbon Stock and Sequestration of Reforestation Species on Old Mining Sites in Morocco Using the DNDC Model
Authors: Nabil Elkhatri, Mohamed Louay Metougui, Ngonidzashe Chirinda
Abstract:
Mining activities have left a legacy of degraded landscapes, prompting urgent efforts for ecological restoration. Reforestation holds promise as a potent tool to rehabilitate these old mining sites, with the potential to sequester carbon and contribute to climate change mitigation. This study focuses on evaluating the carbon stock and sequestration potential of reforestation species in the context of Morocco's mining areas, employing the DeNitrification-DeComposition (DNDC) model. The research is grounded in recognizing the need to connect theoretical models with practical implementation, ensuring that reforestation efforts are informed by accurate and context-specific data. Field data collection encompasses growth patterns, biomass accumulation, and carbon sequestration rates, establishing an empirical foundation for the study's analyses. By integrating the collected data with the DNDC model, the study aims to provide a comprehensive understanding of carbon dynamics within reforested ecosystems on old mining sites. The major findings reveal varying sequestration rates among different reforestation species, indicating the potential for species-specific optimization of reforestation strategies to enhance carbon capture. This research's significance lies in its potential to contribute to sustainable land management practices and climate change mitigation strategies. By quantifying the carbon stock and sequestration potential of reforestation species, the study serves as a valuable resource for policymakers, land managers, and practitioners involved in ecological restoration and carbon management. Ultimately, the study aligns with global objectives to rejuvenate degraded landscapes while addressing pressing climate challenges.Keywords: carbon stock, carbon sequestration, DNDC model, ecological restoration, mining sites, Morocco, reforestation, sustainable land management.
Procedia PDF Downloads 7726710 Heart Failure Identification and Progression by Classifying Cardiac Patients
Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan
Abstract:
Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.Keywords: decision tree, heart failure, data mining, classification model
Procedia PDF Downloads 40226709 A General Strategy for Noise Assessment in Open Mining Industries
Authors: Diego Mauricio Murillo Gomez, Enney Leon Gonzalez Ramirez, Hugo Piedrahita, Jairo Yate
Abstract:
This paper proposes a methodology for the management of noise in open mining industries based on an integral concept, which takes into consideration occupational and environmental noise as a whole. The approach relies on the characterization of sources, the combination of several measurements’ techniques and the use of acoustic prediction software. A discussion about the difference between frequently used acoustic indicators such as Leq and LAV is carried out, aiming to establish common ground for homologation. The results show that the correct integration of this data not only allows for a more robust technical analysis but also for a more strategic route of intervention as several departments of the company are working together. Noise control measurements can be designed to provide a healthy acoustic surrounding in which the exposure workers but also the outdoor community is benefited.Keywords: environmental noise, noise control, occupational noise, open mining
Procedia PDF Downloads 26926708 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.Keywords: avatar-based, virtual environment, paired learning, individual differences
Procedia PDF Downloads 11726707 High Performance Computing and Big Data Analytics
Authors: Branci Sarra, Branci Saadia
Abstract:
Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.Keywords: high performance computing, HPC, big data, data analysis
Procedia PDF Downloads 52026706 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 64026705 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 13426704 Application of Knowledge Discovery in Database Techniques in Cost Overruns of Construction Projects
Authors: Mai Ghazal, Ahmed Hammad
Abstract:
Cost overruns in construction projects are considered as worldwide challenges since the cost performance is one of the main measures of success along with schedule performance. To overcome this problem, studies were conducted to investigate the cost overruns' factors, also projects' historical data were analyzed to extract new and useful knowledge from it. This research is studying and analyzing the effect of some factors causing cost overruns using the historical data from completed construction projects. Then, using these factors to estimate the probability of cost overrun occurrence and predict its percentage for future projects. First, an intensive literature review was done to study all the factors that cause cost overrun in construction projects, then another review was done for previous researcher papers about mining process in dealing with cost overruns. Second, a proposed data warehouse was structured which can be used by organizations to store their future data in a well-organized way so it can be easily analyzed later. Third twelve quantitative factors which their data are frequently available at construction projects were selected to be the analyzed factors and suggested predictors for the proposed model.Keywords: construction management, construction projects, cost overrun, cost performance, data mining, data warehousing, knowledge discovery, knowledge management
Procedia PDF Downloads 37226703 Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China
Authors: Dai Zhimei, Hua Chen
Abstract:
The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.Keywords: block, space syntax and methodology, street, urban space, Yangzhou
Procedia PDF Downloads 18226702 Analysing the Perception of Climate Hazards on Biodiversity Conservation in Mining Landscapes within Southwestern Ghana
Authors: Salamatu Shaibu, Jan Hernning Sommer
Abstract:
Integrating biodiversity conservation practices in mining landscapes ensures the continual provision of various ecosystem services to the dependent communities whilst serving as ecological insurance for corporate mining when purchasing reclamation security bonds. Climate hazards such as long dry seasons, erratic rainfall patterns, and extreme weather events contribute to biodiversity loss in addition to the impact due to mining. Both corporate mining and mine-fringe communities perceive the effect of climate on biodiversity from the context of the benefits they accrue, which motivate their conservation practices. In this study, pragmatic approaches including semi-structured interviews, field visual observation, and review were used to collect data on corporate mining employees and households of fringing communities in the southwestern mining hub. The perceived changes in the local climatic conditions and the consequences on environmental management practices that promote biodiversity conservation were examined. Using a thematic content analysis tool, the result shows that best practices such as concurrent land rehabilitation, reclamation ponds, artificial wetlands, land clearance, and topsoil management are directly affected by prolonging long dry seasons and erratic rainfall patterns. Excessive dust and noise generation directly affect both floral and faunal diversity coupled with excessive fire outbreaks in rehabilitated lands and nearby forest reserves. Proposed adaptive measures include engaging national conservation authorities to promote reforestation projects around forest reserves. National government to desist from using permit for mining concessions in forest reserves, engaging local communities through educational campaigns to control forest encroachment and burning, promoting community-based resource management to promote community ownership, and provision of stricter environmental legislation to compel corporate, artisanal, and small scale mining companies to promote biodiversity conservation.Keywords: biodiversity conservation, climate hazards, corporate mining, mining landscapes
Procedia PDF Downloads 22126701 Spatial Disparity in Education and Medical Facilities: A Case Study of Barddhaman District, West Bengal, India
Authors: Amit Bhattacharyya
Abstract:
The economic scenario of any region does not show the real picture for the measurement of overall development. Therefore, economic development must be accompanied by social development to be able to make an assessment to measure the level of development. The spatial variation with respect to social development has been discussed taking into account the quality of functioning of a social system in a specific area. In this paper, an attempt has been made to study the spatial distribution of social infrastructural facilities and analyze the magnitude of regional disparities at inter- block level in Barddhman district. It starts with the detailed account of the selection process of social infrastructure indicators and describes the methodology employed in the empirical analysis. Analyzing the block level data, this paper tries to identify the disparity among the blocks in the levels of social development. The results have been subsequently explained using both statistical analysis and geo spatial technique. The paper reveals that the social development is not going on at the same rate in every part of the district. Health facilities and educational facilities are concentrated at some selected point. So overall development activities come to be concentrated in a few centres and the disparity is seen over the blocks.Keywords: disparity, inter-block, social development, spatial variation
Procedia PDF Downloads 16926700 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: data mining, k-means, road traffic accidents, Waze, Weka
Procedia PDF Downloads 418