Search results for: semantic dependencies inter columns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2073

Search results for: semantic dependencies inter columns

1803 Affective Transparency in Compound Word Processing

Authors: Jordan Gallant

Abstract:

In the compound word processing literature, much attention has been paid to the relationship between a compound’s denotational meaning and that of its morphological whole-word constituents, which is referred to as ‘semantic transparency’. However, the parallel relationship between a compound’s connotation and that of its constituents has not been addressed at all. For instance, while a compound like ‘painkiller’ might be semantically transparent, it is not ‘affectively transparent’. That is, both constituents have primarily negative connotations, while the whole compound has a positive one. This paper investigates the role of affective transparency on compound processing using two methodologies commonly employed in this field: a lexical decision task and a typing task. The critical stimuli used were 112 English bi-constituent compounds that differed in terms of the effective transparency of their constituents. Of these, 36 stimuli contained constituents with similar connotations to the compound (e.g., ‘dreamland’), 36 contained constituents with more positive connotations (e.g. ‘bedpan’), and 36 contained constituents with more negative connotations (e.g. ‘painkiller’). Connotation of whole-word constituents and compounds were operationalized via valence ratings taken from an off-line ratings database. In Experiment 1, compound stimuli and matched non-word controls were presented visually to participants, who were then asked to indicate whether it was a real word in English. Response times and accuracy were recorded. In Experiment 2, participants typed compound stimuli presented to them visually. Individual keystroke response times and typing accuracy were recorded. The results of both experiments provided positive evidence that compound processing is influenced by effective transparency. In Experiment 1, compounds in which both constituents had more negative connotations than the compound itself were responded to significantly more slowly than compounds in which the constituents had similar or more positive connotations. Typed responses from Experiment 2 showed that inter-keystroke intervals at the morphological constituent boundary were significantly longer when the connotation of the head constituent was either more positive or more negative than that of the compound. The interpretation of this finding is discussed in the context of previous compound typing research. Taken together, these findings suggest that affective transparency plays a role in the recognition, storage, and production of English compound words. This study provides a promising first step in a new direction for research on compound words.

Keywords: compound processing, semantic transparency, typed production, valence

Procedia PDF Downloads 127
1802 The Gezi Park Protests in the Columns

Authors: Süleyman Hakan Yilmaz, Yasemin Gülsen Yilmaz

Abstract:

The Gezi Park protests of 2013 have significantly changed the Turkish agenda and its effects have been felt historically. The protests, which rapidly spread throughout the country, were triggered by the proposal to recreate the Ottoman Army Barracks to function as a shopping mall on Gezi Park located in Istanbul’s Taksim neighbourhood despite the oppositions of several NGOs and when trees were cut in the park for this purpose. Once the news that construction vehicles entered the park on May 27 spread on social media, activists moved into the park to stop the demolition, against whom the police used disproportioned force. With this police intervention and the then prime-minister Tayyip Erdoğan's insistent statements about the construction plans, the protests turned into anti-government demonstrations, which then spread to the rest of the country, mainly in big cities like Ankara and Izmir. According to the Ministry of Internal Affairs’ June 23rd reports, 2.5 million people joined the demonstrations in 79 provinces, that is all of them, except for the provinces of Bayburt and Bingöl, while even more people shared their opinions via social networks. As a result of these events, 8 civilians and 2 security personnel lost their lives, namely police chief Mustafa Sarı, police officer Ahmet Küçükdağ, citizens Mehmet Ayvalıtaş, Abdullah Cömert, Ethem Sarısülük, Ali İsmail Korkmaz, Ahmet Atakan, Berkin Elvan, Burak Can Karamanoğlu, Mehmet İstif, and Elif Çermik, and 8163 more were injured. Besides being a turning point in Turkish history, the Gezi Park protests also had broad repercussions in both in Turkish and in global media, which focused on Turkey throughout the events. Our study conducts content analysis of three Turkish reporting newspapers with varying ideological standpoints, Hürriyet, Cumhuriyet ve Yeni Şafak, in order to reveal their basic approach to columns casting in context of the Gezi Park protests. Columns content relating to the Gezi protests were treated and analysed for this purpose. The aim of this study is to understand the social effects of the Gezi Park protests through media samples with varying political attitudes towards news casting.

Keywords: Gezi Park, media, news casting, columns

Procedia PDF Downloads 433
1801 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques

Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai

Abstract:

In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.

Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor

Procedia PDF Downloads 269
1800 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 110
1799 Arabic Text Classification: Review Study

Authors: M. Hijazi, A. Zeki, A. Ismail

Abstract:

An enormous amount of valuable human knowledge is preserved in documents. The rapid growth in the number of machine-readable documents for public or private access requires the use of automatic text classification. Text classification can be defined as assigning or structuring documents into a defined set of classes known in advance. Arabic text classification methods have emerged as a natural result of the existence of a massive amount of varied textual information written in the Arabic language on the web. This paper presents a review on the published researches of Arabic Text Classification using classical data representation, Bag of words (BoW), and using conceptual data representation based on semantic resources such as Arabic WordNet and Wikipedia.

Keywords: Arabic text classification, Arabic WordNet, bag of words, conceptual representation, semantic relations

Procedia PDF Downloads 426
1798 Assessing Effectiveness of Outrigger and Belt Truss System for Tall Buildings under Wind Loadings

Authors: Nirand Anunthanakul

Abstract:

This paper is to investigate a 54-story reinforced concrete residential tall building structures—238.8 meters high. Shear walls, core walls, and columns are the primary vertical components. Other special lateral components—core-outrigger and belt trusses—are studied and combined with the structural system in order to increase the structural stability during severe lateral load events, particularly, wind loads. The wind tunnel tests are conducted using the force balance technique. The overall wind loads and dynamics response of the building are also measured for 360 degrees of azimuth—basis for 10-degree intervals. The results from numerical analysis indicate that an outrigger and belt truss system clearly engages perimeter columns to efficiently reduce acceleration index and lateral deformations at the top level so that the building structures achieve lateral stability, and meet standard provision values.

Keywords: outrigger, belt truss, tall buildings, wind loadings

Procedia PDF Downloads 569
1797 Understanding the Semantic Network of Tourism Studies in Taiwan by Using Bibliometrics Analysis

Authors: Chun-Min Lin, Yuh-Jen Wu, Ching-Ting Chung

Abstract:

The formulation of tourism policies requires objective academic research and evidence as support, especially research from local academia. Taiwan is a small island, and its economic growth relies heavily on tourism revenue. Taiwanese government has been devoting to the promotion of the tourism industry over the past few decades. Scientific research outcomes by Taiwanese scholars may and will help lay the foundations for drafting future tourism policy by the government. In this study, a total of 120 full journal articles published between 2008 and 2016 from the Journal of Tourism and Leisure Studies (JTSL) were examined to explore the scientific research trend of tourism study in Taiwan. JTSL is one of the most important Taiwanese journals in the tourism discipline which focuses on tourism-related issues and uses traditional Chinese as the study language. The method of co-word analysis from bibliometrics approaches was employed for semantic analysis in this study. When analyzing Chinese words and phrases, word segmentation analysis is a crucial step. It must be carried out initially and precisely in order to obtain meaningful word or word chunks for further frequency calculation. A word segmentation system basing on N-gram algorithm was developed in this study to conduct semantic analysis, and 100 groups of meaningful phrases with the highest recurrent rates were located. Subsequently, co-word analysis was employed for semantic classification. The results showed that the themes of tourism research in Taiwan in recent years cover the scope of tourism education, environmental protection, hotel management, information technology, and senior tourism. The results can give insight on the related issues and serve as a reference for tourism-related policy making and follow-up research.

Keywords: bibliometrics, co-word analysis, word segmentation, tourism research, policy

Procedia PDF Downloads 229
1796 Glaucoma Detection in Retinal Tomography Using the Vision Transformer

Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan

Abstract:

Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.

Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning

Procedia PDF Downloads 191
1795 On Early Verb Acquisition in Chinese-Speaking Children

Authors: Yating Mu

Abstract:

Young children acquire native language with amazing rapidity. After noticing this interesting phenomenon, lots of linguistics, as well as psychologists, devote themselves to exploring the best explanations. Thus researches on first language acquisition emerged. Early lexical development is an important branch of children’s FLA (first language acquisition). Verb, the most significant class of lexicon, the most grammatically complex syntactic category or word type, is not only the core of exploring syntactic structures of language but also plays a key role in analyzing semantic features. Obviously, early verb development must have great impacts on children’s early lexical acquisition. Most scholars conclude that verbs, in general, are very difficult to learn because the problem in verb learning might be more about mapping a specific verb onto an action or event than about learning the underlying relational concepts that the verb or relational term encodes. However, the previous researches on early verb development mainly focus on the argument about whether there is a noun-bias or verb-bias in children’s early productive vocabulary. There are few researches on general characteristics of children’s early verbs concerning both semantic and syntactic aspects, not mentioning a general survey on Chinese-speaking children’s verb acquisition. Therefore, the author attempts to examine the general conditions and characteristics of Chinese-speaking children’s early productive verbs, based on data from a longitudinal study on three Chinese-speaking children. In order to present an overall picture of Chinese verb development, both semantic and syntactic aspects will be focused in the present study. As for semantic analysis, a classification method is adopted first. Verb category is a sophisticated class in Mandarin, so it is quite necessary to divide it into small sub-types, thus making the research much easier. By making a reasonable classification of eight verb classes on basis of semantic features, the research aims at finding out whether there exist any universal rules in Chinese-speaking children’s verb development. With regard to the syntactic aspect of verb category, a debate between nativist account and usage-based approach has lasted for quite a long time. By analyzing the longitudinal Mandarin data, the author attempts to find out whether the usage-based theory can fully explain characteristics in Chinese verb development. To sum up, this thesis attempts to apply the descriptive research method to investigate the acquisition and the usage of Chinese-speaking children’s early verbs, on purpose of providing a new perspective in investigating semantic and syntactic features of early verb acquisition.

Keywords: Chinese-speaking children, early verb acquisition, verb classes, verb grammatical structures

Procedia PDF Downloads 366
1794 An Approach to Specify Software Requirements in Semantic Form

Authors: Deepa Vijay, Chellammal Surianarayanan, Gopinath Ganapathy

Abstract:

Requirements of a software project serve as a guideline for the entire project team which enable the team towards producing the right outcome. As requirements are the key in deciding the success of the project, it should be specified in an unambiguous manner. Also, the requirements should be complete and consistent. It should be interpreted in the same way by the entire software project team as the customer interprets. Specifying requirements in textual manner is common in software development. This leads to poor understanding of the requirements which results in more errors and degraded quality. There are some literatures which focus on semantic way of specifying functional requirement which ensure the consistency and completeness of requirements. Alternately in the work, a method is proposed to map the syntactic requirements with corresponding semantics in the form of ontologies. This improves the understanding of requirements, prevents errors and improves quality.

Keywords: functional requirement, ontology, requirements management, semantics

Procedia PDF Downloads 364
1793 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 425
1792 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 281
1791 Self –Engineering Strategy of Six Dimensional Inter-Subcultural Mental Images

Authors: Mostafa Jafari

Abstract:

How the people continually create and recreate the six dimensional inter- sub-cultural relationships from the strategic point of view? Can they engineer and direct it toward creating a set of peaceful subcultures? This paper answers to these questions. Our mental images shape the quantity and quality of our relationships. The six dimensions of mental images are: my mental image about myself, your mental image about yourself, my mental image about you, your mental image about me, my imagination about your image about me and your imagination about my mental image about you. Strategic engineering is dynamically shaping these images and imaginations.Methodology: This survey, which is based on object and the relation between the variables, is explanatory, correlative and quantitative. The target community members are 90 educated people from universities. The data has been collected through questionnaire and interview and has been analyzed by descriptive statistical techniques and qualitative method. Results: Our findings show that engineering and deliberatly managing the process of inter- sub-cultural transactions in the national and global level can enable us to continually reform a peaceful set of learner sub-culturals toward recreate a peaceful unit global Home.

Keywords: strategic engineering, mental image, six dimensional mental images strategy , cultural literacy, radar technique

Procedia PDF Downloads 403
1790 Emerging Technology for Business Intelligence Applications

Authors: Hsien-Tsen Wang

Abstract:

Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.

Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing

Procedia PDF Downloads 94
1789 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning

Authors: Pooja Khanal, Huaming Zhang

Abstract:

Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.

Keywords: bug classification, bug labels, GitHub issues, semantic differences

Procedia PDF Downloads 201
1788 New Techniques to Decrease the Interfacial Stress in Steel Beams Strengthened With FRP Laminates

Authors: A. S. Bouchikhi, A. Megueni, S. Habibi

Abstract:

One major problem when using bonded Fiber Reinforced Polymer is the presence of high inter facial stresses near the end of the composite laminate which might govern the failure of the strengthening schedule. It is known that the decrease of FRP plate thickness and the fitness of adhesive reduce the stress concentration at plate ends. Another way is to use a plate with a non uniform section or tapered ends and softer adhesive at the edges. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJ) and tapering plate on the inter facial stress distribution in the adhesive layer, this paper presents the results of a study of application of two adhesives with different stiffnesses (bi-adhesive) along the joint strength length between the CFRP-strengthened steel beam for tapered and untapered plate on the distribution of inter facial stresses. A stiff adhesive was applied in the middle portion of the joint strength, while a low modulus adhesive was applied towards the edges prone to stress concentrations.

Keywords: FRP, mixed adhesive joints, stresses, tapered plate, retrofitted beams bonded

Procedia PDF Downloads 498
1787 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes

Authors: Hooman Dabirmanesh, Attila M. Zsaki

Abstract:

Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.

Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress

Procedia PDF Downloads 143
1786 Collapse Analysis of Planar Composite Frame under Impact Loads

Authors: Lian Song, Shao-Bo Kang, Bo Yang

Abstract:

Concrete filled steel tubular (CFST) structure has been widely used in construction practices due to its superior performances under various loading conditions. However, limited studies are available when this type of structure is subjected to impact or explosive loads. Current methods in relevant design codes are not specific for preventing progressive collapse of CFST structures. Therefore, it is necessary to carry out numerical simulations on CFST structure under impact loads. In this study, finite element analyses are conducted on the mechanical behaviour of composite frames which composed of CFST columns and steel beams subject to impact loading. In the model, CFST columns are simulated using finite element software ABAQUS. The model is verified by test results of solid and hollow CFST columns under lateral impacts, and reasonably good agreement is obtained through comparisons. Thereafter, a multi-scale finite element modelling technique is developed to evaluate the behaviour of a five-storey three-span planar composite frame. Alternate path method and direct simulation method are adopted to perform the dynamic response of the frame when a supporting column is removed suddenly. In the former method, the reason for column removal is not considered and only the remaining frame is simulated, whereas in the latter, a specific impact load is applied to the frame to take account of the column failure induced by vehicle impact. Comparisons are made between these two methods in terms of displacement history and internal force redistribution, and design recommendations are provided for the design of CFST structures under impact loads.

Keywords: planar composite frame, collapse analysis, impact loading, direct simulation method, alternate path method

Procedia PDF Downloads 519
1785 Repository Blockchain for Collaborative Blockchain Ecosystem

Authors: Razwan Ahmed Tanvir, Greg Speegle

Abstract:

Collaborative blockchain ecosystems allow diverse groups to cooperate on tasks while providing properties such as decentralization and transaction security. We provide a model that uses a repository blockchain to manage hard forks within a collaborative system such that a single process (assuming that it has knowledge of the requirements of each fork) can access all of the blocks within the system. The repository blockchain replaces the need for Inter Blockchain Communication (IBC) within the ecosystem by navigating the networks. The resulting construction resembles a tree instead of a chain. A proof-of-concept implementation performs a depth-first search on the new structure.

Keywords: hard fork, shared governance, inter blockchain communication, blockchain ecosystem, regular research paper

Procedia PDF Downloads 17
1784 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems

Authors: Baba Mbaye

Abstract:

In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.

Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering

Procedia PDF Downloads 218
1783 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 277
1782 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: inelastic behavior, non-linear dynamic analysis, steel structure, vertical component

Procedia PDF Downloads 317
1781 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 448
1780 Experimental Study of the Infill Masonry Walls Response Subjected to Out-Of-Plane Static Loadings

Authors: André Furtado, Hugo Rodrigues, António Arêde, Humberto Varum

Abstract:

Besides characterized as non-structural elements, infill masonry (IM) walls have an important contribute in the structural response of reinforced concrete structures as proved by the damages observed recent earthquakes. In particular, the out-of-plane (OOP) collapse has been one of the most observed failure mechanism. The aim of this research is to contribute to the increase of understanding regarding the OOP behaviour of full-scale infill panels considering different variables such as panel support width and axial load on the top of columns. For this, it was carried out in the Laboratory of Earthquake and Structural Engineering (LESE) an experimental campaign of five full-scale IM walls subjected to OOP distributed cyclic loadings. Specimens with different variables such as previous in-plane damage, support conditions, axial load on the top of the columns were studied. The results will be presented and discussed along the manuscript in terms of force-displacement hysteretic curves, cracking pattern, initial stiffness, stiffness degradation and accumulative energy dissipation.

Keywords: infill masonry walls, experimental testing, out-of-plane, full-scale

Procedia PDF Downloads 390
1779 Addressing Coastal Community Vulnerabilities with Alternative Marine Energy Projects

Authors: Danielle Preziuso, Kamila Kazimierczuk, Annalise Stein, Bethel Tarekegne

Abstract:

Coastal communities experience a variety of distinct socioeconomic, technical, and environmental vulnerabilities, all of which accrue heightened risk with increasingly frequent and severe climate change impacts. Marine renewable energy (MRE) offers a potential solution for mitigating coastal community vulnerabilities, especially water-energy dependencies while delivering promising co-benefits such as increased resilience and more sustainable energy outcomes. This paper explores coastal community vulnerabilities and service dependencies based on the local drivers that create them, with attention to climate change impacts and how they catalyze water-energy unmet needs in these communities. We examine the vulnerabilities through the lens of coastal Tribal communities (i.e., the Makah Tribe, the Kenaitze Tribe, Quinault Nation), as indigenous communities often face compounded impacts of technical, economic, and environmental vulnerabilities due to their underlying socio-demographic inequalities. We offer an environmental and energy justice indicators framework to understand how these vulnerabilities disproportionately manifest and impact the most vulnerable community members, and we subsequently utilize the framework to inform a weighted decision matrix tool that compares the viability of MRE-based alternative energy futures in addressing these vulnerabilities. The framework and complementary tool highlight opportunities for future MRE research and pilot demonstrations that directly respond to the vulnerabilities of coastal communities.

Keywords: coastal communities, decision matrix, energy equity, energy vulnerability, marine energy, service dependency

Procedia PDF Downloads 78
1778 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: knowledge clustering, knowledge acquisition, knowledge based engineering, knowledge cell, biologically inspired design

Procedia PDF Downloads 426
1777 Impact of Variability in Delineation on PET Radiomics Features in Lung Tumors

Authors: Mahsa Falahatpour

Abstract:

Introduction: This study aims to explore how inter-observer variability in manual tumor segmentation impacts the reliability of radiomic features in non–small cell lung cancer (NSCLC). Methods: The study included twenty-three NSCLC tumors. Each patient had three tumor segmentations (VOL1, VOL2, VOL3) contoured on PET/CT scans by three radiation oncologists. Dice coefficients (DCS) were used to measure the segmentation variability. Radiomic features were extracted with 3D-slicer software, consisting of 66 features: first-order (n=15), second-order (GLCM, GLDM, GLRLM, and GLSZM) (n=33). The inter-observer variability of radiomic features was assessed using the intraclass correlation coefficient (ICC). An ICC > 0.8 indicates good stability. Results: The mean DSC of VOL1, VOL2, and VOL3 was 0.80 ± 0.04, 0.85 ± 0.03, and 0.76 ± 0.06, respectively. 92% of all extracted radiomic features were found to be stable (ICC > 0.8). The GLCM texture features had the highest stability (96%), followed by GLRLM features (90%) and GLSZM features (87%). The DSC was found to be highly correlated with the stability of radiomic features. Conclusion: The variability in inter-observer segmentation significantly impacts radiomics analysis, leading to a reduction in the number of appropriate radiomic features.

Keywords: PET/CT, radiomics, radiotherapy, segmentation, NSCLC

Procedia PDF Downloads 45
1776 Inter-Personal and Inter-Organizational Relationships in Supply Chain Integration: A Resource Orchestration Perspective

Authors: Bill Wang, Paul Childerhouse, Yuanfei Kang

Abstract:

Purpose: The research is to extend resource orchestration theory (ROT) into supply chain management (SCM) area to investigate the dyadic relationships at both individual and organizational levels in supply chain integration (SCI). Also, we try to explore the interaction mechanism between inter-personal relationships (IPRs) and inter-organizational (IORs) during the whole SCI process. Methodology/approach: The research employed an exploratory multiple case study approach of four New Zealand companies. The data was collected via semi-structured interviews with top, middle, and lower level managers and operators from different departments of both suppliers and customers triangulated with company archival data. Findings: The research highlights the important role of both IPRs and IORs in the whole SCI process. Both IPRs and IORs are valuable, inimitable resources but IORs are formal and exterior while IPRs are informal and subordinated. In the initial stage of SCI process, IPRs are seen as key resources antecedents to IOR building while three IPRs dimensions work differently: personal credibility acts as an icebreaker to strengthen the confidence forming IORs, and personal affection acts as a gatekeeper, whilst personal communication expedites the IORs process. In the maintenance and development stage, IORs and IPRs interact each other continuously: good interaction between IPRs and IORs can facilitate SCI process while the bad interaction between IPRs can damage the SCI process. On the other hand, during the life-cycle of SCI process, IPRs can facilitate the formation, development of IORs while IORs development can cultivate the ties of IPRs. Out of the three dimensions of IPRs, Personal communication plays a more important role to develop IORs than personal credibility and personal affection. Originality/value: This research contributes to ROT in supply chain management literature by highlighting the interaction of IPRs and IORs in SCI. The intangible resources and capabilities of three dimensions of IPRs need to be orchestrated and nurtured to achieve efficient and effective IORs in SCI. Also, IPRs and IORs need to be orchestrated in terms of breadth, depth, and life-cycle of whole SCI process. Our study provides further insight into the rarely explored inter-personal level of SCI. Managerial implications: Our research provides top management with further evidence of the significance roles of IPRs at different levels when working with trading partners. This highlights the need to actively manage and develop these soft IPRs skills as an intangible competitive resource. Further, the research identifies when staff with specific skills and connections should be utilized during the different stages of building and maintaining inter-organizational ties. More importantly, top management needs to orchestrate and balance the resources of IPRs and IORs.

Keywords: case study, inter-organizational relationships, inter-personal relationships, resource orchestration, supply chain integration

Procedia PDF Downloads 233
1775 The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate

Authors: Asmaa Zaki M., Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly

Abstract:

ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters.

Keywords: free space optics (FSO), field of view (FOV), inter satellite link (ISL), optical wireless communication (OWC)

Procedia PDF Downloads 397
1774 Resource Framework Descriptors for Interestingness in Data

Authors: C. B. Abhilash, Kavi Mahesh

Abstract:

Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.

Keywords: RDF, interestingness, knowledge base, semantic data

Procedia PDF Downloads 162