Search results for: brain mapping
1998 Artificial Generation of Visual Evoked Potential to Enhance Visual Ability
Authors: A. Vani, M. N. Mamatha
Abstract:
Visual signal processing in human beings occurs in the occipital lobe of the brain. The signals that are generated in the brain are universal for all the human beings and they are called Visual Evoked Potential (VEP). Generally, the visually impaired people lose sight because of severe damage to only the eyes natural photo sensors, but the occipital lobe will still be functioning. In this paper, a technique of artificially generating VEP is proposed to enhance the visual ability of the subject. The system uses the electrical photoreceptors to capture image, process the image, to detect and recognize the subject or object. This voltage is further processed and can transmit wirelessly to a BIOMEMS implanted into occipital lobe of the patient’s brain. The proposed BIOMEMS consists of array of electrodes that generate the neuron potential which is similar to VEP of normal people. Thus, the neurons get the visual data from the BioMEMS which helps in generating partial vision or sight for the visually challenged patient.Keywords: BioMEMS, neuro-prosthetic, openvibe, visual evoked potential
Procedia PDF Downloads 3151997 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications
Authors: Niloufar Yadgari
Abstract:
GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.Keywords: GAN, pathology, generative adversarial network, neuro imaging
Procedia PDF Downloads 321996 Osteochondroma of Clivus: An Unusual Cause of Headache
Authors: Muhammad Faisal Khilji, Rana Shoaib Hamid, Asim Qureshi
Abstract:
A fifty years old female presented in the emergency department of a tertiary care hospital with complaints of migraine type headache for the last few months. Her last episode of headache was severe, increasing in intensity, associated with nausea but no fever, lasting more than 24 hours and not resolving with analgesics. On examination there was no neurological deficit. CT scan of brain showed a large Pedunculated, non-expansible, non-aggressive bony lesion in the clivus with its sharp fragment impinging into the pons. Findings were further confirmed with MRI brain. Trans-sphenoidal excision biopsy was done and histopathology proved the lesion to be osteochondroma of clivus.Keywords: osteochondroma, clivus, headache, CT scan
Procedia PDF Downloads 4291995 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses
Authors: Matthew Baucum
Abstract:
With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.Keywords: FMRI, machine learning, meta-analysis, text analysis
Procedia PDF Downloads 4481994 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks
Procedia PDF Downloads 1391993 Antioxidant Mediated Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice
Authors: Jaspal Rana, Varinder Singh
Abstract:
Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min, followed by 24 h reperfusion, was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity were also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rose in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.Keywords: allium cepa, cerebral ischemia, memory, sensorimotor
Procedia PDF Downloads 1131992 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.Keywords: ISA, neural network, Brain Float-16, DUT
Procedia PDF Downloads 941991 Secure Distance Bounding Protocol on Ultra-WideBand Based Mapping Code
Authors: Jamel Miri, Bechir Nsiri, Ridha Bouallegue
Abstract:
Ultra WidBand-IR physical layer technology has seen a great development during the last decade which makes it a promising candidate for short range wireless communications, as they bring considerable benefits in terms of connectivity and mobility. However, like all wireless communication they suffer from vulnerabilities in terms of security because of the open nature of the radio channel. To face these attacks, distance bounding protocols are the most popular counter measures. In this paper, we presented a protocol based on distance bounding to thread the most popular attacks: Distance Fraud, Mafia Fraud and Terrorist fraud. In our work, we study the way to adapt the best secure distance bounding protocols to mapping code of ultra-wideband (TH-UWB) radios. Indeed, to ameliorate the performances of the protocol in terms of security communication in TH-UWB, we combine the modified protocol to ultra-wideband impulse radio technology (IR-UWB). The security and the different merits of the protocols are analyzed.Keywords: distance bounding, mapping code ultrawideband, terrorist fraud, physical layer technology
Procedia PDF Downloads 2991990 The Net as a Living Experience of Distance Motherhood within Italian Culture
Authors: C. Papapicco
Abstract:
Motherhood is an existential human relationship that lasts for the whole life and is always interwoven with subjectivity and culture. As a result of the brain drain, the motherhood becomes motherhood at distance. Starting from the hypothesis that re-signification of the mother at distance practices is culturally relevant; the research aims to understand the experience of mother at a distance in order to extrapolate the strategies of management of the empty nest. Specifically, the research aims to evaluate the experience of a brain drain’s mother, who created a blog that intends to take care of other parents at a distance. Actually, the blog is the only artifact symbol of the Italian culture of motherhood at distance. In the research, a Netnographic Analysis of the blog mammedicervelliinfuga.com is offered with the aim of understanding if the online world becomes an opportunity to manage the role of mother at a distance. A narrative interview with the blog creator was conducted and then the texts were analyzed by means of a Diatextual Analysis approach. It emerged that the migration projects of talented children take on different meanings and representations for parents. Thus, it is shown that the blog becomes a new form of understanding and practicing motherhood at a distance.Keywords: brain drain, diatextual analysis, distance motherhood blog, online and offline narrations
Procedia PDF Downloads 1281989 An Advanced Automated Brain Tumor Diagnostics Approach
Authors: Berkan Ural, Arif Eser, Sinan Apaydin
Abstract:
Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition
Procedia PDF Downloads 4181988 Quinazoline Analogue as a Pet Tracer for Imaging PDE10A: Radiosynthesis and Biological Evaluation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The family of phosphodiesterases (PDEs) plays a critical role in control of the level, localization, and duration of intracellular 3’-5’-cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic guanosine monophosphate (cGMP) signals by specifically hydrolyzing these cyclic nucleotides. As the involvement of cyclic nucleotide second messengers in cell signaling and homeostasis is established, the regulation of these pathways in the brain by various PDE isoforms is an area of considerable interest, as they are involved in nearly all brain functions and in the etiology of neuropsychiatric diseases. The PDE10A isoform, isolated from different species and characterized regarding structure and function, has received much attention in recent years, particularly in the context of schizophrenia and Huntington’s disease, which are both related to a role of PDE10A in the regulation of striatal dopaminergic neurotransmission. Quinazoline analogue 1-(4-methoxyphenyl)-6,7-dimethoxyquinazoline, was evaluated as specific PET marker for phosphodiesterase (PDE) 10A. Here, we report the radiosynthesis of [11C]2 and the in vitro and in vivo evaluation of [11C]2 as a potential positron emission tomography (PET) radiotracer for imaging PDE10A in the central nervous system (CNS). The radiosynthesis of [11C]2 was achieved by O-methylation of the corresponding des-methyl precursor with [11C]methyl iodide. [11C]2 was obtained with ∼50% radiochemical yield. PET imaging studies in rat brain displayed initial specific uptake with very rapid clearance of [11C]2 from brain. Though [11C]2 is not an ideal radioligand for clinical imaging of PDE10A in the CNS. Modified analogue of quinazoline having a higher potency for inhibiting PDE10A and improved pharmacokinetic properties will be necessary for imaging this enzyme with PET.Keywords: PDE10A, PET, radiotracer, quinazoline
Procedia PDF Downloads 1861987 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)
Authors: Javad Abdi, Azam Famil Khalili
Abstract:
Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning
Procedia PDF Downloads 4331986 The Effect of Paper Based Concept Mapping on Students' Academic Achievement and Attitude in Science Education
Authors: Orhan Akınoğlu, Arif Çömek, Ersin Elmacı, Tuğba Gündoğdu
Abstract:
The concept map is known to be a powerful tool to organize the ideas and concepts of an individuals’ mind. This tool is a kind of visual map that illustrates the relationships between the concepts of a certain subject. The effect of concept mapping on cognitive and affective qualities is one of the research topics among educational researchers for last decades. We educators want to utilize it both as an instructional tool or an assessment tool in classes. For that reason, this study aimed to determine the effect of concept mapping as a learning strategy in science classes on students’ academic achievement and attitude. The research employed a randomized pre-test post-test control group design. Data collected from 60 sixth grade students participated in the study from a randomly selected primary school in Turkey. Sixth-grade classes of the school were analyzed according to students’ academic achievement, science attitude, gender, mathematics, science courses grades, and their GPAs before the implementation. Two of the classes found to be equivalent (t=0,983, p>0,05) and one of them was defined as experimental and the other one control group randomly. During a 5-weeks period, the experimental group students (N=30) used the paper-based concept mapping method while the control group students (N=30) were taught with the traditional approach according to the science and technology education curriculum for light and sound subject. Both groups were taught by the same teacher who is experienced using concept mapping in science classes. Before the implementation, the teacher explained the theory of the concept maps and showed how to create paper-based concept mapping individually to the experimental group students for two hours. Then for two following hours she asked them to create some concept maps related to their former science subjects and gave them feedback by reviewing their concept maps to be sure that they can create during the implementation. The data were collected by science achievement test, science attitude scale and personal information form. Science achievement test and science attitude scale were implemented as pre-test and post-test while personal information form was implemented just as once. The reliability coefficient of the achievement test was KR20=0,76 and Cronbach’s Alpha of the attitude scale was 0,89. SPSS statistical software was used to analyze the data. According to the results, there was a statistically significant difference between the experimental and control group for academic achievement but not for attitude. The experimental group had significantly greater gains from academic achievement test than the control group (t=0,02, p<0,05). The findings showed that the paper-and-pencil concept mapping can be used as an effective method for students’ academic achievement in science classes. The results have implications for further researches.Keywords: concept mapping, science education, constructivism, academic achievement, science attitude
Procedia PDF Downloads 4081985 Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications
Authors: Janusz Bedkowski, Grzegorz Kisala, Michal Wlasiuk, Piotr Pokorski
Abstract:
Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM.Keywords: SLAM, ground truth, navigation, LiDAR, visual odometry, mapping
Procedia PDF Downloads 681984 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 501983 A Comparison between Different Segmentation Techniques Used in Medical Imaging
Authors: Ibtihal D. Mustafa, Mawia A. Hassan
Abstract:
Tumor segmentation from MRI image is important part of medical images experts. This is particularly a challenging task because of the high assorting appearance of tumor tissue among different patients. MRI images are advance of medical imaging because it is give richer information about human soft tissue. There are different segmentation techniques to detect MRI brain tumor. In this paper, different procedure segmentation methods are used to segment brain tumors and compare the result of segmentations by using correlation and structural similarity index (SSIM) to analysis and see the best technique that could be applied to MRI image.Keywords: MRI, segmentation, correlation, structural similarity
Procedia PDF Downloads 4101982 Beta-Carotene Attenuates Cognitive and Hepatic Impairment in Thioacetamide-Induced Rat Model of Hepatic Encephalopathy via Mitigation of MAPK/NF-κB Signaling Pathway
Authors: Marawan Abd Elbaset Mohamed, Hanan A. Ogaly, Rehab F. Abdel-Rahman, Ahmed-Farid O.A., Marwa S. Khattab, Reham M. Abd-Elsalam
Abstract:
Liver fibrosis is a severe worldwide health concern due to various chronic liver disorders. Hepatic encephalopathy (HE) is one of its most common complications affecting liver and brain cognitive function. Beta-Carotene (B-Car) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. The study attempted to know B-Car neuroprotective potential against thioacetamide (TAA)-induced neurotoxicity and cognitive decline in HE in rats. Hepatic encephalopathy was induced by TAA (100 mg/kg, i.p.) three times per week for two weeks. B-Car was given orally (10 or 20 mg/kg) daily for two weeks after TAA injections. Organ body weight ratio, Serum transaminase activities, liver’s antioxidant parameters, ammonia, and liver histopathology were assessed. Also, the brain’s mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), antioxidant parameters, adenosine triphosphate (ATP), adenosine monophosphate (AMP), norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) cAMP response element-binding protein (CREB) expression and B-cell lymphoma 2 (Bcl-2) expression were measured. The brain’s cognitive functions (Spontaneous locomotor activity, Rotarod performance test, Object recognition test) were assessed. B-Car prevented alteration of the brain’s cognitive function in a dose-dependent manner. The histopathological outcomes supported these biochemical evidences. Based on these results, it could be established that B-Car could be assigned to treat the brain’s neurotoxicity consequences of HE via downregualtion of MAPK/NF-κB signaling pathways.Keywords: beta-carotene, liver injury, MAPK, NF-κB, rat, thioacetamide
Procedia PDF Downloads 1541981 Integrating Practice-Based Learning in Accounting Education: Bolstering Students Engagement and Learning
Authors: Humayun Murshed, Shibly Abdullah
Abstract:
This paper focuses on sharing experience gained through a pilot project undertaken to teach an introductory accounting subject linking real-life ground realities with the fundamental concepts of accounting. In view of the practical dimensions of Accounting it has been observed that adopting a teaching approach based on practical illustrations help students to motivate and generate interests to take accounting profession as their career. The paper reports that students’ perception about accounting as ‘dreary’ has been changed to ‘interesting’ due to adoption of practice based approach in teaching. The authors argue that ‘concept mapping’ can play a vital role in facilitating practice based education in accounting which promotes a rewarding learning experience among the students. The paper considers taking into account generic skills development, student centric learning, development of innovative assessment tasks, making students aware of the potential benefits of practice based education primarily through concept mapping, and engaging them both inside and outside of the class rooms are critical for ensuring success of this approach.Keywords: accounting education, pedagogy, practice-based education, concept mapping
Procedia PDF Downloads 3441980 An Original and Suitable Induction Method of Repeated Hypoxic Stress by Hydralazine to Investigate the Integrity of an in Vitro Contact Co-Culture Blood Brain Barrier Model
Authors: Morgane Chatard, Clémentine Puech, Nathalie Perek, Frédéric Roche
Abstract:
Several neurological disorders are linked to repeated hypoxia. The impact of such repeated hypoxic stress, on endothelial cells function of the blood-brain barrier (BBB) is little studied in the literature. Indeed, the study of hypoxic stress in cellular pathways is complex using hypoxia exposure because HIF 1α (factor induced by hypoxia) has a short half life. Our study presents an innovative induction method of repeated hypoxic stress, more reproducible, which allows us to study its impacts on an in vitro contact co-culture BBB model. Repeated hypoxic stress was induced by hydralazine (a mimetic agent of hypoxia pathway) during two hours and repeated during 24 hours. Then, BBB integrity was assessed by permeability measurements (transendothelial electrical resistance and membrane permeability), tight junction protein expressions (cell-ELISA and confocal microscopy) and by studying expression and activity of efflux transporters. First, this study showed that repeated hypoxic stress leads to a BBB’s dysfunction illustrated by a significant increase in permeability. This loss of membrane integrity was linked to a significant decrease of tight junctions’ protein expressions, facilitating a possible transfer of potential cytotoxic compounds in the brain. Secondly, we demonstrated that brain microvascular endothelial cells had set-up defence mechanism. These endothelial cells significantly increased the activity of their efflux transporters which was associated with a significant increase in their expression. In conclusion, repeated hypoxic stress lead to a loss of BBB integrity with a decrease of tight junction proteins. In contrast, endothelial cells increased the expression of their efflux transporters to fight against cytotoxic compounds brain crossing. Unfortunately, enhanced efflux activity could also lead to reducing pharmacological drugs delivering to the brain in such hypoxic conditions.Keywords: BBB model, efflux transporters, repeated hypoxic stress, tigh junction proteins
Procedia PDF Downloads 2921979 Critical Appraisal of Different Drought Indices of Drought Predection and Their Application in KBK Districts of Odisha
Authors: Bibhuti Bhusan Sahoo, Ramakar Jha
Abstract:
Mapping of the extreme events (droughts) is one of the adaptation strategies to consequences of increasing climatic inconsistency and climate alterations. There is no operational practice to forecast the drought. One of the suggestions is to update mapping of drought prone areas for developmental planning. Drought indices play a significant role in drought mitigation. Many scientists have worked on different statistical analysis in drought and other climatological hazards. Many researchers have studied droughts individually for different sub-divisions or for India. Very few workers have studied district wise probabilities over large scale. In the present study, district wise drought probabilities over KBK (Kalahandi-Balangir-Koraput) districts of Odisha, India, Which are seriously prone to droughts, has been established using Hydrological drought index and Meteorological drought index along with the remote sensing drought indices to develop a multidirectional approach in the field of drought mitigation. Mapping for moderate and severe drought probabilities for KBK districts has been done and regions belonging different class intervals of probabilities of drought have been demarcated. Such type of information would be a good tool for planning purposes, for input in modelling and better promising results can be achieved.Keywords: drought indices, KBK districts, proposed drought severity index, SPI
Procedia PDF Downloads 4491978 Nanoparticle Induced Neurotoxicity Mediated by Mitochondria
Authors: Nandini Nalika, Suhel Parvez
Abstract:
Nanotechnology has emerged to play a vital role in developing all through the industrial world with an immense production of nanomaterials including nanoparticles (NPs). Many toxicological studies have confirmed that due to unique small size and physico-chemical properties of NPs (1-100nm), they can be potentially hazardous. Metallic NPs of small size have been shown to induce higher levels of cellular oxidative stress and can easily pass through the Blood Brain Barrier (BBB) and significantly accumulate in brain. With the wide applications of titanium dioxide nanoparticles (TNPs) in day-to-day life in form of cosmetics, paints, sterilisation and so on, there is growing concern regarding the deleterious effects of TNPs on central nervous system and mitochondria appear to be important cellular organelles targeted to the pro-oxidative effects of NPs and an important source that contribute significantly for the production of reactive oxygen species after some toxicity or an injury. The aim of our study was to elucidate the effect of TNPs in anatase form with different concentrations (5-50 µg/ml) following with various oxidative stress markers in isolated brain mitochondria as an in vitro model. Oxidative stress was determined by measuring the different oxidative stress markers like lipid peroxidation as well as the protein carbonyl content which was found to be significantly increased. Reduced glutathione content and major glutathione metabolizing enzymes were also modulated signifying the role of glutathione redox cycle in the pathophysiology of TNPs. The study also includes the mitochondrial enzymes (Complex 1, Complex II, complex IV, Complex V ) and the enzymes showed toxicity in a relatively short time due to the effect of TNPs. The study provide a range of concentration that were toxic to the neuronal cells and data pointing to a general toxicity in brain mitochondria by TNPs, therefore, it is in need to consider the proper utilization of NPs in the environment.Keywords: mitochondria, nanoparticles, brain, in vitro
Procedia PDF Downloads 3981977 Using Mind Mapping and Morphological Analysis within a New Methodology for Teaching Students of Products’ Design
Authors: Kareem Saber
Abstract:
Many products’ design instructors search for how to help students to develop their designs simply by reducing design stages and extrapolating simple design process forms to achieve design creativity. So, the researcher extrapolated a new design process form called “hierarchical design” which reduced design process into three stages and he had tried that methodology on about two hundred students. That trial had led to great results as students could develop their designs which characterized by creativity and innovation. That proved the success and effectiveness of the proposed methodology.Keywords: mind mapping, morphological analysis, product design, design process
Procedia PDF Downloads 1771976 Topographic Mapping of Farmland by Integration of Multiple Sensors on Board Low-Altitude Unmanned Aerial System
Authors: Mengmeng Du, Noboru Noguchi, Hiroshi Okamoto, Noriko Kobayashi
Abstract:
This paper introduced a topographic mapping system with time-saving and simplicity advantages based on integration of Light Detection and Ranging (LiDAR) data and Post Processing Kinematic Global Positioning System (PPK GPS) data. This topographic mapping system used a low-altitude Unmanned Aerial Vehicle (UAV) as a platform to conduct land survey in a low-cost, efficient, and totally autonomous manner. An experiment in a small-scale sugarcane farmland was conducted in Queensland, Australia. Subsequently, we synchronized LiDAR distance measurements that were corrected by using attitude information from gyroscope with PPK GPS coordinates for generation of precision topographic maps, which could be further utilized for such applications like precise land leveling and drainage management. The results indicated that LiDAR distance measurements and PPK GPS altitude reached good accuracy of less than 0.015 m.Keywords: land survey, light detection and ranging, post processing kinematic global positioning system, precision agriculture, topographic map, unmanned aerial vehicle
Procedia PDF Downloads 2361975 Assessing the Risk of Pressure Injury during Percutaneous Nephrolithotomy Using Pressure Mapping
Authors: Jake Tempo, Taylor Smithurst, Jen Leah, Skye Waddingham, Amanda Catlin, Richard Cetti
Abstract:
Introduction: Percutaneous nephrolithotomy (PCNL) is the gold-standard procedure for removing large or complex renal stones. Many operating positions can be used, and the debate over the ideal position continues. PCNL can be a long procedure during which patients can sustain pressure injuries. These injuries are often underreported in the literature. Interface pressure mapping records the pressure loading between a surface and the patient. High pressures with prolonged loading result in ischaemia, muscle deformation, and reperfusion which can cause skin breakdown and muscular injury. We compared the peak pressure indexes of common PCNL positions to identify positions which may be at high risk of pressure injuries. We hope the data can be used to adapt high-risk positions so that the PPI can be lessened by either adapting the positions or by using adjuncts to lower PPI. Materials and Methods: We placed a 23-year-old male subject in fourteen different PCNL positions while performing interface pressure mapping. The subject was 179 cm with a weight of 63.3 kg, BMI 19.8kg/m². Results: Supine positions had a higher mean PPI (119mmHg (41-137)) compared to prone positions (64mmHg (32-89)) (p=0.046 two tailed t-test). The supine flexed position with a bolster under the flank produced the highest PPI (194mmHg), and this was at the sacrum. Peak pressure indexes >100mmHg were recorded in eight PCNL positions. Conclusion: Supine PCNL positions produce higher PPI than prone PCNL positions. Our study shows where ‘at risk’ bony prominences are for each PCNL position. Surgeons must ensure these areas are protected during prolonged operations.Keywords: PCNL, pressure ulcer, interface pressure mapping, surgery
Procedia PDF Downloads 831974 Classification of EEG Signals Based on Dynamic Connectivity Analysis
Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović
Abstract:
In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients
Procedia PDF Downloads 2141973 Weak Convergence of Mann Iteration for a Hybrid Pair of Mappings in a Banach Space
Authors: Alemayehu Geremew Geremew
Abstract:
We prove the weak convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multivalued f nonexpansive mapping T in Banach space E.Keywords: common fixed point, Mann iteration, multivalued mapping, weak convergence
Procedia PDF Downloads 3351972 Role of Maternal Astaxanthin Supplementation on Brain Derived Neurotrophic Factor and Spatial Learning Behavior in Wistar Rat Offspring’s
Authors: K. M. Damodara Gowda
Abstract:
Background: Maternal health and nutrition are considered as the predominant factors influencing brain functional development. If the mother is free of illness and genetic defects, maternal nutrition would be one of the most critical factors affecting the brain development. Calorie restrictions cause significant impairment in spatial learning ability and the levels of Brain Derived Neurotrophic Factor (BDNF) in rats. But, the mechanism by which the prenatal under-nutrition leads to impairment in brain learning and memory function is still unclear. In the present study, prenatal Astaxanthin supplementation on BDNF level, spatial learning and memory performance in the offspring’s of normal, calorie restricted and Astaxanthin supplemented rats was investigated. Methodology: The rats were administered with 6mg and 12 mg of astaxanthin /kg bw for 21 days following which acquisition and retention of spatial memory was tested in a partially-baited eight arm radial maze. The BDNF level in different regions of the brain (cerebral cortex, hippocampus and cerebellum) was estimated by ELISA method. Results: Calorie restricted animals treated with astaxanthin made significantly more correct choices (P < 0.05), and fewer reference memory errors (P < 0.05) on the tenth day of training compared to offsprings of calorie restricted animals. Calorie restricted animals treated with astaxanthin also made significantly higher correct choices (P < 0.001) than untreated calorie restricted animals in a retention test 10 days after the training period. The mean BDNF level in cerebral cortex, Hippocampus and cerebellum in Calorie restricted animals treated with astaxanthin didnot show significant variation from that of control animals. Conclusion: Findings of the study indicated that memory and learning was impaired in the offspring’s of calorie restricted rats which was effectively modulated by astaxanthin at the dosage of 12 mg/kg body weight. In the same way the BDNF level at cerebral cortex, Hippocampus and Cerebellum was also declined in the offspring’s of calorie restricted animals, which was also found to be effectively normalized by astaxanthin.Keywords: calorie restiction, learning, Memory, Cerebral cortex, Hippocampus, Cerebellum, BDNF, Astaxanthin
Procedia PDF Downloads 2321971 Mapping Methods to Solve a Modified Korteweg de Vries Type Equation
Authors: E. V. Krishnan
Abstract:
In this paper, we employ mapping methods to construct exact travelling wave solutions for a modified Korteweg-de Vries equation. We have derived periodic wave solutions in terms of Jacobi elliptic functions, kink solutions and singular wave solutions in terms of hyperbolic functions.Keywords: travelling wave solutions, Jacobi elliptic functions, solitary wave solutions, Korteweg-de Vries equation
Procedia PDF Downloads 3311970 Effect of Oat-Protein Peptide in Cognitive Impairment Mice via Mediating Gut-Brain Axis
Authors: Hamad Rafique
Abstract:
The bioactive peptide RDFPITWPW (RW-9) identified from oat protein has been reported to be positive in memory deficits. However, no clarity on the mechanisms responsible for the neuroprotective effects of RW-9 peptide against AD-like symptoms. Herein, it found that RW-9 intervention showed various improving effects in cognitive-behavioral tests and alleviated oxidative stress and inflammation in the scopolamine-induced mice model. The hippocampus proteomics analysis revealed the upregulation of memory-related proteins, including Grin3a, Ppp2r1b, Stat6, Pik3cd, Slc5a7, Chrm2, mainly involved in cAMP signaling, PI3K-Akt signaling, and JAK-STAT signaling pathways. The administration of RW-9 significantly upregulated the neurotransmitters, including 5-HT, DA, and Arg, in mice brains. Moreover, it regulated the serum metabolic profile and increased the expression levels of ABC transporters, biosynthesis of amino acids, and Amino acyl-tRNA biosynthesis, among others. The 16s-rRNA results illustrated that the RW-9 restored the abundance of Muribaculaceae, Lachnospiraceae, Lactobacillus, Clostridia and Bactericides. Taken together, our results suggest that the RW-9 may prevent the AD-like symptoms via modulation of the gut-serum-brain axis.Keywords: oat protein, active peptide, neuroprotective, gut-brain axis
Procedia PDF Downloads 271969 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study
Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar
Abstract:
Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices
Procedia PDF Downloads 507