Search results for: soil collapsibility properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11091

Search results for: soil collapsibility properties

10821 Effect of Distillery Spentwash Application on Soil Properties and Yield of Maize (Zea mays L.) and Finger Millet (Eleusine coracana (L.) G)

Authors: N. N. Lingaraju, A. Sathish, K. N. Geetha, C. A. Srinivasamurthy, S. Bhaskar

Abstract:

Studies on spent wash utilization as a nutrient source through 'Effect of distillery spentwash application on soil properties and yield of maize (Zea may L.) and finger millet (Eleusine coracana (L.) G)' was carried out in Malavalli Taluk, Mandya District, Karnataka State, India. The study was conducted in fourteen different locations of Malavalli (12) and Maddur taluk (2) involving maize and finger millet as a test crop. The spentwash was characterized for various parameters like pH, EC, total NPK, Na, Ca, Mg, SO₄, Fe, Zn, Cu, Mn and Cl content. It was observed from the results that the pH was slightly alkaline (7.45), EC was excess (23.3 dS m⁻¹), total NPK was 0.12, 0.02, and 1.31 percent respectively, Na, Ca, Mg and SO₄ concentration was 664, 1305, 745 and 618 (mg L⁻¹) respectively, total solid content was quite high (6.7%), Fe, Zn, Cu, Mn, values were 23.5, 5.70, 3.64, 4.0 mg L⁻¹, respectively. The crops were grown by adopting different crop management practices after application of spentwash at 100 m³ ha⁻¹ to the identified farmer fields. Soil samples were drawn at three stages i.e., before sowing of crop, during crop growth stage and after harvest of the crop at 2 depths (0-30 and 30-60 cm) and analyzed for pH, EC, available K and Na parameters by adopting standard procedures. The soil analysis showed slightly acidic reaction (5.93), normal EC (0.43 dS m⁻¹), medium available potassium (267 kg ha⁻¹) before application of spentwash. Application of spentwash has enhanced pH level of soil towards neutral (6.97), EC 0.25 dS m⁻¹, available K2O to 376 kg ha⁻¹ and sodium content of 0.73 C mol (P+) kg⁻¹ during the crop growth stage. After harvest of the crops soil analysis data indicated a decrease in pH to 6.28, EC of 0.22 dS m⁻¹, available K₂O to 316 kg ha⁻¹ and Na 0.52 C mol (P⁺) kg⁻¹ compared with crop growth stage. The study showed that, there will be enhancement of potassium levels if the spentwash is applied once to dryland. The yields of both the crops were quantified and found to be in the range of 35.65 to 65.55 q ha⁻¹ and increased yield to the extent of 13.36-22.36 percent as compared to control field (11.36-22.33 q ha⁻¹) in maize crop. Also, finger millet yield was increased with the spentwash application to the extent of 14.21-20.49 percent (9.5-17.73 q ha⁻¹) higher over farmers practice (8.15-14.15 q ha⁻¹).

Keywords: distillery spentwash, finger millet, maize, waste water

Procedia PDF Downloads 313
10820 Significant Influence of Land Use Type on Earthworm Communities but Not on Soil Microbial Respiration in Selected Soils of Hungary

Authors: Tsedekech Gebremeskel Weldmichael, Tamas Szegi, Lubangakene Denish, Ravi Kumar Gangwar, Erika Micheli, Barbara Simon

Abstract:

Following the 1992 Earth Summit in Rio de Janeiro, soil biodiversity has been recognized globally as a crucial player in guaranteeing the functioning of soil and a provider of several ecosystem services essential for human well-being. The microbial fraction of the soil is a vital component of soil fertility as soil microbes play key roles in soil aggregate formation, nutrient cycling, humification, and degradation of pollutants. Soil fauna, such as earthworms, have huge impacts on soil organic matter dynamics, nutrient cycling, and infiltration and distribution of water in the soil. Currently, land-use change has been a global concern as evidence accumulates that it adversely affects soil biodiversity and the associated ecosystem goods and services. In this study, we examined the patterns of soil microbial respiration (SMR) and earthworm (abundance, biomass, and species richness) across three land-use types (grassland, arable land, and forest) in Hungary. The objectives were i) to investigate whether there is a significant difference in SMR and earthworm (abundance, biomass, and species richness) among land-use types. ii) to determine the key soil properties that best predict the variation in SMR and earthworm communities. Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. For physicochemical parameters, soil organic matter (SOM), pH, CaCO₃, E₄/E₆, available nitrogen (NH₄⁺-N and NO₃⁻-N), potassium (K₂O), phosphorus (P₂O₅), exchangeable Ca²⁺, Mg²⁺, soil moisture content (MC) and bulk density were measured. The analysis of SMR was determined by basal respiration method, and the extraction of earthworms was carried out by hand sorting method as described by ISO guideline. The results showed that there was no statistically significant difference among land-use types in SMR (p > 0.05). However, the highest SMR was observed in grassland soils (11.77 mgCO₂ 50g⁻¹ soil 10 days⁻¹) and lowest in forest soils (8.61 mgCO₂ 50g⁻¹ soil 10 days⁻¹). SMR had strong positive correlations with exchangeable Ca²⁺ (r = 0.80), MC (r = 0.72), and exchangeable Mg²⁺(r = 0.69). We found a pronounced variation in SMR among soil texture classes (p < 0.001), where the highest value in silty clay loam soils and the lowest in sandy soils. This study provides evidence that agricultural activities can negatively influence earthworm communities, in which the arable land had significantly lower earthworm communities compared to forest and grassland respectively. Overall, in our study, land use type had minimal effects on SMR whereas, earthworm communities were profoundly influenced by land-use type particularly agricultural activities related to tillage. Exchangeable Ca²⁺, MC, and texture were found to be the key drivers of the variation in SMR.

Keywords: earthworm community, land use, soil biodiversity, soil microbial respiration, soil property

Procedia PDF Downloads 109
10819 Characterization, Classification and Fertility Capability Classification of Three Rice Zones of Ebonyi State, Southeastern Nigeria

Authors: Sunday Nathaniel Obasi, Chiamak Chinasa Obasi

Abstract:

Soil characterization and classification provide the basic information necessary to create a functional evaluation and soil classification schemes. Fertility capability classification (FCC) on the other hand is a technical system that groups the soils according to kinds of problems they present for management of soil physical and chemical properties. This research was carried out in Ebonyi state, southeastern Nigeria, which is an agrarian state and a leading rice producing part of southeastern Nigeria. In order to maximize the soil and enhance the productivity of rice in Ebonyi soils, soil classification, and fertility classification information need to be supplied. The state was grouped into three locations according to their agricultural zones namely; Ebonyi north, Ebonyi central and Ebonyi south representing Abakaliki, Ikwo and Ivo locations respectively. Major rice growing areas of the soils were located and two profile pits were sunk in each of the studied zones from which soils were characterized, classified and fertility capability classification (FCC) developed. Soil classification was done using United State Department of Agriculture (USDA) Soil Taxonomy and correlated with World Reference Base for soil resources. Results obtained classified Abakaliki 1 and Abakaliki 2 as Typic Fluvaquents (Ochric Fluvisols). Ikwo 1 was classified as Vertic Eutrudepts (Eutric Vertisols) while Ikwo 2 was classified as Typic Eutrudepts (Eutric Cambisols). Ivo 1 and Ivo 2 were both classified as Aquic Eutrudepts (Gleyic Leptosols). Fertility capability classification (FCC) revealed that all studied soils had mostly loamy topsoils and subsoils except Ikwo 1 with clayey topsoil. Limitations encountered in the studied soils include; dryness (d), low ECEC (e), low nutrient capital reserve (k) and water logging/ anaerobic condition (gley). Thus, FCC classifications were Ldek for Abakaliki 1 and 2, Ckv for Ikwo 1, LCk for Ikwo 2 while Ivo 1 and 2 were Legk and Lgk respectively.

Keywords: soil classification, soil fertility, limitations, modifiers, Southeastern Nigeria

Procedia PDF Downloads 110
10818 Seepage Modelling of Jatigede Dam Towards Cisampih Village Based on Analysis Soil Characteristic Using Method Soil Reaction to Water, West Java Indonesia

Authors: Diemas Purnama Muhammad Firman Pratama, Denny Maulana Malik

Abstract:

Development of Jatigede Dam that was the mega project in Indonesia, since 1963. Area of around Jatigede Dam is complex, it has structural geology active fault, and as possible can occur landslide. This research focus on soil test. The purpose of this research to know soil quality Jatigede Dam which caused by water seepage of Jatigede Dam, then can be made seepage modelling around Jatigede Dam including Cisampih Village. Method of this research is SRW (Soil Reaction to Water). There are three samples are taken nearby Jatigede Dam. Four paramaters to determine water seepage such as : V ( velocity of soil to release water), Dl (Ability of soil to release water), Ds (Ability of soil to absorb water), Dt (Ability of soil to hold water). meanwhile, another proscess of interaction beetween water and soil are produced angle, which is made of water flow and vertikal line. Called name SIAT. SIAT has two type is na1 and na2. Each samples has a value from the first sample is 280,333(degree), the second 270 (degree) and the third 270 (degree). The difference na1 is, water interaction towards Dt value angle, while na2 is water interaction towards Dl and Ds value angle. Result of calculating SRW method, first till third sample has a value 7, 11,5 and 9. Based on data, interpreted in around teritory of Jatigede Dam, will get easier impact from water seepage because, condition soil reaction too bad so, it can not hold water.

Keywords: Jatigede Dam, Cisampih village, water seepage, soil quality

Procedia PDF Downloads 352
10817 Response of Buildings with Soil-Structure Interaction with Varying Soil Types

Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar

Abstract:

Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multi-storey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.

Keywords: dynamic response, multi-storey building, soil-structure interaction, varying soil types

Procedia PDF Downloads 450
10816 Farmers' Perspective on Soil Health in the Indian Punjab: A Quantitative Analysis of Major Soil Parameters

Authors: Sukhwinder Singh, Julian Park, Dinesh Kumar Benbi

Abstract:

Although soil health, which is recognized as one of the key determinants of sustainable agricultural development, can be measured by a range of physical, chemical and biological parameters, the widely used parameters include pH, electrical conductivity (EC), organic carbon (OC), plant available phosphorus (P) and potassium (K). Soil health is largely affected by the occurrence of natural events or human activities and can be improved by various land management practices. A database of 120 soil samples collected from farmers’ fields spread across three major agro-climatic zones of Punjab suggested that the average pH, EC, OC, P and K was 8.2 (SD = 0.75, Min = 5.5, Max = 9.1), 0.27 dS/m (SD = 0.17, Min = 0.072 dS/m, Max = 1.22 dS/m), 0.49% (SD = 0.20, Min = 0.06%, Max = 1.2%), 19 mg/kg soil (SD = 22.07, Min = 3 mg/kg soil, Max = 207 mg/kg soil) and 171 mg/kg soil (SD = 47.57, Min = 54 mg/kg soil, Max = 288 mg/kg soil), respectively. Region-wise, pH, EC and K were the highest in south-western district of Ferozpur whereas farmers in north-eastern district of Gurdaspur had the best soils in terms of OC and P. The soils in the central district of Barnala had lower OC, P and K than the respective overall averages while its soils were normal but skewed towards alkalinity. Besides agro-climatic conditions, the size of landholding and farmer education showed a significant association with Soil Fertility Index (SFI), a composite index calculated using the aforementioned parameters’ normalized weightage. All the four stakeholder groups cited the current cropping patterns, burning of rice crop residue, and imbalanced use of chemical fertilizers for change in soil health. However, the current state of soil health in Punjab is unclear, which needs further investigation based on temporal data collected from the same field to see the short and long-term impacts of various crop combinations and varied cropping intensity levels on soil health.

Keywords: soil health, punjab agriculture, sustainability, soil fertility index

Procedia PDF Downloads 335
10815 Chemical Characteristics of Soils Based on Toposequence Under Wet Tropical Area Bukit Sarasah Padang

Authors: Y. Yulnafatmawita, H. Hermansah

Abstract:

Topography is a factor affecting soil characteristics. Chemical characteristics of a soil is a factor determining the productivity of the land. A research was conducted in Bukit Sarasah Padang, an area receiving > 5000 mm rainfall annually. The purpose of this research was to determine the chemical characteristics of soils at sequence topography in hill-slope of Bukit Sarasah. Soils were sampled at 3 different altitudes in the research area from 315 m – 515 m asl with 100 m interval. At each location, soil samples were taken from two depths (0-20 cm and 30-50 cm) for soil chemical characteristics (pH, CEC, organic-C, N-total, C/N, Ca-, Mg-, K-, Na-, Al-, and H-exchangeable). Based on the data resulted, it was found that there was a tendency of decreasing soil organic matter (SOC) content by increasing location from 315 to 515 m asl as well as from the top 0-20 cm to 30-50 cm soil depth. The same tendency was also found for the CEC, pH, N-total, and C/N ratio of the soil. On the other hand, exchangeable-Al and -H tended to increase by increasing elevation in Bukit Sarasah. There was no significant difference found for the concentration of exchangeable cations among the elevations and between the depths. The soil chemical characteristics on the top 20 cm were generally better than those on 30-50 cm soil depth, however, different elevation did not gave significant difference of the concentration.

Keywords: soil chemical characteristics, soil depths, topo-sequence, wet tropical area

Procedia PDF Downloads 451
10814 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh

Abstract:

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

Keywords: NATM tunnel, initial lining, laboratory test data, numerical back-analysis

Procedia PDF Downloads 344
10813 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion

Authors: L. Mouzai, M. Bouhadef

Abstract:

Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.

Keywords: flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion

Procedia PDF Downloads 173
10812 The Increasing of Unconfined Compression Strength of Clay Soils Stabilized with Cement

Authors: Ali̇ Si̇nan Soğanci

Abstract:

The cement stabilization is one of the ground improvement method applied worldwide to increase the strength of clayey soils. The using of cement has got lots of advantages compared to other stabilization methods. Cement stabilization can be done quickly, the cost is low and creates a more durable structure with the soil. Cement can be used in the treatment of a wide variety of soils. The best results of the cement stabilization were seen on silts as well as coarse-grained soils. In this study, blocks of clay were taken from the Apa-Hotamış conveyance channel route which is 125km long will be built in Konya that take the water with 70m3/sec from Mavi tunnel to Hotamış storage. Firstly, the index properties of clay samples were determined according to the Unified Soil Classification System. The experimental program was carried out on compacted soil specimens with 0%, 7 %, 15% and 30 % cement additives and the results of unconfined compression strength were discussed. The results of unconfined compression tests indicated an increase in strength with increasing cement content.

Keywords: cement stabilization, unconfined compression test, clayey soils, unified soil classification system.

Procedia PDF Downloads 396
10811 Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia

Authors: Yihunie Hibstie Asres, Manny Mathuthu

Abstract:

Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.

Keywords: NAA, Yebrage, Chemoga, macro/micronutrient

Procedia PDF Downloads 145
10810 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio

Authors: Habib Alehossein, M. S. K. Fernando

Abstract:

Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.

Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content

Procedia PDF Downloads 61
10809 Synthesizing an Artificial Loess for Geotechnical Investigations of Collapsible Soil Behavior

Authors: Hamed Sadeghi, Pouya A. Panahi, Hamed Nasiri, Mohammad Sadeghi

Abstract:

Collapsible soils like loess comprise an important category of problematic soils for construction purposes and sustainable development. As a result, research on both geological and geotechnical aspects of this type of soil have been in progress for decades. However, considerable natural variability in physical properties of in-situ loess strata even in a single block sample challenges the fundamental laboratory investigations. The reason behind this is that it is somehow impossible to remove the effect of a specific factor like void ratio from fair comparisons to come with a reliable conclusion. In order to cope with this limitation, two types of artificially made dispersive and calcareous loess are introduced which can be easily reproduced in any soil mechanics laboratory provided that all its compositions are known and controlled. The collapse potential is explored for a variety of soil water salinity and lime content and comparisons are made against the natural soil behavior. Trends are reported for the influence of pore water salinity on collapse potential under different osmotic flow conditions. The most important advantage of artificial loess is the ease of controlling cementing agent content like calcite or dispersive potential for studying their influence on mechanical soil behavior.

Keywords: artificial loess, unsaturated soils, collapse potential, dispersive clays, laboratory tests

Procedia PDF Downloads 161
10808 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades

Authors: Magdi M. E. Zumrawi, Nehla Mansour

Abstract:

This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.

Keywords: geogrid, reinforcement, stabilization, subgrade

Procedia PDF Downloads 291
10807 The Effect of Different Level Crop Load and Humic Substance Applications on Yield and Yield Components of Alphonse Lavallee Grape Cultivar

Authors: A. Sarıkaya, A. Akın

Abstract:

This study was carried out to investigate effects of Control (C), 18 bud/vine, 23 bud/vine, 28 bud/vine, 18 bud/vine + TKI-Humas (soil), 23 bud/vine + TKI-Humas (soil), 28 bud/vine + TKI-Humas (soil) applications on yield and yield components of Alphonse Lavallee grape cultivar. The results were obtained as the highest cluster weight (302.31 g) with 18 bud/vine application; the highest berry weight (6.31 g) with 23 bud/vine + TKI-Humas (soil) and (6.79 g) with 28 bud/vine + TKI-Humas (soil) applications; the highest maturity index (36.95) with 18 bud/vine + TKI-Humas (soil) application; the highest L* color intensity (33.99) with 18 bud/vine + TKI-Humas (soil); the highest a* color intensity (1.53) with 23 bud/vine + TKI-Humas (soil) application. The effects of applications on grape fresh yield, grape juice yield and b* color intensity values were not found statistically significant.

Keywords: Alphonse Lavallee grape cultivar, crop load, TKI-Humas substances (soil), yield, quality

Procedia PDF Downloads 260
10806 Effect of Deep Mixing Columns and Geogrid on Embankment Settlement on the Soft Soil

Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi

Abstract:

Embankment settlement on soft clays has always been problematic due to the high compaction and low shear strength of the soil. Deep soil mixing and geosynthetics are two soil improvement methods in such fields. Here, a numerical study is conducted on the embankment performance on the soft ground improved by deep soil mixing columns and geosynthetics based on the data of a real project. For this purpose, the finite element method is used in the Plaxis 2D software. The Soft Soil Creep model considers the creep phenomenon in the soft clay layer while the Mohr-Columb model simulates other soil layers. Results are verified using the data of an experimental embankment built on deep mixing columns. The effect of depth and diameter of deep mixing columns and the stiffness of geogrid on the vertical and horizontal movements of embankment on clay subsoil will be investigated in the following.

Keywords: PLAXIS 2D, embankment settlement, horizontal movement, deep soil mixing column, geogrid

Procedia PDF Downloads 144
10805 Measurements of Environmental Pollution in Chemical Fertilizer Industrial Area Using Magnetic Susceptibility Method

Authors: Ramadhani Yasyfi Cysela, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

The World Health Organization (WHO) estimates that about a quarter of the diseases facing mankind today occur due to environmental pollution. The soil is a part of environment that have a widespread problem. The contaminated soil should no longer be used to grow food because the chemicals can leech into the food and harm people who eat it. The chemical fertilizer industry gives specific effect due to soil pollution. To determine ammonia and urea emissions from fertilizer industry, we can use physical characteristic of soil, which is magnetic susceptibility. Rock magnetism is used as a proxy indicator to determine changes in physical properties. Magnetic susceptibilities of samples in low and high frequency have been measured by Bartington MS2B magnetic susceptibility measurement device. The sample was taken from different area which located closer by pollution source and far from the pollution source. The susceptibility values of polluted samples in topsoil were quite low, with range from 187.1- 494.8 [x 10-8 m3 kg-1] when free polluted area’s sample has high values (1188.7- 2237.8 [x 10-8 m3 kg-1 ]). From this studies shows that susceptibility values in areas of the fertilizer industry are lower than the free polluted area.

Keywords: environmental, magnetic susceptibility, rock magnetism, soil pollution

Procedia PDF Downloads 319
10804 Testing Method of Soil Failure Pattern of Sand Type as an Effort to Minimize the Impact of the Earthquake

Authors: Luthfi Assholam Solamat

Abstract:

Nowadays many people do not know the soil failure pattern as an important part in planning the under structure caused by the loading occurs. This is because the soil is located under the foundation, so it cannot be seen directly. Based on this study, the idea occurs to do a study for testing the soil failure pattern, especially the type of sand soil under the foundation. The necessity of doing this to the design of building structures on the land which is the initial part of the foundation structure that met with waves/vibrations during an earthquake. If the underground structure is not strong it is feared the building thereon more vulnerable to the risk of building damage. This research focuses on the search of soil failure pattern, which the most applicable in the field with the loading periodic re-testing of a particular time with the help of the integrated video visual observations performed. The results could be useful for planning under the structure in an effort to try the upper structure is minimal risk of the earthquake.

Keywords: soil failure pattern, earthquake, under structure, sand soil testing method

Procedia PDF Downloads 331
10803 Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil

Authors: Asma A. Parlin, K. Nakamura, N. Watanabe, T. Komai

Abstract:

Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil.

Keywords: benzene vapor-phase, effective diffusion, subsurface soil medium, unsteady state

Procedia PDF Downloads 110
10802 Reviewing Soil Erosion in Greece

Authors: Paschalis Koutalakis, George N. Zaimes, Valasia Iakovoglou, Konstantinos Ioannou

Abstract:

Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, scientific publications related to soil erosion studies in Greece were reviewed and categorized. To accomplish this, the online search engine of Scopus was used. The key words were “soil”, “erosion” and “Greece.” An analysis of the published articles was conducted at three levels: i) type of publication, ii) chronologic and iii) thematic. A hundred and ten publications published in scientific journals were reviewed. The results showed that the awareness regarding the soil erosion in Greece has increased only in the last decades. The publications covered a wide range of thematic categories such as the type of studied areas, the physical phenomena that trigger and influence the soil erosion, the negative anthropogenic impacts on them, the assessment tools that were used in order to examine the threat and the proper management. The analysis of these articles was significant and necessary in order to find the scientific gaps of soil erosion studies in Greece and help enhance the sustainability of soil management in the future.

Keywords: climate change, agricultural sustainability, environmental sustainability, soil management

Procedia PDF Downloads 373
10801 Experimental Investigation on Correlation Between Permeability Variation and Sabkha Soil Salts Dissolution

Authors: Fahad A. Alotaibi

Abstract:

An increase in salt dissolution rate with continuous water flow is expected to lead to the progressive collapse of the soil structure. Evaluation of the relationship between soil salt dissolution and the variation of sabkha soil permeability in terms of type, rate, and quantity in order to assure construction safety in these environments. The current study investigates the relationship of soil permeability with the rate of dissolution of calcium (Ca2+), sulfate (SO4-2), chloride (CL−1), magnesium (Mg2+), sodium (Na+), and potassium (K+1) ions. Results revealed an increase in sabkha soil permeability with the rate of ions dissolution. This makes the efficiency of using a waterproofing stabilization agent in the reduction of sabkha salts dissolution the main criterion is selecting suitable stabilizing method.

Keywords: sabkha, permeability, salts, dissolution

Procedia PDF Downloads 74
10800 Agricultural Land Suitability Analysis of Kampe-Omi Irrigation Scheme Using Remote Sensing and Geographic Information System

Authors: Olalekan Sunday Alabi, Titus Adeyemi Alonge, Olumuyiwa Idowu Ojo

Abstract:

Agricultural land suitability analysis and mapping play an imperative role for sustainable utilization of scarce physical land resources. The objective of this study was to prepare spatial database of physical land resources for irrigated agriculture and to assess land suitability for irrigation and developing suitable area map of the study area. The study was conducted at Kampe-Omi irrigation scheme located at Yagba West Local Government Area of Kogi State, Nigeria. Temperature and rainfall data of the study area were collected for 10 consecutive years (2005-2014). Geographic Information System (GIS) techniques were used to develop irrigation land suitability map of the study area. Attribute parameters such as the slope, soil properties, topography of the study area were used for the analysis. The available data were arranged, proximity analysis of Arc-GIS was made, and this resulted into five mapping units. The final agricultural land suitability map of the study area was derived after overlay analysis. Based on soil composition, slope, soil properties and topography, it was concluded that; Kampe-Omi has rich sandy loam soil, which is viable for agricultural purpose, the soil composition is made up of 60% sand and 40% loam. The land-use pattern map of Kampe-Omi has vegetal area and water-bodies covering 55.6% and 19.3% of the total assessed area respectively. The landform of Kampe-Omi is made up of 41.2% lowlands, 37.5% normal lands and 21.3% highlands. Kampe-Omi is adequately suitable for agricultural purpose while an extra of 20.2% of the area is highly suitable for agricultural purpose making 72.6% while 18.7% of the area is slightly suitable.

Keywords: remote sensing, GIS, Kampe–Omi, land suitability, mapping

Procedia PDF Downloads 169
10799 Heavy Metal of Soil in Wastewater, Irrigated Agricultural Soil in a Surrounding Area of the Nhue River, Vietnam

Authors: Thi Lan Huong Nguyen, Motohei Kanayama, Takahiro Higashi, Van Chinh Le, Thu Ha Doan, Anh Daochu

Abstract:

Waste from industrial sources, serves as sources of water for irrigating farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals in the soils. Soil samples were collected from the different locations from upstream to downstream of the Nhue River to evaluate heavy metal pollution. The results showed that the concentrations of all heavy metals in the soil samples in the farmland area were much higher than the background level in that area (1.2-2.6 mg/kg for Cd, 42-60 mg/kg for Cr, 22-62mg/kg for Cu, 30-86 mg/kg for Pb, 119-245 mg/kg for Zn, and 26-57 mg/kg for Ni), and exceeded the level of Vietnamese standard for agricultural soil for all heavy metals Cd, Cu, Pb, and Zn except soil samples at upstream and downstream of the Nhue River.

Keywords: heavy metal, soil, Nhue River, wastewater irrigation

Procedia PDF Downloads 444
10798 Comparative Analysis of Soil Enzyme Activities between Laurel-Leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil enzyme activities in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined to determine levels of mineralization and metabolism. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and Pw) trees for analysis. Cellulase, β-xylosidase, and protease activities were higher in BB-1 samples those in BB-2 samples. These activity levels corresponded to the distribution of cellulose and hemicellulose in the soil horizons. Cellulase, β-xylosidase, and chymotrypsin activities were higher in soil from the Pw forest than in that from the BB-2 forest. The relationships between the soil enzymes calculated by Spearman’s rank correlation indicate that the interactions between enzymes in BB-2 samples were more complex than those in Pw samples.

Keywords: comparative analysis, enzyme activities, forest soil, Spearman's rank correlation

Procedia PDF Downloads 564
10797 The Threshold Values of Soil Water Index for Landslides on Country Road No.89

Authors: Ji-Yuan Lin, Yu-Ming Liou, Yi-Ting Chen, Chen-Syuan Lin

Abstract:

Soil water index obtained by tank model is now commonly used in soil and sand disaster alarm system in Japan. Comparing with the rainfall trigging index in Taiwan, the tank model is easy to predict the slope water content on large-scale landslide. Therefore, this study aims to estimate the threshold value of large-scale landslide using the soil water index Sixteen typhoons and heavy rainfall events, were selected to establish the, to relationship between landslide event and soil water index. Finally, the proposed threshold values for landslides on country road No.89 are suggested in this study. The study results show that 95% landslide cases occurred in soil water index more than 125mm, and 30% of the more serious slope failure occurred in the soil water index is greater than 250mm. Beside, this study speculates when soil water index more than 250mm and the difference value between second tank and third tank less than -25mm, it leads to large-scale landslide more probably.

Keywords: soil water index, tank model, landslide, threshold values

Procedia PDF Downloads 360
10796 Leaching Losses of Fertilizer Nitrogen as Affected by Sulfur and Nitrification Inhibitor Applications

Authors: Abdel Khalek Selim, Safaa Mahmoud

Abstract:

Experiments were designed to study nitrogen loss through leaching in soil columns treated with different nitrogen sources and elemental sulfur. The soil material (3 kg alluvial or calcareous soil) were packed in Plexiglas columns (10 cm diameter). The soil columns were treated with 2 g N in the form of Ca(NO3)2, urea, urea + inhibitor (Nitrapyrin), another set of these treatments was prepared to add elemental sulfur. During incubation period, leaching was performed by applying a volume of water that allows the percolation of 250-ml water throughout the soil column. The leachates were analyzed for NH4-N and N03-N. After 10 weeks, soil columns were cut into four equal segments and analyzed for ammonium, nitrate, and total nitrogen. Results indicated the following: Ca(NO3)2 treatment showed a rapid NO3 leaching, especially in the first 3 weeks, in both clay and calcareous soils. This means that soil texture did not play any role in this respect. Sulfur addition also did not affect the rate of NO3 leaching. In urea treatment, there was a steady increase of NH4- and NO3–N from one leachate to another. Addition of sulfur with urea slowed down the nitrification process and decreased N losses. Clay soil contained residual N much more than calcareous soil. Almost one-third of added nitrogen might have been immobilized by soil microorganisms or lost through other loss paths. Nitrification inhibitor can play a role in preserving added nitrogen from being lost through leaching. Combining the inhibitor with elemental sulfur may help to stabilize certain preferred ratio of NH4 to NO3 in the soil for the benefit of the growing plants.

Keywords: alluvial soil, calcareous soil, elemental sulfur, nitrate leaching

Procedia PDF Downloads 294
10795 Effect of Land Use on Soil Organic Carbon Stock and Aggregate Dynamics of Degraded Ultisol in Nsukka, Southeastern Nigeria

Authors: Chukwuebuka Vincent Azuka, Chidimma Peace Odoh

Abstract:

Changes in agricultural practices and land use influence the storage and release of soil organic carbon and soil structural dynamics. To investigate this in Nsukka, southeastern Nigeria, soil samples were collected at 0-10 cm, 10-20 cm and 20-30 cm from three locations; Ovoko (OV), Obukpa (OB) and University of Nigeria, Nsukka (UNN) and three land use types; cultivated land (CL), forest land (FL) and grassland (GL)). Data were subjected to analysis of variance (ANOVA) using SPSS. Also, correlations between organic carbon stock, structural stability indices and other soil properties were established. The result showed that Ksat was significantly (p < 0.05) influenced by location with mean values of 68 cmhr⁻¹,121.63 cmhr⁻¹, 8.42 cmhr⁻¹ in OV, OB and UNN respectively. The MWD and aggregate stability (AS) were significantly (p < 0.05) influenced by land use and depth. The mean values of MWD are 0.85 (CL), 1.35 (FL) and 1.45 (GL), and 1.66 at 0-10 cm, 1.08 at 10-20 cm and 0.88 mm at 20-30 cm. The mean values of AS are; 27.66% (CL), 46.39% (FL) and 49.81% (GL), and 53.96% at 0-10cm, 40.22% at 10-20cm and 29.57% at 20-30cm. Clay flocculation (CFI) and dispersion indices (CDI) differed significantly (p < 0.05) among the land use. Soil pH differed significantly (p < 0.05) across the land use and locations with mean values ranging from 3.90-6.14. Soil organic carbon (SOC) significantly (p < 0.05) differed across locations and depths. SOC decreases as depth increases depth with mean values of 15.6 gkg⁻¹, 10.1 gkg⁻¹, and 8.6 gkg⁻¹ at 0-10 cm, 10-20 cm, and 20-30 cm respectively. SOC in the three land use was 8.8 g kg-1, 15.2 gkg⁻¹ and 10.4 gkg⁻¹ at CL, FL, and GL respectively. The highest aggregate-associated carbon was recorded in 0.5 mm across the land use and depth except in cultivated land and at 20-30 cm which recorded their highest SOC at 1mm. SOC stock, total nitrogen (TN) and CEC were significantly (p < 0.05) different across the locations with highest values of 23.43 t/ha, 0.07g/kg and 14.27 Cmol/kg respectively recorded in UNN. SOC stock was significantly (p < 0.05) influenced by depth as follows; 0-10>10-20>20-30 cm. TN was low with mean values ranging from 0.03-0.07 across the locations, land use and depths. The mean values of CEC ranged from 9.96-14.27 Cmol kg⁻¹ across the locations and land use. SOC stock showed correlation with silt, coarse sand, N and CEC (r = 0.40*, -0.39*, -0.65** and 0.64** respectively. AS showed correlation with BD, Ksat, pH in water and KCl, and SOC (r = -0.42*, 0.54**, -0.44*, -0.45* and 0.49** respectively. Thus, land use and location play a significant role in sustainable management of soil resources.

Keywords: agricultural practices, structural dynamics, sequestration, soil resources, management

Procedia PDF Downloads 117
10794 Evaluation of Subsurface Drilling and Geo Mechanic Properties Based on Stratum Index Factor for Humanities Environment

Authors: Abdull Halim Abdul, Muhaimin Sulam

Abstract:

This paper is about a subsurface study of Taman Pudu Ulu, Cheras, Kuala Lumpur with emphasize of Geo mechanic properties based on stratum index factor in humanities environment. Subsurface drilling and seismic data were used to understand the subsurface condition of the study area such as the type and thickness of the strata. Borehole and soil samples were recovered Geo mechanic properties of the area by conducting number of experiments. Taman Pudu Ulu overlies the Kuala Lumpur Limestone formation that is known for its karstic features such as caves and cavities. Hence by knowing the Geo mechanic properties such as the normal strain and shear strain we can plan a safer and economics construction that is plan at the area in the future.

Keywords: stratum, index factor, geo mechanic properties, humanities environment

Procedia PDF Downloads 472
10793 Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand

Authors: Sandeep Kumar, Mahesh Kumar Jat, Rajib Sarkar

Abstract:

Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented.

Keywords: damping, fiber reinforced soil, numerical modelling, shear modulus

Procedia PDF Downloads 252
10792 Soil and the Gut Microbiome: Supporting the 'Hygiene Hypothesis'

Authors: Chris George, Adam Hamlin, Lily Pereg, Richard Charlesworth, Gal Winter

Abstract:

Background: According to the ‘hygiene hypothesis’ the current rise in allergies and autoimmune diseases stems mainly from reduced microbial exposure due, amongst other factors, to urbanisation and distance from soil. However, this hypothesis is based on epidemiological and not biological data. Useful insights into the underlying mechanisms of this hypothesis can be gained by studying our interaction with soil. Soil microbiota may be directly ingested or inhaled by humans, enter the body through skin-soil contact or using plants as vectors. This study aims to examine the ability of soil microbiota to colonise the gut, study the interaction of soil microbes with the immune system and their potential protective activity. Method: The nutrition of the rats was supplemented daily with fresh or autoclaved soil for 21 days followed by 14 days of no supplementations. Faecal samples were collected throughout and analysed using 16S sequencing. At the end of the experiment rats were sacrificed and tissues and digesta were collected. Results/Conclusion: Results showed significantly higher richness and diversity following soil supplementation even after recovery. Specific soil microbial groups identified as able to colonise the gut. Of particular interest was the mucosal layer which emerged as a receptive host for soil microorganisms. Histological examination revealed innate and adaptive immune activation. Findings of this study reinforce the ‘hygiene hypothesis’ by demonstrating the ability of soil microbes to colonise the gut and activate the immune system. This paves the way for further studies aimed to examine the interaction of soil microorganisms with the immune system.

Keywords: gut microbiota, hygiene hypothesis, microbiome, soil

Procedia PDF Downloads 224