Search results for: learning vector quantization
7798 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 5197797 Balancing Independence and Guidance: Cultivating Student Agency in Blended Learning
Authors: Yeo Leng Leng
Abstract:
Blended learning, with its combination of online and face-to-face instruction, presents a unique set of challenges and opportunities in terms of cultivating student agency. While it offers flexibility and personalized learning pathways, it also demands a higher degree of self-regulation and motivation from students. This paper presents the design of blended learning in a Chinese lesson and discusses the framework involved. It also talks about the Edtech tools adopted to engage the students. Some of the students’ works will be showcased. A qualitative case study research method was employed in this paper to find out more about students’ learning experiences and to give them a voice. The purpose is to seek improvement in the blended learning design of the Chinese lessons and to encourage students’ self-directed learning.Keywords: blended learning, student agency, ed-tech tools, self-directed learning
Procedia PDF Downloads 787796 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 1017795 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1497794 Effects of the Mathcing between Learning and Teaching Styles on Learning with Happiness of College Students
Authors: Tasanee Satthapong
Abstract:
The purpose of the study was to determine the relationship between learning style preferences, teaching style preferences, and learning with happiness of college students who were majors in five different academic areas at the Suansunandha Rajabhat University in Thailand. The selected participants were 729 students 1st year-5th year in Faculty of Education from Thai teaching, early childhood education, math and science teaching, and English teaching majors. The research instruments are the Grasha and Riechmann learning and teaching styles survey and the students’ happiness in learning survey, based on learning with happiness theory initiated by the Office of the National Education Commission. The results of this study: 1) The most students’ learning styles were participant style, followed by collaborative style, and independent style 2) Most students’ happiness in learning in all subjects areas were at the moderate level: Early Childhood Education subject had the highest scores, while Math subject was at the least scores. 3) No different of student’s happiness in learning were found between students who has learning styles that match and not match to teachers’ teaching styles.Keywords: learning style, teaching style, learning with happiness
Procedia PDF Downloads 6917793 Strategic Model of Implementing E-Learning Using Funnel Model
Authors: Mohamed Jama Madar, Oso Wilis
Abstract:
E-learning is the application of information technology in the teaching and learning process. This paper presents the Funnel model as a solution for the problems of implementation of e-learning in tertiary education institutions. While existing models such as TAM, theory-based e-learning and pedagogical model have been used over time, they have generally been found to be inadequate because of their tendencies to treat materials development, instructional design, technology, delivery and governance as separate and isolated entities. Yet it is matching components that bring framework of e-learning strategic implementation. The Funnel model enhances all these into one and applies synchronously and asynchronously to e-learning implementation where the only difference is modalities. Such a model for e-learning implementation has been lacking. The proposed Funnel model avoids ad-ad-hoc approach which has made other systems unused or inefficient, and compromised educational quality. Therefore, the proposed Funnel model should help tertiary education institutions adopt and develop effective and efficient e-learning system which meets users’ requirements.Keywords: e-learning, pedagogical, technology, strategy
Procedia PDF Downloads 4527792 Gamification: A Guideline to Design an Effective E-Learning
Authors: Rattama Rattanawongsa
Abstract:
As technologies continue to develop and evolve, online learning has become one of the most popular ways of gaining access to learning. Worldwide, many students are engaging in both online and blended courses in growing numbers through e-learning. However, online learning is a form of teaching that has many benefits for learners but still has some limitations. The high attrition rates of students tend to be due to lack of motivation to succeed. Gamification is the use of game design techniques, game thinking and game mechanics in non-game context, such as learning. The gamifying method can motivate students to learn with fun and inspire them to continue learning. This paper aims to describe how the gamification work in the context of learning. The first part of this paper present the concept of gamification. The second part is described the psychological perspectives of gamification, especially motivation and flow theory for gamifying design. The result from this study will be described into the guidelines for effective learning design using a gamification concept.Keywords: gamification, e-learning, motivation, flow theory
Procedia PDF Downloads 5247791 Constructivism Learning Management in Mathematics Analysis Courses
Authors: Komon Paisal
Abstract:
The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.Keywords: constructivism, learning management, mathematics analysis courses, learning activity
Procedia PDF Downloads 5327790 Measuring E-Learning Effectiveness Using a Three-Way Comparison
Authors: Matthew Montebello
Abstract:
The way e-learning effectiveness has been notoriously measured within an academic setting is by comparing the e-learning medium to the traditional face-to-face teaching methodology. In this paper, a simple yet innovative comparison methodology is introduced, whereby the effectiveness of next generation e-learning systems are assessed in contrast not only to the face-to-face mode, but also to the classical e-learning modality. Ethical and logistical issues are also discussed, as this three-way approach to compare teaching methodologies was applied and documented in a real empirical study within a higher education institution.Keywords: e-learning effectiveness, higher education, teaching modality comparison
Procedia PDF Downloads 3867789 The Adoption of Mobile Learning in Saudi Women Faculty in King Abdulaziz University
Authors: Leena Alfarani
Abstract:
Although mobile devices are ubiquitous on university campuses, teacher-readiness for mobile learning has yet to be fully explored in the non-western nations. This study shows that two main factors affect the adoption and use of m-learning among female teachers within a university in Saudi Arabia—resistance to change and perceived social culture. These determinants of the current use and intention to use of m-learning were revealed through the analysis of an online questionnaire completed by 165 female faculty members. This study reveals several important issues for m-learning research and practice. The results further extend the body of knowledge in the field of m-learning, with the findings revealing that resistance to change and perceived social culture are significant determinants of the current use of and the intention to use m-learning.Keywords: blended learning, mobile learning, technology adoption, devices
Procedia PDF Downloads 4647788 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance
Procedia PDF Downloads 3387787 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning
Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar
Abstract:
Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.Keywords: augmented reality sandbox, constructivism, deep learning, geoscience
Procedia PDF Downloads 4027786 Project and Module Based Teaching and Learning
Authors: Jingyu Hou
Abstract:
This paper proposes a new teaching and learning approach-project and Module Based Teaching and Learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice, and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.Keywords: computer science education, project and module based, software engineering, module based teaching and learning
Procedia PDF Downloads 4927785 State of the Art on the Recommendation Techniques of Mobile Learning Activities
Authors: Nassim Dennouni, Yvan Peter, Luigi Lancieri, Zohra Slama
Abstract:
The objective of this article is to make a bibliographic study on the recommendation of mobile learning activities that are used as part of the field trip scenarios. Indeed, the recommendation systems are widely used in the context of mobility because they can be used to provide learning activities. These systems should take into account the history of visits and teacher pedagogy to provide adaptive learning according to the instantaneous position of the learner. To achieve this objective, we review the existing literature on field trip scenarios to recommend mobile learning activities.Keywords: mobile learning, field trip, mobile learning activities, collaborative filtering, recommendation system, point of interest, ACO algorithm
Procedia PDF Downloads 4467784 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses
Authors: Matthew Baucum
Abstract:
With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.Keywords: FMRI, machine learning, meta-analysis, text analysis
Procedia PDF Downloads 4487783 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 3317782 Using the Dokeos Platform for Industrial E-Learning Solution
Authors: Kherafa Abdennasser
Abstract:
The application of Information and Communication Technologies (ICT) to the training area led to the creation of this new reality called E-learning. That last one is described like the marriage of multi- media (sound, image and text) and of the internet (diffusion on line, interactivity). Distance learning became an important totality for training and that last pass in particular by the setup of a distance learning platform. In our memory, we will use an open source platform named Dokeos for the management of a distance training of GPS called e-GPS. The learner is followed in all his training. In this system, trainers and learners communicate individually or in group, the administrator setup and make sure of this system maintenance.Keywords: ICT, E-learning, learning plate-forme, Dokeos, GPS
Procedia PDF Downloads 4777781 0.13-μm CMOS Vector Modulator for Wireless Backhaul System
Authors: J. S. Kim, N. P. Hong
Abstract:
In this paper, a CMOS vector modulator designed for wireless backhaul system based on 802.11ac is presented. A poly phase filter and sign select switches yield two orthogonal signal paths. Two variable gain amplifiers with strongly reduced phase shift of only ±5 ° are used to weight these paths. It has a phase control range of 360 ° and a gain range of -10 dB to 10 dB. The current drawn from a 1.2 V supply amounts 20.4 mA. Using a 0.13 mm technology, the chip die area amounts 1.47x0.75 mm².Keywords: CMOS, phase shifter, backhaul, 802.11ac
Procedia PDF Downloads 3867780 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 547779 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint
Authors: Amna Khan, Zareena Kausar, Saad Malik
Abstract:
Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)
Procedia PDF Downloads 3687778 A Deep Learning Approach to Subsection Identification in Electronic Health Records
Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan
Abstract:
Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification
Procedia PDF Downloads 2177777 Services-Oriented Model for the Regulation of Learning
Authors: Mohamed Bendahmane, Brahim Elfalaki, Mohammed Benattou
Abstract:
One of the major sources of learners' professional difficulties is their heterogeneity. Whether on cognitive, social, cultural or emotional level, learners being part of the same group have many differences. These differences do not allow to apply the same learning process at all learners. Thus, an optimal learning path for one, is not necessarily the same for the other. We present in this paper a model-oriented service to offer to each learner a personalized learning path to acquire the targeted skills.Keywords: learning path, web service, trace analysis, personalization
Procedia PDF Downloads 3567776 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 4357775 Faculty Members' Acceptance of Mobile Learning in Kingdom of Saudi Arabia: Case Study of a Saudi University
Authors: Omran Alharbi
Abstract:
It is difficult to find an aspect of our modern lives that has been untouched by mobile technology. Indeed, the use of mobile learning in Saudi Arabia may enhance students’ learning and increase overall educational standards. However, within tertiary education, the success of e-learning implementation depends on the degree to which students and educators accept mobile learning and are willing to utilise it. Therefore, this research targeted the factors that influence Hail University instructors’ intentions to use mobile learning. An online survey was completed by eighty instructors and it was found that their use of mobile learning was heavily predicted by performance experience, effort expectancy, social influence, and facilitating conditions; the multiple regression analysis revealed that 67% of the variation was accounted for by these variables. From these variables, effort expectancy was shown to be the strongest predictor of intention to use e-learning for instructors.Keywords: acceptance, faculty member, mobile learning, KSA
Procedia PDF Downloads 1537774 Cognitive Footprints: Analytical and Predictive Paradigm for Digital Learning
Authors: Marina Vicario, Amadeo Argüelles, Pilar Gómez, Carlos Hernández
Abstract:
In this paper, the Computer Research Network of the National Polytechnic Institute of Mexico proposes a paradigmatic model for the inference of cognitive patterns in digital learning systems. This model leads to metadata architecture useful for analysis and prediction in online learning systems; especially on MOOc's architectures. The model is in the design phase and expects to be tested through an institutional of courses project which is going to develop for the MOOc.Keywords: cognitive footprints, learning analytics, predictive learning, digital learning, educational computing, educational informatics
Procedia PDF Downloads 4777773 Teaching Professional Competences through Projects: Experiencing Curriculum Development through Active Learning
Authors: Flavio Campos, Patricia Masmo, Fernanda Yamamoto
Abstract:
The report presents a research about teaching professional competencies through projects, considering the student as an active learner and curriculum development. Considering project based-learning, the report articulate the result of research about curriculum development for professional competencies and teaching-learning strategies to help the development of professional competencies in learning environments in the courses of National Learning Service in São Paulo, Brazil. There so, intend to demonstrate fundamentals to elaborate curriculum to learning environment, specific about teaching methodologies to enrich student-learning process, using projects. The practice that has been taking place since 2013 indicates the needs of rethinking knowledge and practice in courses that prepared students to labor.Keywords: curriculum design, active learning, professional competencies, project based-learning
Procedia PDF Downloads 4277772 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 1107771 A Semantic E-Learning and E-Assessment System of Learners
Authors: Wiem Ben Khalifa, Dalila Souilem, Mahmoud Neji
Abstract:
The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time.Keywords: Semantic Web, semantic system, ontology, evaluation, e-learning
Procedia PDF Downloads 3347770 Ubiquitous Collaborative Learning Activities with Virtual Teams Using CPS Processes to Develop Creative Thinking and Collaboration Skills
Authors: Sitthichai Laisema, Panita Wannapiroon
Abstract:
This study is a research and development which is intended to: 1) design ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills, and 2) assess the suitability of the ubiquitous collaborative learning activities. Its methods are divided into 2 phases. Phase 1 is the design of ubiquitous collaborative learning activities with virtual teams using CPS processes, phase 2 is the assessment of the suitability of the learning activities. The samples used in this study are 5 professionals in the field of learning activity design, ubiquitous learning, information technology, creative thinking, and collaboration skills. The results showed that ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills consist of 3 main steps which are: 1) preparation before learning, 2) learning activities processing and 3) performance appraisal. The result of the learning activities suitability assessment from the professionals is in the highest level.Keywords: ubiquitous learning, collaborative learning, virtual team, creative problem solving
Procedia PDF Downloads 5127769 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach
Authors: Chen-Yin Kuo, Yung-Hsin Lee
Abstract:
Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy
Procedia PDF Downloads 316