Search results for: bond graph
753 Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers
Authors: Nivedha Rajaram
Abstract:
Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers.Keywords: quantum computing, hybrid quantum solver, DWave annealing, network knowledge graph
Procedia PDF Downloads 125752 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: clustering, force-directed, graph drawing, stock investment analysis
Procedia PDF Downloads 300751 A Correlative Study of Heating Values of Saw Dust and Rice Husks in the Thermal Generation of Electricity
Authors: Muhammad Danladi, Muhammad Bura Garba, Muhammad Yahaya, Dahiru Muhammad
Abstract:
Biomass is one of the primary sources of energy supply, which contributes to about 78% of Nigeria. In this work, a comparative analysis of the heating values of sawdust and rice husks in the thermal generation of electricity was carried out. In the study, different masses of biomass were used and the corresponding electromotive force in millivolts was obtained. A graph of e.m.f was plotted against the mass of each biomass and a gradient was obtained. Bar graphs were plotted to represent the values of e.m.f and masses of the biomass. Also, a graph of e.m.f against eating values of sawdust and rice husks was plotted, and in each case, as the e.m.f increases also, the heating values increases. The result shows that saw dust with 0.033Mv/g gradient and 3.5 points of intercept had the highest gradient, followed by rice husks with 0.026Mv/g gradient and 2.6 points of intercept. It is, therefore, concluded that sawdust is the most efficient of the two types of biomass in the thermal generation of electricity.Keywords: biomass, electricity, thermal, generation
Procedia PDF Downloads 97750 Metal-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuels: Analysis from Molecular Dynamics Simulations
Authors: Aibek Kukpayev, Dhawal Shah
Abstract:
Combustion of sour fuels containing high amount of sulfur leads to the formation of sulfur oxides, which adversely harm the environment and has a negative impact on human health. Considering this, several legislations have been imposed to bring down the sulfur content in fuel to less than 10 ppm. In recent years, novel deep eutectic solvents (DESs) have been developed to achieve deep desulfurization, particularly to extract thiophenic compounds from liquid fuels. These novel DESs, considered as analogous to ionic liquids are green, eco-friendly, inexpensive, and sustainable. We herein, using molecular dynamic simulation, analyze the interactions of metal-based DESs with model oil consisting of thiophenic compounds. The DES used consists of polyethylene glycol (PEG-200) as a hydrogen bond donor, choline chloride (ChCl) or tetrabutyl ammonium chloride (TBAC) as a hydrogen bond acceptor, and cobalt chloride (CoCl₂) as metal salt. In particular, the combination of ChCl: PEG-200:CoCl₂ at a ratio 1:2:1 and the combination of TBAC:PEG-200:CoCl₂ at a ratio 1:2:0.25 were simulated, separately, with model oil consisting of octane and thiophenes at 25ᵒC and 1 bar. The results of molecular dynamics simulations were analyzed in terms of interaction energies between different components. The simulations revealed a stronger interaction between DESs/thiophenes as compared with octane/thiophenes, suggestive of an efficient desulfurization process. In addition, our analysis suggests that the choice of hydrogen bond acceptor strongly influences the efficiency of the desulfurization process. Taken together, the results also show the importance of the metal ion, although present in small amount, in the process, and the role of the polymer in desulfurization of the model fuel.Keywords: deep eutectic solvents, desulfurization, molecular dynamics simulations, thiophenes
Procedia PDF Downloads 144749 Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery
Authors: Afsaneh Ghorbanzadeh, Afshin Farahbakhsh, Zakieh Bayat
Abstract:
The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.Keywords: drug carrier, drug release, doxorubicin, iron oxide NPs
Procedia PDF Downloads 416748 A Formal Property Verification for Aspect-Oriented Programs in Software Development
Authors: Moustapha Bande, Hakima Ould-Slimane, Hanifa Boucheneb
Abstract:
Software development for complex systems requires efficient and automatic tools that can be used to verify the satisfiability of some critical properties such as security ones. With the emergence of Aspect-Oriented Programming (AOP), considerable work has been done in order to better modularize the separation of concerns in the software design and implementation. The goal is to prevent the cross-cutting concerns to be scattered across the multiple modules of the program and tangled with other modules. One of the key challenges in the aspect-oriented programs is to be sure that all the pieces put together at the weaving time ensure the satisfiability of the overall system requirements. Our paper focuses on this problem and proposes a formal property verification approach for a given property from the woven program. The approach is based on the control flow graph (CFG) of the woven program, and the use of a satisfiability modulo theories (SMT) solver to check whether each property (represented par one aspect) is satisfied or not once the weaving is done.Keywords: aspect-oriented programming, control flow graph, property verification, satisfiability modulo theories
Procedia PDF Downloads 174747 From Communalism to Individualism: Critical Insights on the Changing Nature of Hausa Society in Northern Nigeria
Authors: Waisu Iliyasu
Abstract:
It is a well-known fact that the Hausa people have, since time immemorial, had a distinct culture of living together and assisting one another. In fact, the communal bond has been an important aspect that bound society together. Over the years, this communal bond has been eroded, giving way to an individualistic society whereby everyone lives a different way of life free from social cohesion and family bonds. It is against this backdrop the paper examines the forces of change in Hausa society and their effect on communal living. The paper also highlights the factors and actors involved in such change and how, in the later years of Nigeria’s independence, such factors transformed the social, political and economic structures of Hausa society in Northern Nigeria. In writing this paper, qualitative research is used in which questionnaires and oral interviews were used as a method of data collection. Along this way, other sources like primary and secondary are also used extensively in writing the paper. The concluding part of the paper reveals that unless the problems of elitism, corruption and poverty are addressed, the gap between have and have-nots, wealthy and poor, literate and illiterate, will continue to widen, thereby leading to an individualistic society that negates all forms of communal living.Keywords: communalism, individualism, historical insights, Hausa land
Procedia PDF Downloads 67746 Time Series Analysis on the Production of Fruit Juice: A Case Study of National Horticultural Research Institute (Nihort) Ibadan, Oyo State
Authors: Abiodun Ayodele Sanyaolu
Abstract:
The research was carried out to investigate the time series analysis on quarterly production of fruit juice at the National Horticultural Research Institute Ibadan from 2010 to 2018. Documentary method of data collection was used, and the method of least square and moving average were used in the analysis. From the calculation and the graph, it was glaring that there was increase, decrease, and uniform movements in both the graph of the original data and the tabulated quarter values of the original data. Time series analysis was used to detect the trend in the highest number of fruit juice and it appears to be good over a period of time and the methods used to forecast are additive and multiplicative models. Since it was observed that the production of fruit juice is usually high in January of every year, it is strongly advised that National Horticultural Research Institute should make more provision for fruit juice storage outside this period of the year.Keywords: fruit juice, least square, multiplicative models, time series
Procedia PDF Downloads 141745 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)
Authors: Tesfaye Fenta Boka, Niu Zhendong
Abstract:
Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks
Procedia PDF Downloads 88744 Gold–M Heterobimetallic Complexes: Synthesis and Initial Reactivity Studies
Authors: Caroline Alice Rouget-Virbel, F. Dean Toste
Abstract:
Heterobimetallic systems have been precedented in a wide array of bioinorganic and heterogeneous catalytic settings, in which cooperative bond-breaking and bond-forming events mediated by neighboring metal sites have been proposed but are challenging to study and characterize. Heterodinuclear transition-metal catalysis has recently emerged as a promising strategy to tackle challenging chemical transformations, including C−C and C−X couplings as well as small molecule activation. It has been shown that these reactions can traverse nontraditional mechanisms, reactivities, and selectivities when homo- and heterobimetallic systems are employed. Moreover, stoichiometric studies of transmetallation from gold complexes have demonstrated that R transfer from PPh3–Au(I)R to Cp- and Cp*-ligated group 8/9 complexes is a viable elementary step. With these considerations in mind, we hypothesized that heterobimetallic Au–M complexes could serve as a viable and tunable catalyst platform to explore mechanisms and reactivity. In this work, heterobimetallic complexes containing Au(I) centers tethered to Ir(III) and Rh(III) piano stool moieties were synthesized and characterized. Preliminary application of these complexes to a catalytic allylic arylation reaction demonstrates bimetallic cooperativity relative to their monomeric metal components.Keywords: heterobimetallic, catalysis, gold, rhodium
Procedia PDF Downloads 182743 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study
Authors: Mazin Mohammed S. Sarhan
Abstract:
This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.Keywords: concrete beam, deflection, ductility, plate
Procedia PDF Downloads 160742 The Appearance of Identity in the Urban Landscape by Enjoying the Natural Factors
Authors: Mehrdad Karimi, Farshad Negintaji
Abstract:
This study has examined the appearance of identity in the urban landscape and its effects on the natural factors. For this purpose, the components of place identity, emotional attachment, place dependence and social bond which totally constitute place attachment, measures it in three domains of cognitive (place identity), affective (emotional attachment) and behavioral (place dependence and social bond). In order to measure the natural factors, three components of the absolute elements, living entities, natural elements have been measured. The study is descriptive and the statistical population has been Yasouj, a city in Iran. To analyze the data the SPSS software has been used. The results in two level of descriptive and inferential statistics have been investigated. In the inferential statistics, Pearson correlation coefficient test has been used to evaluate the research hypotheses. In this study, the variable of identity is in high level and the natural factors are also in high level. These results indicate a positive relationship between place identity and natural factors. Development of environment and reaching the quality level of the personality or identity will develop the individual and society.Keywords: identity, place identity, landscape, urban landscape, landscaping
Procedia PDF Downloads 514741 The Nonlinear Optical Properties Analysis of AlPc-Cl Organic Compound
Authors: M. Benhaliliba, A. Ben Ahmed, C.E. Benouis, A.Ayeshamariam
Abstract:
The properties of nonlinear optical NLOs are examined, and the results confirm the 2.19 eV HOMO-LUMO mismatch. In the Al-Pc cluster, certain functional bond lengths and bond angles have been observed. The Quantum chemical method (DFT and TD-DFT) and Vibrational spectra properties of AlPc are studied. X-ray pattern reveals the crystalline structure along with the (242) orientation of the AlPc organic thin layer. UV-Vis shows the frequency selective behavior of the device. The absorbance of such layer exhibits a high value within the UV range and two consecutive peaks within visible range. Spin coating is used to make an organic diode based on the Aluminium-phthalocynanine (AlPc-Cl) molecule. Under dark and light conditions, electrical characterization of Ag/AlPc/Si/Au is obtained. The diode's high rectifying capability (about 1x104) is subsequently discovered. While the height barrier is constant and saturation current is greatly reliant on light, the ideality factor of such a diode increases to 6.9 which confirms the non-ideality of such a device. The Cheung-Cheung technique is employed to further the investigation and gain additional data such as series resistance and barrier height.Keywords: AlPc-Cl organic material, nonlinear optic, optical filter, diode
Procedia PDF Downloads 136740 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach
Authors: Jens Ehm
Abstract:
Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.Keywords: production, logistics, integrated scheduling, real-time scheduling
Procedia PDF Downloads 374739 Design for Sentiment-ancy: Conceptual Framework to Improve User’s Well-being Through Fostering Emotional Attachment in the Use Experience with Their Assistive Devices
Authors: Seba Quqandi
Abstract:
This study investigates the bond that people form using their assistive devices and the tactics applied during the product design process to help improve the user experience leading to a long-term product relationship. The aim is to develop a conceptual framework with which to describe and analyze the bond people form with their assistive devices and to integrate human emotions as a factor during the development of the product design process. The focus will be on the assistive technology market, namely, the Aid-For-Daily-Living market for situational impairments, to increase the quality of wellbeing. Findings will help us better understand the real issues of the product experience concerning people’s interaction throughout the product performance, establish awareness of the emotional effects in the daily interaction that fosters the product attachment, and help product developers and future designers create a connection between users and their assistive devices. The research concludes by discussing the implications of these findings for professionals and academics in the form of experiments in order to identify new areas that can stimulate new /or developed design directions.Keywords: experience design, interaction design, emotion, design psychology, assistive tools, customization, userentred design
Procedia PDF Downloads 227738 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings
Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi
Abstract:
In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel
Procedia PDF Downloads 235737 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique
Authors: Prashant Motwani, Arghadeep Laskar
Abstract:
The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder
Procedia PDF Downloads 241736 DNA-Based Gold Nanoprobe Biosensor to Detect Pork Contaminant
Authors: Rizka Ardhiyana, Liesbetini Haditjaroko, Sri Mulijani, Reki Ashadi Wicaksono, Raafqi Ranasasmita
Abstract:
Designing a sensitive, specific and easy to use method to detect pork contamination in the food industry remains a major challenge. In the current study, we developed a sensitive thiol-bond AuNP-Probe biosensor that will change color when detecting pork DNA in the Cytochrome B region. The interaction between the biosensors and DNA sample is measured by spectrophotometer at 540 nm. The biosensor is made by reducing gold with trisodium citrate to produce gold nanoparticle with 39.05 nm diameter. The AuNP-Probe biosensor (gold nanoprobe) achieved 16.04 ng DNA/µl limit of detection and 53.48 ng DNA/µl limit of quantification. The linearity (R2) between color absorbance changes and DNA concentration is 0.9916. The biosensor has a good specificty as it does not cross-react with DNA of chicken and beef. To verify specificity towards the target sequence, PCR was tested to the target sequence and reacted to the PCR product with the biosensor. The PCR DNA isolate resulted in a 2.7 fold higher absorbance compared to pork-DNA isolate alone (without PCR). The sensitivity and specificity of the method show the promising application of the thiol-bond AuNP biosensor in pork-detection.Keywords: biosensor, DNA probe, gold nanoparticle (AuNP), pork meat, qPCR
Procedia PDF Downloads 359735 Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom
Abstract:
Nowadays the promotion of the public transportation system in the Bangkok Metropolitan Area is increased such as the “Free Bus for Thai Citizen” Campaign and the prospect of the several MRT routes to increase the convenient and comfortable to the Bangkok Metropolitan area citizens. But citizens do not make full use of them it because the citizens are lack of the data and information and also the confident to the public transportation system of Thailand especially in the time and safety aspects. This research is the Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area by focusing on buses, BTS and MRT schedules/routes to give the most information to passengers. They can choose the way and the routes easily by using Dijkstra STAR Algorithm of Graph Theory which also shows the fare of the trip. This Application was evaluated by 30 normal users to find the mean and standard deviation of the developed system. Results of the evaluation showed that system is at a good level of satisfaction (4.20 and 0.40). From these results we can conclude that the system can be used properly and effectively according to the objective.Keywords: Dijkstra algorithm, graph theory, public transport, Bangkok metropolitan area
Procedia PDF Downloads 247734 High Temperature Oxidation Resistance of NiCrAl Bond Coat Produced by Spark Plasma Sintering as Thermal Barrier Coatings
Authors: Folorunso Omoniyi, Peter Olubambi, Rotimi Sadiku
Abstract:
Thermal barrier coating (TBC) system is used in both aero engines and other gas turbines to offer oxidation protection to superalloy substrate component. In the present work, it shows the ability of a new fabrication technique to develop rapidly new coating composition and microstructure. The compact powders were prepared by Powder Metallurgy method involving powder mixing and the bond coat was synthesized through the application of Spark Plasma Sintering (SPS) at 10500C to produce a fully dense (97%) NiCrAl bulk samples. The influence of sintering temperature on the hardness of NiCrAl, done by Micro Vickers hardness tester, was investigated. And Oxidation test was carried out at 1100oC for 20h, 40h, and 100h. The resulting coat was characterized with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and x-ray diffraction (XRD). Micro XRD analysis after the oxidation test revealed the formation of protective oxides and non-protective oxides.Keywords: high-temperature oxidation, powder metallurgy, spark plasma sintering, thermal barrier coating
Procedia PDF Downloads 503733 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations
Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang
Abstract:
A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification
Procedia PDF Downloads 456732 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques
Authors: Stefan K. Behfar
Abstract:
The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing
Procedia PDF Downloads 75731 Determination of Resistance to Freezing of Bonded Façade Joint
Authors: B. Nečasová, P. Liška, J. Šlanhof
Abstract:
Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed.Keywords: adhesive system, bonded joints, wooden lightweight façade, timber substructure
Procedia PDF Downloads 390730 Mechanisms Underlying Comprehension of Visualized Personal Health Information: An Eye Tracking Study
Authors: Da Tao, Mingfu Qin, Wenkai Li, Tieyan Wang
Abstract:
While the use of electronic personal health portals has gained increasing popularity in the healthcare industry, users usually experience difficulty in comprehending and correctly responding to personal health information, partly due to inappropriate or poor presentation of the information. The way personal health information is visualized may affect how users perceive and assess their personal health information. This study was conducted to examine the effects of information visualization format and visualization mode on the comprehension and perceptions of personal health information among personal health information users with eye tracking techniques. A two-factor within-subjects experimental design was employed, where participants were instructed to complete a series of personal health information comprehension tasks under varied types of visualization mode (i.e., whether the information visualization is static or dynamic) and three visualization formats (i.e., bar graph, instrument-like graph, and text-only format). Data on a set of measures, including comprehension performance, perceptions, and eye movement indicators, were collected during the task completion in the experiment. Repeated measure analysis of variance analyses (RM-ANOVAs) was used for data analysis. The results showed that while the visualization format yielded no effects on comprehension performance, it significantly affected users’ perceptions (such as perceived ease of use and satisfaction). The two graphic visualizations yielded significantly higher favorable scores on subjective evaluations than that of the text format. While visualization mode showed no effects on users’ perception measures, it significantly affected users' comprehension performance in that dynamic visualization significantly reduced users' information search time. Both visualization format and visualization mode had significant main effects on eye movement behaviors, and their interaction effects were also significant. While the bar graph format and text format had similar time to first fixation across dynamic and static visualizations, instrument-like graph format had a larger time to first fixation for dynamic visualization than for static visualization. The two graphic visualization formats yielded shorter total fixation duration compared with the text-only format, indicating their ability to improve information comprehension efficiency. The results suggest that dynamic visualization can improve efficiency in comprehending important health information, and graphic visualization formats were favored more by users. The findings are helpful in the underlying comprehension mechanism of visualized personal health information and provide important implications for optimal design and visualization of personal health information.Keywords: eye tracking, information comprehension, personal health information, visualization
Procedia PDF Downloads 106729 Integrating Qualitative and Behavioural Insights to Increase the Take-Up of an Education Savings Program for Low Income Canadians
Authors: Mathieu Audet, Monica Soliman, Emilie Eve Gravel, Rebecca Friesdorf
Abstract:
Access to higher education is critical for reducing social inequalities. The Canada Learning Bond (CLB) is a government savings incentive aimed at increasing higher education access for children of low income families by providing money toward a Registered Education Savings Plan. To better understand the educational and financial decision-making of low income families, Employment Social Development Canada conducted qualitative fieldwork with eligible parents and children, teachers, and community organizations promoting the Bond. Insights from this fieldwork were then used to develop letters to better target the needs and experiences of eligible families. In the present study, we conducted a randomized controlled trial with children ages 12 to 13, the oldest cohort of eligible children, to test the effectiveness of the new letters. Parents or caregivers of 150,088 eligible children were assigned to one of five letter conditions promoting the Bond or to a control condition that did not receive a letter. The letter conditions were: (a) the standard letter from past outreach, (b) a letter presenting the exact amount the child was eligible to receive, enhancing the salience of benefits, (c) a letter with a social norm, (d) a letter with an image emphasizing the feasibility of higher education by presenting the diversity of options (i.e., college, trade schools, apprenticeships) – many participants interviewed viewed that university was unfeasible, and (e) a letter minimizing references to 'saving' (i.e., not framing the Bond explicitly as a savings incentive) – a concept that did not resonate with low income families who felt they could not afford to save. The exact amount was also presented in letters (c) through (e). The letter minimizing references to 'saving' and presenting the exact amount had the highest net take-up rate at 6.6%, compared to 3.5% for the standard letter group. Furthermore, this trial’s BI-informed letters showed the largest impact on take-up so far, with a net take-up of 5.7% compared to 3.0% and 3.9% in the first two trials. This research highlights the value of mixed-method approaches combining qualitative and behavioural insights methods for developing context-sensitive interventions for social programs. By gaining a deeper understanding of the needs and experiences of program users through qualitative fieldwork, and then integrating these insights into behaviourally informed communications, we were able to increase take-up of an education savings program, which may ultimately improve access to higher education in children of low income families.Keywords: access to higher education, behavioral insights, government, innovation, mixed-methods, social programs
Procedia PDF Downloads 123728 Understanding the Fundamental Driver of Semiconductor Radiation Tolerance with Experiment and Theory
Authors: Julie V. Logan, Preston T. Webster, Kevin B. Woller, Christian P. Morath, Michael P. Short
Abstract:
Semiconductors, as the base of critical electronic systems, are exposed to damaging radiation while operating in space, nuclear reactors, and particle accelerator environments. What innate property allows some semiconductors to sustain little damage while others accumulate defects rapidly with dose is, at present, poorly understood. This limits the extent to which radiation tolerance can be implemented as a design criterion. To address this problem of determining the driver of semiconductor radiation tolerance, the first step is to generate a dataset of the relative radiation tolerance of a large range of semiconductors (exposed to the same radiation damage and characterized in the same way). To accomplish this, Rutherford backscatter channeling experiments are used to compare the displaced lattice atom buildup in InAs, InP, GaP, GaN, ZnO, MgO, and Si as a function of step-wise alpha particle dose. With this experimental information on radiation-induced incorporation of interstitial defects in hand, hybrid density functional theory electron densities (and their derived quantities) are calculated, and their gradient and Laplacian are evaluated to obtain key fundamental information about the interactions in each material. It is shown that simple, undifferentiated values (which are typically used to describe bond strength) are insufficient to predict radiation tolerance. Instead, the curvature of the electron density at bond critical points provides a measure of radiation tolerance consistent with the experimental results obtained. This curvature and associated forces surrounding bond critical points disfavors localization of displaced lattice atoms at these points, favoring their diffusion toward perfect lattice positions. With this criterion to predict radiation tolerance, simple density functional theory simulations can be conducted on potential new materials to gain insight into how they may operate in demanding high radiation environments.Keywords: density functional theory, GaN, GaP, InAs, InP, MgO, radiation tolerance, rutherford backscatter channeling
Procedia PDF Downloads 172727 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood
Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy
Abstract:
In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage
Procedia PDF Downloads 161726 An Optimized Approach to Generate the Possible States of Football Tournaments Final Table
Authors: Mouslem Damkhi
Abstract:
This paper focuses on possible states of a football tournament final table according to the number of participating teams. Each team holds a position in the table with which it is possible to determine the highest and lowest points for that team. This paper proposes an optimized search space based on the minimum and maximum number of points which can be gained by each team to produce and enumerate the possible states for a football tournament final table. The proposed search space minimizes producing the invalid states which cannot occur during a football tournament. The generated states are filtered by a validity checking algorithm which seeks to reach a tournament graph based on a generated state. Thus, the algorithm provides a way to determine which team’s wins, draws and loses values guarantee a particular table position. The paper also presents and discusses the experimental results of the approach on the tournaments with up to eight teams. Comparing with a blind search algorithm, our proposed approach reduces generating the invalid states up to 99.99%, which results in a considerable optimization in term of the execution time.Keywords: combinatorics, enumeration, graph, tournament
Procedia PDF Downloads 122725 Comparison Between Nano Composite and Pits and Fissure Sealant: In Vitro Study
Authors: Osama Safwat Mohamed
Abstract:
Pits and fissures dental caries can be prevented using sealant material. This study aimed to compare the microleakage and interfacial morphology of flowable nanocomposites and conventional pit and fissure sealants. 60 extracted intact and caries-free permanent mandibular third molars. The teeth were randomly divided into three groups (n = 20) according to the material used for pit and fissure sealant. Group I: Unfilled resin-based pits and fissure sealant, Group II: Unfilled resin-based pits and fissure sealant with bond and Group III: Nano flowable composite resin with bond. The results showed that nano-flowable composite was significantly better than the conventional sealants groups p = 0.000. As well there was better as well, there were gaps between sealants and the tooth surfaces in groups I and II, but for group III, there was close contact between the nano-flowable composite and tooth surfaces. It was concluded that nano-flowable composite showed better microleakage and interfacial morphology results than conventional pits and fissure sealant and offered promising results at the fissure sealing.Keywords: pits and fissures, Sealant, nanocomposite, dental caries
Procedia PDF Downloads 127724 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations
Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang
Abstract:
Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.Keywords: source identification, ordinary differential equations, label propagation, complex networks
Procedia PDF Downloads 19