Search results for: nearest neighbor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 366

Search results for: nearest neighbor

96 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
95 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 71
94 Enhancing Learners' Metacognitive, Cultural and Linguistic Proficiency through Egyptian Series

Authors: Hanan Eltayeb, Reem Al Refaie

Abstract:

To be able to connect and relate to shows spoken in a foreign language, advanced learners must understand not only linguistics inferences but also cultural, metacognitive, and pragmatic connotations in colloquial Egyptian TV series. These connotations are needed to both understand the different facets of the dramas put before them, and they’re also consistently grown and formulated through watching these shows. The inferences have become a staple in the Egyptian colloquial culture over the years, making their way into day-to-day conversations as Egyptians use them to speak, relate, joke, and connect with each other, without having known one another from previous times. As for advanced learners, they need to understand these inferences not only to watch these shows, but also to be able to converse with Egyptians on a level that surpasses the formal, or standard. When faced with some of the somewhat recent shows on the Egyptian screens, learners faced challenges in understanding pragmatics, cultural, and religious background of the target language and consequently not able to interact effectively with a native speaker in real-life situations. This study aims to enhance the linguistic and cultural proficiency of learners through studying two genres of TV Colloquial Egyptian series. Study samples derived from two recent comedian and social Egyptian series ('The Seventh Neighbor' سابع جار, and 'Nelly and Sherihan' نيللي و شريهان). When learners watch such series, they are usually faced with a problem understanding inferences that have to do with social, religious, and political events that are addressed in the series. Using discourse analysis of the sematic, semantic, pragmatic, cultural, and linguistic characteristics of the target language, some major deductions were highlighted and repeated, showing a pattern in both. The research paper concludes that there are many sets of lingual and para-lingual phrases, idioms, and proverbs to be acquired and used effectively by teaching these series. The strategies adopted in the study can be applied to different types of media, like movies, TV shows, and even cartoons, to enhance student proficiency.

Keywords: Egyptian series, culture, linguistic competence, pragmatics, semantics, social

Procedia PDF Downloads 143
93 Agroecological and Socioeconomic Determinants of Conserving Diversity On-Farm: The Case of Wheat Genetic Resources in Ethiopia

Authors: Bedilu Tafesse

Abstract:

Conservation of crop genetic resources presents a challenge of identifying specific determinants driving maintenance of diversity at farm and agroecosystems. The objectives of this study were to identify socioeconomic, market and agroecological determinants of farmers’ maintenance of wheat diversity at the household level and derive implications for policies in designing on-farm conservation programs. We assess wheat diversity at farm level using household survey data. A household decision making model is conceptualized using microeconomic theory to assess and identify factors influencing on-farm rice diversity. The model is then tested econometrically by using various factors affecting farmers’ variety choice and diversity decisions. The findings show that household-specific socioeconomic, agroecological and market factors are important in determining on-farm wheat diversity. The significant variables in explaining richness and evenness of wheat diversity include distance to the nearest market, subsistence ratio, modern variety sold, land types and adult labour working in agriculture. The statistical signs of the factors determining wheat diversity are consistent in explaining the richness, dominance and evenness among rice varieties. Finally, the study implies that the cost-effective means of promoting and sustaining on-farm conservation programmes is to target them in market isolated geographic locations of high crop diversity where farm households have more heterogeneity of agroecological conditions and more active family adult labour working on-farm.

Keywords: diversity indices, dominance, evenness, on-farm conservation, wheat diversity, richness

Procedia PDF Downloads 309
92 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 76
91 Public Culture Intervention in the Sustainable Renewal of Vernacular Heritage, Taking the Villages Surrounding the Erlitou Site in China as an Example

Authors: Gong Zhang

Abstract:

The villages surrounding protected areas of the Sites are a unique vernacular heritage due to their geographical location, long history, and the combination of nature and humanity. With the construction of more and more heritage sites, the villages around them are faced with the conflict between conservation and development. How to carry out sustainable micro-renewal while preserving the authenticity of the vernacular heritage is of great importance for the co-growth of the village residents and the site. This paper focuses on the process of revitalization of the villages nearby the Erlitou Site Park in China, aiming to study how sustainable village regeneration and conservation can be carried out through the activation of public culture. Firstly, through field research and literature review, this paper studies the vernacular morphology and architecture types of more than ten historical villages around the Erlitou site and investigates the traditional vernacular culture and the daily public activities of the local villagers. Secondly, taking the nearest village to the site area, Ranzhuang Village, as an example, the paper studies the role of public cultural activity interventions on the three different stages of vernacular heritage renewal: master planning, architecture group, and acupuncture-style micro-renewal of individual buildings, aiming to summarise its impact on villagers' lives and vernacular heritage. This paper concludes that a living regeneration with a moderate public cultural activity intervention can promote the symbiosis between the heritage site and the life of the villagers and increase the vitality of the village. This study aims to use the example of village regeneration in Henan, China, as a sustainable reference for the co-development of heritage sites and villages in other parts of the world.

Keywords: Erlitou site, public culture intervention, sustainable, vernacular heritage

Procedia PDF Downloads 248
90 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 78
89 Critical Factors Boosting the Future Economy of Eritrea: An Empirical Approach

Authors: Biniam Tedros Kahsay, Yohannes Yebabe Tesfay

Abstract:

Eritrea is a country in the East of Africa. The country is a neighbor of Djibouti, Ethiopia, and Sudan and is bordered by the Red Sea. The country declared its independence from Ethiopia in 1993. Thus, Eritrea has a lot of commonalities with the Northern Part of Ethiopia's tradition, religion, and languages. Many economists suggested that Eritrea is in a very strategic position for world trade roots and has an impact on geopolitics. This study focused on identifying the most important factor in boosting the Eritrean Economy. The paper collected big secondary data from the World Bank, International Trade and Tariff Data (WTO), East African Community (EAC), Ethiopian Statistical Agency (ESA), and the National Statistics Office (Eritrea). Economists consider economic and population growth in determining trade belts in East Africa. One of the most important Trade Belt that will potentially boost the Eritrean economy is the root of Eritrea (Massawa)->Eritea, (Asmara)->Tigray, (Humora)->Tigray, (Dansha)-> Gondar-> Gojjam-> Benshangual Gumuz => {Oromia, South Sudan}->Uganda. The estimate showed that this is one of the biggest trade roots in East Africa and has a participation of more than 150 million people. We employed various econometric analyses to predict the GDP of Eritrea, considering the future trade belts in East Africa. The result showed that the economy of Eritrea from the Trade Belt will have an elasticity estimate of 65.87% of the GDP of Ethiopia, 3.32% of the GDP of South Sudan, and 0.09% of the GDP of Uganda. The result showed that the existence of war has an elasticity of -93% to the GDP of the country. Thus, if Eritrea wants to strengthen its economy from the East African Trade Belt, the country needs to permanently avoid war in the region. Essentially, the country needs to establish a collaborative platform with the Northern part of Ethiopia (Tigray). Thus, establishing a mutual relationship with Tigray will boost the Eritrean economy. In that regard, Eritrean scholars and policymakers need to work on establishing the East African Trade Belt to boost their economy.

Keywords: Eritrea, east Africa trade belt, GDP, cointegration analysis, critical path analysis

Procedia PDF Downloads 60
88 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example

Authors: Hongyun Li, Zhibin Jiang

Abstract:

The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.

Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern

Procedia PDF Downloads 86
87 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs

Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa

Abstract:

Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.

Keywords: classification models, egg weight, fertilised eggs, multiple linear regression

Procedia PDF Downloads 88
86 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 148
85 The European Pharmacy Market: The Density and its Influencing Factors

Authors: Selina Schwaabe

Abstract:

Community pharmacies deliver high-quality health care and are responsible for medication safety. During the pandemic, accessibility to the nearest pharmacy became more essential to get vaccinated against Covid-19 and to get medical aid. The government's goal is to ensure nationwide, reachable, and affordable medical health care services by pharmacies. Therefore, the density of community pharmacies matters. Overall, the density of community pharmacies is fluctuating, with slightly decreasing tendencies in some countries. So far, the literature has shown that changes in the system affect prices and density. However, a European overview of the development of the density of community pharmacies and its triggers is still missing. This research is essential to counteract against decreasing density consulting in a lack of professional health care through pharmacies. The analysis focuses on liberal versus regulated market structures, mail-order prescription drug regulation, and third-party ownership consequences. In a panel analysis, the relative influence of the measures is examined across 27 European countries over the last 21 years. In addition, the paper examines seven selected countries in depth, selected for the substantial variance in their pharmacy system: Germany, Austria, Portugal, Denmark, Sweden, Finland and Poland. Overall, the results show that regulated pharmacy markets have over 10.75 pharmacies/100.000 inhabitants more than liberal markets. Further, mail-order prescription drugs decrease the density by -17.98 pharmacies/100.000 inhabitants. Countries allowing third-party ownership have 7.67 pharmacies/100.000 inhabitants more. The results are statistically significant at a 0.001 level. The output of this analysis recommends regulated pharmacy markets, with a ban on mail-order prescription drugs allowing third-party ownership to support nationwide medical health care through community pharmacies.

Keywords: community pharmacy, market conditions, pharmacy, pharmacy market, pharmacy lobby, prescription, e-prescription, ownership structures

Procedia PDF Downloads 133
84 Adsorption of Atmospheric Gases Using Atomic Clusters

Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko

Abstract:

First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.

Keywords: catalyst, gaussian, nanoparticles, oxidation

Procedia PDF Downloads 97
83 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 188
82 Assessing the Accessibility to Primary Percutaneous Coronary Intervention

Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu

Abstract:

Background: Ensuring patients with ST-elevation myocardial infarction (STEMI) access to hospitals that could perform percutaneous coronary intervention (PCI) in time is an important concern of healthcare managers. One commonly used the method to assess the coverage of population access to PCI hospital is the use GIS-estimated linear distance (crow's fly distance) between the district centroid and the nearest PCI hospital. If the distance is within a given distance (such as 20 km), the entire population of that district is considered to have appropriate access to PCI. The premise of using district centroid to estimate the coverage of population resident in that district is that the people live in the district are evenly distributed. In reality, the population density is not evenly distributed within the administrative district, especially in rural districts. Fortunately, the Taiwan government released basic statistical area (on average 450 population within the area) recently, which provide us an opportunity to estimate the coverage of population access to PCI services more accurate. Objectives: We aimed in this study to compare the population covered by a give PCI hospital according to traditional administrative district versus basic statistical area. We further examined if the differences between two geographic units used would be larger in a rural area than in urban area. Method: We selected two hospitals in Tainan City for this analysis. Hospital A is in urban area, hospital B is in rural area. The population in each traditional administrative district and basic statistical area are obtained from Taiwan National Geographic Information System, Ministry of Internal Affairs. Results: Estimated population live within 20 km of hospital A and B was 1,515,846 and 323,472 according to traditional administrative district and was 1,506,325 and 428,556 according to basic statistical area. Conclusion: In urban area, the estimated access population to PCI services was similar between two geographic units. However, in rural areas, the access population would be overestimated.

Keywords: accessibility, basic statistical area, modifiable areal unit problem (MAUP), percutaneous coronary intervention (PCI)

Procedia PDF Downloads 460
81 The Role of Institutions in Community Wildlife Conservation in Zimbabwe

Authors: Herbert Ntuli, Edwin Muchapondwa

Abstract:

This study used a sample of 336 households and community level data from 30 communities around the Gonarezhou National Park in Zimbabwe to analyse the association between ability to self-organize or cooperation and institutions on one hand and the relationship between success of biodiversity outcomes and cooperation on the other hand. Using both the ordinary least squares and instrumental variables estimation with heteroskedasticity-based instruments, our results confirmed that sound institutions are indeed an important ingredient for cooperation in the respective communities and cooperation positively and significantly affects biodiversity outcomes. Group size, community level trust, the number of stakeholders and punishment were found to be important variables explaining cooperation. From a policy perspective, our results show that external enforcement of rules and regulations does not necessarily translate into sound ecological outcomes but better outcomes are attainable when punishment is rather endogenized by local communities. This seems to suggest that communities should rather be supported in such a way that robust institutions that are tailor made to suit the needs of local condition will emerge that will in turn facilitate good environmental husbandry. Cooperation, training, benefits, distance from the nearest urban canter, distance from the fence, social capital average age of household head, fence and information sharing were found to be very important variables explaining the success of biodiversity outcomes ceteris paribus. Government programmes should target capacity building in terms of institutional capacity and skills development in order to have a positive impact on biodiversity. Hence, the role of stakeholders (e.g., NGOs) in capacity building and government effort should complement each other to ensure that the necessary resources are mobilized and all communities receive the necessary training and resources.

Keywords: institutions, self-organize, common pool resources, wildlife, conservation, Zimbabwe

Procedia PDF Downloads 281
80 Molecular Diversity of Forensically Relevant Insects from the Cadavers of Lahore

Authors: Sundus Mona, Atif Adnan, Babar Ali, Fareeha Arshad, Allah Rakha

Abstract:

Molecular diversity is the variation in the abundance of species. Forensic entomology is a neglected field in Pakistan. Insects collected from the crime scene should be handled by forensic entomologists who are currently virtually non-existent in Pakistan. Correct identification of insect specimen along with knowledge of their biodiversity can aid in solving many problems related to complicated forensic cases. Inadequate morphological identification and insufficient thermal biological studies limit the entomological utility in Forensic Medicine. Recently molecular identification of entomological evidence has gained attention globally. DNA barcoding is the latest and established method for species identification. Only proper identification can provide a precise estimation of postmortem intervals. Arthropods are known to be the first tourists scavenging on decomposing dead matter. The objective of the proposed study was to identify species by molecular techniques and analyze their phylogenetic importance with barcoded necrophagous insect species of early succession on human cadavers. Based upon this identification, the study outcomes will be the utilization of established DNA bar codes to identify carrion feeding insect species for concordant estimation of post mortem interval. A molecular identification method involving sequencing of a 658bp ‘barcode’ fragment of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene from collected specimens of unknown dipteral species from cadavers of Lahore was evaluated. Nucleotide sequence divergences were calculated using MEGA 7 and Arlequin, and a neighbor-joining phylogenetic tree was generated. Three species were identified, Chrysomya megacephala, Chrysomya saffranea, and Chrysomya rufifacies with low genetic diversity. The fixation index was 0.83992 that suggests a need for further studies to identify and classify forensically relevant insects in Pakistan. There is an exigency demand for further research especially when immature forms of arthropods are recovered from the crime scene.

Keywords: molecular diversity, DNA barcoding, species identification, forensically relevant

Procedia PDF Downloads 150
79 Phylogenetic Analysis of Klebsiella Species from Clinical Specimens from Nelson Mandela Academic Hospital in Mthatha, South Africa

Authors: Sandeep Vasaikar, Lary Obi

Abstract:

Rapid and discriminative genotyping methods are useful for determining the clonality of the isolates in nosocomial or household outbreaks. Multilocus sequence typing (MLST) is a nucleotide sequence-based approach for characterising bacterial isolates. The genetic diversity and the clinical relevance of the drug-resistant Klebsiella isolates from Mthatha are largely unknown. For this reason, prospective, experimental study of the molecular epidemiology of Klebsiella isolates from patients being treated in Mthatha over a three-year period was analysed. Methodology: PCR amplification and sequencing of the drug-resistance-associated genes, and multilocus sequence typing (MLST) using 7 housekeeping genes mdh, pgi, infB, FusAR, phoE, gapA and rpoB were conducted. A total of 32 isolates were analysed. Results: The percentages of multidrug-resistant (MDR), extensively drug-resistance (XDR) and pandrug-resistant (PDR) isolates were; MDR 65.6 % (21) and XDR and PDR with 0 % each. In this study, K. pneumoniae was 19/32 (59.4 %). MLST results showed 22 sequence types (STs) were identified, which were further separated by Maximum Parsimony into 10 clonal complexes and 12 singletons. The most dominant group was Klebsiella pneumoniae with 23/32 (71.8 %) isolates, Klebsiella oxytoca as a second group with 2/32 (6.25 %) isolates, and a single (3.1 %) K. varricola as a third group while 6 isolates were of unknown sequences. Conclusions/significance: A phylogenetic analysis of the concatenated sequences of the 7 housekeeping genes showed that strains of K. pneumoniae form a distinct lineage within the genus Klebsiella, with K. oxytoca and K. varricola its nearest phylogenetic neighbours. With the analysis of 7 genes were determined 1 K. variicola, which was mistakenly identified as K. pneumoniae by phenotypic methods. Two misidentifications of K. oxytoca were found when phenotypic methods were used. No significant differences were observed between ESBL blaCTX-M, blaTEM and blaSHV groups in the distribution of Sequence types (STs) or Clonal complexes (CCs).

Keywords: phylogenetic analysis, phylogeny, klebsiella phylogenetic, klebsiella

Procedia PDF Downloads 374
78 Genotyping and Phylogeny of Phaeomoniella Genus Associated with Grapevine Trunk Diseases in Algeria

Authors: A. Berraf-Tebbal, Z. Bouznad, , A.J.L. Phillips

Abstract:

Phaeomoniella is a fungus genus in the mitosporic ascomycota which includes Phaeomoniella chlamydospora specie associated with two declining diseases on grapevine (Vitis vinifera) namely Petri disease and esca. Recent studies have shown that several Phaeomoniella species also cause disease on many other woody crops, such as forest trees and woody ornamentals. Two new species, Phaeomoniella zymoides and Phaeomoniella pinifoliorum H.B. Lee, J.Y. Park, R.C. Summerbell et H.S. Jung, were isolated from the needle surface of Pinus densiflora Sieb. et Zucc. in Korea. The identification of species in Phaeomoniella genus can be a difficult task if based solely on morphological and cultural characters. In this respect, the application of molecular methods, particularly PCR-based techniques, may provide an important contribution. MSP-PCR (microsatellite primed-PCR) fingerprinting has proven useful in the molecular typing of fungal strains. The high discriminatory potential of this method is particularly useful when dealing with closely related or cryptic species. In the present study, the application of PCR fingerprinting was performed using the micro satellite primer M13 for the purpose of species identification and strain typing of 84 Phaeomoniella -like isolates collected from grapevines with typical symptoms of dieback. The bands produced by MSP-PCR profiles divided the strains into 3 clusters and 5 singletons with a reproducibility level of 80%. Representative isolates from each group and, when possible, isolates from Eutypa dieback and esca symptoms were selected for sequencing of the ITS region. The ITS sequences for the 16 isolates selected from the MSP-PCR profiles were combined and aligned with sequences of 18 isolates retrieved from GenBank, representing a selection of all known Phaeomoniella species. DNA sequences were compared with those available in GenBank using Neighbor-joining (NJ) and Maximum-parsimony (MP) analyses. The phylogenetic trees of the ITS region revealed that the Phaeomoniella isolates clustered with Phaeomoniella chlamydospora reference sequences with a bootstrap support of 100 %. The complexity of the pathosystems vine-trunk diseases shows clearly the need to identify unambiguously the fungal component in order to allow a better understanding of the etiology of these diseases and justify the establishment of control strategies against these fungal agents.

Keywords: Genotyping, MSP-PCR, ITS, phylogeny, trunk diseases

Procedia PDF Downloads 481
77 The Reasons for Vegetarianism in Estonia and its Effects to Body Composition

Authors: Ülle Parm, Kata Pedamäe, Jaak Jürimäe, Evelin Lätt, Aivar Orav, Anna-Liisa Tamm

Abstract:

Vegetarianism has gained popularity across the world. It`s being chosen for multiple reasons, but among Estonians, these have remained unknown. Previously, attention to bone health and probable nutrient deficiency of vegetarians has been paid and in vegetarians lower body mass index (BMI) and blood cholesterol level has been found but the results are inconclusive. The goal was to explain reasons for choosing vegetarian diet in Estonia and impact of vegetarianism to body composition – BMI, fat percentage (fat%), fat mass (FM), and fat free mass (FFM). The study group comprised of 68 vegetarians and 103 omnivorous. The determining body composition with DXA (Hologic) was concluded in 2013. Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). General data (physical activity level included) was collected with questionnaires. The main reasons why vegetarianism was chosen were the healthiness of the vegetarian diet (59%) and the wish to fight for animal rights (72%) Food additives were consumed by less than half of vegetarians, more often by men. Vegetarians had lower BMI than omnivores, especially amongst men. Based on BMI classification, vegetarians were less obese than omnivores. However, there were no differences in the FM, FFM and fat percentage figures of the two groups. Higher BMI might be the cause of higher physical activity level among omnivores compared with vegetarians. For classifying people as underweight, normal weight, overweight and obese both BMI and fat% criteria were used. By BMI classification in comparison with fat%, more people in the normal weight group were considered; by using fat% in comparison with BMI classification, however, more people categorized as overweight. It can be concluded that the main reasons for vegetarianism chosen in Estonia are healthiness of the vegetarian diet and the wish to fight for animal rights and vegetarian diet has no effect on body fat percentage, FM and FFM.

Keywords: body composition, body fat percentage, body mass index, vegetarianism

Procedia PDF Downloads 418
76 Monte Carlo and Biophysics Analysis in a Criminal Trial

Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano

Abstract:

In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.

Keywords: biophysics analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion

Procedia PDF Downloads 132
75 The Motivation System Development: Case-Study of the Trade Metal Company in Russian Federation

Authors: Elena V. Lysenko

Abstract:

Motivating as the leading function of a modern Human Resources Management involves issues of increasing the effectiveness of the organization in a broader context. During the formation of motivational systems, the top-management of organization should pay equal attention to both external motivation (incentive system) and internal (self-motivation). The balance of internal and external motivation harmonizes the relations between employers and employees, increases the level of job satisfaction by the organization staff, which in turn leads the organization to success and ensures the organization`s profitability and competitiveness in the market environment. The article is devoted to the study of personnel motivation system in the small metal trade company, which is located in Yekaterinburg, Russian Federation. The study took place during November-December, 2016 ordered by the Company Director to analyze the motivational potential of work (managerial aspect of motivation) and motivation of personnel (personnel aspect of motivation) with the purpose to construct a system of employees’ motivation. The research tools included 6 specially selected tests of motivation, which are: “Motivation profile of your job”, “Constructive motivational attitudes”, Tests about Motivation of achievements (1st variant: Test by А.Mehrabian by the theory of D.С.McClelland and 2nd variant: Test about leading needs according with the theory of D.С.MacClelland), Tests by T.Elers (1st variant: “Determination of the motivation towards success or to avoid failure” and 2nd variant: “Trends to achieve results or to avoid failure”). The results of the study showed only one, but fundamental problem of the whole organization: high level of both motivational potential in work and self-motivation, especially in terms of achievement motivation, but serious lack of productivity. According the results which study showed this problem is derived from insufficient staff competence. The research suggests basic guidelines in order to build the new personnel motivation system for this Company, which is planned to be developed in the nearest future.

Keywords: incentive system, motivation of achievements, motivation system, self-motivation

Procedia PDF Downloads 311
74 Genetic Diversity of Sugar Beet Pollinators

Authors: Ksenija Taški-Ajdukovic, Nevena Nagl, Živko Ćurčić, Dario Danojević

Abstract:

Information about genetic diversity of sugar beet parental populations is of a great importance for hybrid breeding programs. The aim of this research was to evaluate genetic diversity among and within populations and lines of diploid sugar beet pollinators, by using SSR markers. As plant material were used eight pollinators originating from three USDA-ARS breeding programs and four pollinators from Institute of Field and Vegetable Crops, Novi Sad. Depending on the presence of self-fertility gene, the pollinators were divided into three groups: autofertile (inbred lines), autosterile (open-pollinating populations), and group with partial presence of autofertility gene. A total of 40 SSR primers were screened, out of which 34 were selected for the analysis of genetic diversity. A total of 129 different alleles were obtained with mean value 3.2 alleles per SSR primer. According to the results of genetic variability assessment the number and percentage of polymorphic loci was the maximal in pollinators NS1 and tester cms2 while effective number of alleles, expected heterozygosis and Shannon’s index was highest in pollinator EL0204. Analysis of molecular variance (AMOVA) showed that 77.34% of the total genetic variation was attributed to intra-varietal variance. Correspondence analysis results were very similar to grouping by neighbor-joining algorithm. Number of groups was smaller by one, because correspondence analysis merged IFVCNS pollinators with CZ25 into one group. Pollinators FC220, FC221 and C 51 were in the next group, while self-fertile pollinators CR10 and C930-35 from USDA-Salinas were separated. On another branch were self-sterile pollinators ЕL0204 and ЕL53 from USDA-East Lansing. Sterile testers cms1 and cms2 formed separate group. The presented results confirmed that SSR analysis can be successfully used in estimation of genetic diversity within and among sugar beet populations. Since the tested pollinator differed considering the presence of self-fertility gene, their heterozygosity differed as well. It was lower in genotypes with fixed self-fertility genes. Since the most of tested populations were open-pollinated, which rarely self-pollinate, high variability within the populations was expected. Cluster analysis grouped populations according to their origin.

Keywords: auto fertility, genetic diversity, pollinator, SSR, sugar beet

Procedia PDF Downloads 461
73 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 56
72 Representation and Reality: Media Influences on Japanese Attitudes towards China

Authors: Shuk Ting Kinnia Yau

Abstract:

As China has become more and more influential in the global and geo-political arena, mutual understanding between Japan and China has also become a topic of paramount importance. There have always been tensions between the two countries, but unfortunately, each country tends to blame the other for fanning emotions. This research will investigate portrayals of China and the Chinese people in Japanese media such as newspapers, TV news, TV drama, and cinema over this period, focusing on media sources that have particularly wide viewership or readership. By doing so, it attempts to detect any general trends in the positive or negative character of such portrayals and to see if they correlate with the results of surveys of attitudes among the general population. To the degree that correlations may be found, the question arises as to whether the media portrayals are a reflection of societal attitudes towards the Chinese, on one hand, or may be playing a role in promoting such attitudes, on the other. The relationship here is, without doubt, more complex than a simple one-way relationship of cause and effect, but indications of some direction of causality may be suggested by trends in one occurring before or after the other. Evidence will also be sought of possible longer-term trends in media portrayals of China and the Chinese people in Japan during the post-2012 period, i.e., Abe Shinzo’s second term as prime minister, in comparison to earlier periods. Perceptions of Japan’s view of China and the Chinese, both inside and outside the scholarly world, tend to be oversimplified and are often incomprehensive. This research calls attention to the role played by the media in promoting or de-promoting Sino-Japanese relations. By analyzing the nature and background of images of China and the Chinese people presented in the Japanese media, especially under the new Abe Regime, this research seeks to promote a more balanced and comprehensive understanding of attitudes in Japanese society towards its gigantic neighbor. Scholars have seen the increasingly fragile Sino-Japanese relationship as inseparable from the real-world political conflicts that have become more frequent in recent years and have sought to draw a correlation between the two. The influence of the media, however, remains a mostly under-explored domain in the academic world. Against this background, this research aims to provide an enriched scholarly understanding of Japan’s perception of China by investigating to what extent such perception can be seen to be affected by subjective or selective forms of presentation of China found in the Japanese media, or vice versa.

Keywords: Abe Shinzo, China, Japan, media

Procedia PDF Downloads 311
71 Mild Hypothermia Versus Normothermia in Patients Undergoing Cardiac Surgery: A Propensity Matched Analysis

Authors: Ramanish Ravishankar, Azar Hussain, Mahmoud Loubani, Mubarak Chaudhry

Abstract:

Background and Aims: Currently, there are no strict guidelines in cardiopulmonary bypass temperature management in cardiac surgery not involving the aortic arch. This study aims to compare patient outcomes undergoing mild hypothermia and normothermia. The aim of this study was to compare patient outcomes between mild hypothermia and normothermia undergoing on-pump cardiac surgery not involving the aortic arch. Methods: This was a retrospective cohort study from January 2015 until May 2023. Patients who underwent cardiac surgery with cardiopulmonary bypass temperatures ≥32oC were included and stratified into mild hypothermia (32oC – 35oC) and normothermia (>35oC) cohorts. Propensity matching was applied through the nearest neighbour method (1:1) using the risk factors detailed in the EuroScore using RStudio. The primary outcome was mortality. Secondary outcomes included post-op stay, intensive care unit readmission, re-admission, stroke, and renal complications. Patients who had major aortic surgery and off-pump operations were excluded. Results: Each cohort had 1675 patients. There was a significant increase in overall mortality with the mild hypothermia cohort (3.59% vs. 2.32%; p=0.04912). There was also a greater stroke incidence (2.09% vs. 1.13%; p=0.0396) and transient ischaemic attack (TIA) risk (3.1% vs. 1.49%; p=0.0027). There was no significant difference in renal complications (9.13% vs. 7.88%; p=0.2155). Conclusions: Patient’s who underwent mild hypothermia during cardiopulmonary bypass have a significantly greater mortality, stroke, and transient ischaemic attack incidence. Mild hypothermia does not appear to provide any benefit over normothermia and does not appear to provide any neuroprotective benefits. This shows different results to that of other major studies; further trials and studies need to be conducted to reach a consensus.

Keywords: cardiac surgery, therapeutic hypothermia, neuroprotection, cardiopulmonary bypass

Procedia PDF Downloads 68
70 The Impact of Adopting Cross Breed Dairy Cows on Households’ Income and Food Security in the Case of Dejen Woreda, Amhara Region, Ethiopia

Authors: Misganaw Chere Siferih

Abstract:

This study assessed the impact of crossbreed dairy cows on household income and food security. The study area is found in Dejen Woreda, East Gojam Zone, and Amhara region of Ethiopia. Random sampling technique was used to obtain a sample of 80 crossbreed dairy cow owners and 176 indigenous dairy cow owners. The study employed food consumption score analytical framework to measure food security status of the household. No Statistical significant mean difference is found between crossbreed owners and indigenous owners. Logistic regression was employed to investigate crossbreed dairy cow adoption determinants , the result indicates that gender, education, labor number, land size cultivated, dairy cooperatives membership, net income and food security status of the household are statistically significant independent variables, which explained the binary dependent variable, crossbreed dairy cow adoption. Propensity score matching (PSM) was employed to analyze the impact of crossbreed dairy cow owners on farmers’ income and food security. The average net income of crossbreed dairy cow owners was found to be significantly higher than indigenous dairy cow owners. Estimates of average treatment effect of the treated (ATT) indicated that crossbreed dairy cow is able to impact households’ net income by 42%, 38.5%, 30.8% and 44.5% higher in kernel, radius, nearest neighborhood and stratification matching algorithms respectively as compared to indigenous dairy cow owners. However, estimates of average treatment of the treated (ATT) suggest that being an owner of crossbreed dairy cow is not able to affect food security significantly. Thus, crossbreed dairy cow enables farmers to increase income but not their food security in the study area. Finally, the study recommended establishing dairy cooperatives and advice farmers to become a member of them, attention to promoting the impact of crossbreed dairy cows and promotion of nutrition focus projects.

Keywords: crossbreed dairy cow, net income, food security, propensity score matching

Procedia PDF Downloads 65
69 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 86
68 Risk of Heatstroke Occurring in Indoor Built Environment Determined with Nationwide Sports and Health Database and Meteorological Outdoor Data

Authors: Go Iwashita

Abstract:

The paper describes how the frequencies of heatstroke occurring in indoor built environment are related to the outdoor thermal environment with big statistical data. As the statistical accident data of heatstroke, the nationwide accident data were obtained from the National Agency for the Advancement of Sports and Health (NAASH) . The meteorological database of the Japanese Meteorological Agency supplied data about 1-hour average temperature, humidity, wind speed, solar radiation, and so forth. Each heatstroke data point from the NAASH database was linked to the meteorological data point acquired from the nearest meteorological station where the accident of heatstroke occurred. This analysis was performed for a 10-year period (2005–2014). During the 10-year period, 3,819 cases of heatstroke were reported in the NAASH database for the investigated secondary/high schools of the nine Japanese representative cities. Heatstroke most commonly occurred in the outdoor schoolyard at a wet-bulb globe temperature (WBGT) of 31°C and in the indoor gymnasium during athletic club activities at a WBGT > 31°C. The determined accident ratio (number of accidents during each club activity divided by the club’s population) in the gymnasium during the female badminton club activities was the highest. Although badminton is played in a gymnasium, these WBGT results show that the risk level during badminton under hot and humid conditions is equal to that of baseball or rugby played in the schoolyard. Except sports, the high risk of heatstroke was observed in schools houses during cultural activities. The risk level for indoor environment under hot and humid condition would be equal to that for outdoor environment based on the above results of WBGT. Therefore control measures against hot and humid indoor condition were needed as installing air conditions not only schools but also residences.

Keywords: accidents in schools, club activity, gymnasium, heatstroke

Procedia PDF Downloads 217
67 Development the Sensor Lock Knee Joint and Evaluation of Its Effect on Walking and Energy Consumption in Subjects With Quadriceps Weakness

Authors: Mokhtar Arazpour

Abstract:

Objectives: Recently a new kind of stance control knee joint has been developed called the 'sensor lock.' This study aimed to develop and evaluate 'sensor lock', which could potentially solve the problems of walking parameters and gait symmetry in subjects with quadriceps weakness. Methods: Nine subjects with quadriceps weakness were enrolled in this study. A custom-made knee ankle foot orthosis (KAFO) with the same set of components was constructed for each participant. Testing began after orthotic gait training was completed with each of the KAFOs and subjects demonstrated that they could safely walk with crutches. Subjects rested 30 minutes between each trial. The 10 meters walking test is used to assess walking speed in meters/second (m/s). The total time taken to ambulate 6 meters (m) is recorded to the nearest hundredth of a second. 6 m is then divided by the total time (in seconds) taken to ambulate and recorded in m/s. The 6 Minutes Walking Test was used to assess walking endurance in this study. Participants walked around the perimeter of a set circuit for a total of six minutes. To evaluate Physiological cost index (PCI), the subjects were asked to walk using each type of KAFOs along a pre-determined 40 m rectangular walkway at their comfortable self-selected speed. A stopwatch was used to calculate the speed of walking by measuring the time between starting and stopping time and the distance walked. Results: The use of a KAFO fitted with the “sensor lock” knee joint resulted in improvements to walking speed, distance walked and physiological cost index when compared with the knee joint in lock mode. Conclusions: This study demonstrated that the use of a KAFO with the “sensor lock” knee joint could provide significant benefits for subjects with a quadriceps weakness when compared to a KAFO with the knee joint in lock mode.

Keywords: stance control knee joint, knee ankle foot orthosis, quadriceps weakness, walking, energy consumption

Procedia PDF Downloads 125