Search results for: Weiming Zhang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1004

Search results for: Weiming Zhang

734 Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance

Authors: Jian Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Cobalt catalysts were supported on extruded silica carrier and different-type (SiO2, γ-Al2O3) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N2 physisorption and H2-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C5+ products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons.

Keywords: fischer-tropsch synthesis, cobalt catalyst, support shape, heavy hydrocarbons

Procedia PDF Downloads 283
733 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 68
732 Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation

Authors: Qun-Feng Zhang, Pan-Pan Yan, Jun Li, Jun-Qing Lei

Abstract:

Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law.

Keywords: hammershock, IDDES, S-bend, surge signature

Procedia PDF Downloads 300
731 Effects of Epinephrine on Gene Expressions during the Metamorphosis of Pacific Oyster Crassostrea gigas

Authors: Fei Xu, Guofan Zhang, Xiao Liu

Abstract:

Many major marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic adults via settlement and metamorphosis, which has many advantages for organisms to adapt marine environment. Studying the biological process of metamorphosis is thus a key to understand the origin and evolution of indirect development. Although the mechanism of metamorphosis has been largely studied on their relationships with the marine environment, microorganisms, as well as the neurohormones, little is known on the gene regulation network (GRN) during metamorphosis. We treated competent oyster pediveligers with epinephrine, which was known to be able to effectively induce oyster metamorphosis, and analyzed the dynamics of gene and proteins with transcriptomics and proteomics methods. The result indicated significant upregulation of protein synthesis system, as well as some transcription factors including Homeobox, basic helix-loop-helix, and nuclear receptors. The result suggested the GRN complexity of the transition stage during oyster metamorphosis.

Keywords: indirect development, gene regulation network, protein synthesis, transcription factors

Procedia PDF Downloads 141
730 Smart City and the Elderly’s Subjective Well-Being

Authors: Wenlong Liu, Ru Zhang, Wangjie Li, Shenghui Sang

Abstract:

The boom of smart cities in the age of population aging has caused concerns about the subjective well-being of the elderly. By employing the data from China Health and Retirement Longitudinal Study (CHARLS) 2015, this study uses an ordinary least square to analyze the influence of smart city development on the subjective well-being of the elderly in China. The results of this study suggest that smart cities will improve the life satisfaction of the elderly but reduce their happiness of them. In terms of the moderating effect, social capital negatively moderates the impact of the smart city on the subjective well-being of the elderly. Combined with the results of heterogeneous analysis, it is found that smart city has a stronger impact on the subjective well-being of the elderly with lower levels of personal social capital. To sum up, in the context of the country's vigorous promotion of smart city development, society and families should actively help the elderly to improve their social capital level, enhance the subjective well-being of the elderly, and alleviate the negative effects of smart city development, thereby improving the quality of life of the elderly.

Keywords: the elderly, smart city, social capital, subjective well-being

Procedia PDF Downloads 105
729 Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin

Authors: Qiying Zhang, Panpan Xu, Hui Qian

Abstract:

Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na > Mg2 > Ca2 > Kand SO42 > HCO3 > Cl > NO3 > CO32 > F, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cland SO42have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal.

Keywords: groundwater chemistry, Guanzhong Basin, irrigation water quality evaluation, Jiaokou Irrigation District

Procedia PDF Downloads 211
728 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 86
727 Numerical Simulation of the Coal Spontaneous Combustion Dangerous Area in Composite Long-Wall Gobs

Authors: Changshan Zhang, Zhijin Yu, Shixing Fan

Abstract:

A comprehensive hazard evaluation for coal self-heating in composite long-wall gobs is heavily dependent on computational simulation. In this study, the spatial distributions of cracks which caused significant air leakage were simulated by universal distinct element code (UDEC) simulation. Based on the main routes of air leakage and characteristics of coal self-heating, a computational fluid dynamics (CFD) modeling was conducted to model the coal spontaneous combustion dangerous area in composite long-wall gobs. The results included the oxygen concentration distributions and temperature profiles showed that the numerical approach is validated by comparison with the test data. Furthermore, under the conditions of specific engineering, the major locations where some techniques for extinguishing and preventing long-wall gob fires need to be put into practice were also examined.

Keywords: computational simulation, UDEC simulation, coal self-heating, CFD modeling, long-wall gobs

Procedia PDF Downloads 313
726 Identifying Learning Support Patterns for Enhancing Quality Outputs in Massive Open Online Courses

Authors: Cristina Galván-Fernández, Elena Barberà, Jingjing Zhang

Abstract:

In recent years, MOOCs have been in the spotlight for its high drop-out rates, which potentially impact on the quality of the learning experience. This study attempts to explore how learning support can be used to keep student retention, and in turn to improve the quality of learning in MOOCs. In this study, the patterns of learning support were identified from a total of 4202592 units of video sessions, clickstream data of 25600 students, and 382 threads generated in 10 forums (optional and mandatory) in five different types of MOOCs (e.g. conventional MOOCs, professional MOOCs, and informal MOOCs). The results of this study have shown a clear correlation between the types of MOOCs, the design framework of the MOOCs, and the learning support. The patterns of tutor-peer interaction are identified, and are found to be highly correlated with student retention in all five types of MOOCs. In addition, different patterns of ‘good’ students were identified, which could potentially inform the instruction design of MOOCs.

Keywords: higher education, learning support, MOOC, retention

Procedia PDF Downloads 335
725 Research on the Risks of Railroad Receiving and Dispatching Trains Operators: Natural Language Processing Risk Text Mining

Authors: Yangze Lan, Ruihua Xv, Feng Zhou, Yijia Shan, Longhao Zhang, Qinghui Xv

Abstract:

Receiving and dispatching trains is an important part of railroad organization, and the risky evaluation of operating personnel is still reflected by scores, lacking further excavation of wrong answers and operating accidents. With natural language processing (NLP) technology, this study extracts the keywords and key phrases of 40 relevant risk events about receiving and dispatching trains and reclassifies the risk events into 8 categories, such as train approach and signal risks, dispatching command risks, and so on. Based on the historical risk data of personnel, the K-Means clustering method is used to classify the risk level of personnel. The result indicates that the high-risk operating personnel need to strengthen the training of train receiving and dispatching operations towards essential trains and abnormal situations.

Keywords: receiving and dispatching trains, natural language processing, risk evaluation, K-means clustering

Procedia PDF Downloads 92
724 Improving Lubrication Efficiency at High Sliding Speeds by Plasma Surface Texturing

Authors: Wei Zha, Jingzeng Zhang, Chen Zhao, Ran Cai, Xueyuan Nie

Abstract:

Cathodic plasma electrolysis (CPE) is used to create surface textures on cast iron samples for improving the tribological properties. Micro craters with confined size distribution were successfully formed by CPE process. These craters can generate extra hydrodynamic pressure that separates two sliding surfaces, increase the oil film thickness and accelerate the transition from boundary to mixed lubrication. It was found that the optimal crater size was 1.7 μm, at which the maximum lubrication efficiency was achieved. The Taguchi method was used to optimize the process parameters (voltage and roughness) for CPE surface texturing. The orthogonal array and the signal-to-noise ratio were employed to study the effect of each process parameter on the coefficient of friction. The results showed that with higher voltage and lower roughness, the lower friction coefficient can be obtained, and thus the lubrication can be more efficiently used for friction reduction.

Keywords: cathodic plasma electrolysis, friction, lubrication, plasma surface texturing

Procedia PDF Downloads 135
723 BIM Application Research Based on the Main Entrance and Garden Area Project of Shanghai Disneyland

Authors: Ying Yuken, Pengfei Wang, Zhang Qilin, Xiao Ben

Abstract:

Based on the main entrance and garden area (ME&G) project of Shanghai Disneyland, this paper introduces the application of BIM technology in this kind of low-rise comprehensive building with complex facade system, electromechanical system and decoration system. BIM technology is applied to the whole process of design, construction and completion of the whole project. With the construction of BIM application framework of the whole project, the key points of BIM modeling methods of different systems and the integration and coordination of BIM models are elaborated in detail. The specific application methods of BIM technology in similar complex low-rise building projects are sorted out. Finally, the paper summarizes the benefits of BIM technology application, and puts forward some suggestions for BIM management mode and practical application of similar projects in the future.

Keywords: BIM, complex low-rise building, BIM modeling, model integration and coordination, 3D scanning

Procedia PDF Downloads 173
722 The Stage and Cause of Regional Industrial Specialization Evolution in China

Authors: Cheng Wen, Zhang Jianhua

Abstract:

This paper aims to probe into the general rules of industry specialization or diversification in a region during its process of economic growth and the specific reasons for the difference of industry specialization development in the eastern, central and western regions of China. It is found in this paper that the changes of regional industry specialization in China, like most of countries in the world, also present the U-shaped curve. Regional industrial structure is diversified in the first place. And when the per capita income exceeds a certain level, distribution of economic resources in this region will be concentrated again. From the perspective of rising total factor productivity and falling of transaction cost in the process of economic development, this paper comes up with a theoretical model to explain the U-shaped curve. Through the empirical test of China's provincial panel data, this paper explains the factors that cause the inequality of the industry specialization development in the eastern, central and western regions of China.

Keywords: u-shaped curve, regional industrial specialization, technological progress, transaction costs

Procedia PDF Downloads 308
721 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

Authors: Yong Ren, Yaping Zhang

Abstract:

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.

Keywords: phase change material, drug release kinetics, double emulsion, microfluidics

Procedia PDF Downloads 357
720 Preparation and Size Control of Sub-100 Nm Pure Nanodrugs

Authors: Jinfeng Zhang, Chun-Sing Lee

Abstract:

Pure nanodrugs (PNDs) – nanoparticles consisting entirely of drug molecules, have been considered as promising candidates for the next-generation nanodrugs. However, the traditional preparation method via reprecipitation faces critical challenges including low production rates, relatively large particle sizes and batch-to-batch variations. Here, for the first time, we successfully developed a novel, versatile and controllable strategy for preparing PNDs via an anodized aluminium oxide (AAO) template-assisted method. With this approach, we prepared PNDs of an anti-cancer drug (VM-26) with precisely controlled sizes reaching the sub-20 nm range. This template-assisted approach has much higher feasibility for mass production comparing to the conventional reprecipitation method and is beneficial for future clinical translation. The present method is further demonstrated to be easily applicable for a wide range of hydrophobic biomolecules without the need of custom molecular modifications and can be extended for preparing all-in-one nanostructures with different functional agents.

Keywords: drug delivery, pure nanodrugs, size control, template

Procedia PDF Downloads 309
719 Efficacy and Safety by Baseline A1c with Once-Weekly Dulaglutide in the AWARD Program

Authors: Alaa Mostafa, Samuel Dagogo-Jack, Vivian Thieu, Maria Yu, Nan Zhang, Dara Schuster, Luis-Emilio Garcia-Perez

Abstract:

Dulaglutide (DU), a once-weekly glucagon-like peptide-1 receptor agonist, was studied in the AWARD clinical trial program in adult patients with type 2 diabetes (T2D) and demonstrated significant hemoglobin A1c (A1c) reduction and potential for weight loss. To evaluate the efficacy and safety of DU 1.5 mg and DU 0.75 mg in patients with T2D by baseline A1c <8.5% or ≥8.5%, a post-hoc analysis was conducted on AWARD-1 to -6 and -8 at 6 months. Across 7 studies, 55% to 82% of the DU-treated patients had a baseline A1c <8.5%, and 18% to 45% had a baseline A1c ≥8.5%. The ranges of A1c reductions with baseline A1c <8.5% and ≥8.5%, respectively, were: DU 1.5 mg: -0.67% to -1.25% and -1.22% to -2.37%; DU 0.75 mg: -0.53% to -1.07% and -1.37% to -2.19%. The A1c reduction from the pooled analysis was greater in patients with baseline A1c ≥8.5% than patients with baseline A1c <8.5%, respectively: DU 1.5 mg: -1.86% and -1.02%; DU 0.75 mg: -1.75% and -0.83%. DU treatments were well tolerated among baseline A1c subgroups. Across the AWARD program, DU 1.5 mg and DU 0.75 mg demonstrated significant A1c reduction in both subgroups with an acceptable safety profile. Compared to patients with baseline A1c <8.5%, patients with baseline A1c ≥8.5% had greater A1c reduction. Disclosures: This study was supported and conducted by Eli Lilly and Company, Indianapolis, IN, USA.

Keywords: A1c reduction, dulaglutide, type 2 diabetes, weight loss

Procedia PDF Downloads 397
718 Research on Load Balancing Technology for Web Service Mobile Host

Authors: Yao Lu, Xiuguo Zhang, Zhiying Cao

Abstract:

In this paper, Load Balancing idea is used in the Web service mobile host. The main idea of Load Balancing is to establish a one-to-many mapping mechanism: An entrance-mapping request to plurality of processing node in order to realize the dividing and assignment processing. Because the mobile host is a resource constrained environment, there are some Web services which cannot be completed on the mobile host. When the mobile host resource is not enough to complete the request, Load Balancing scheduler will divide the request into a plurality of sub-requests and transfer them to different auxiliary mobile hosts. Auxiliary mobile host executes sub-requests, and then, the results will be returned to the mobile host. Service request integrator receives results of sub-requests from the auxiliary mobile host, and integrates the sub-requests. In the end, the complete request is returned to the client. Experimental results show that this technology adopted in this paper can complete requests and have a higher efficiency.

Keywords: Dinic, load balancing, mobile host, web service

Procedia PDF Downloads 329
717 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor

Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang

Abstract:

This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.

Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design

Procedia PDF Downloads 417
716 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 153
715 Apparent Ageing Mechanism of Polyurethane Coating in Typical Atmospheric Environment

Authors: Jin Gao, Jin Zhang, Xiaogang Li

Abstract:

Outdoor exposure experiments were conducted in three extreme environments, namely the Chinese plateau mountain environment (Lhasa), the cold–temperate environment (Mohe), and the marine atmospheric environment (Wanning), to track a new long-life environment-friendly polyurethane coating. The relationship between apparent properties, namely gloss and microstructural changes, was analyzed, and the influence of typical climatic environment on the aging mechanism of polyurethane coatings was discussed. Results show that the UV radiation in the Lhasa area causes photoaging degradation, micropores are formed on the coating surface, and the powdering phenomenon is obvious. Photodegradation occurs in the Wanning area, and a hydrolysis reaction is observed. The hydrolysis reaction catalyzes the photoaging, the coating surface becomes yellow, and the powdering becomes serious. Photoaging is also present in the Mohe area, but it is mainly due to temperature changes that in turn change the internal stress of the coating. Microcracks and bumps form on the coating surface.

Keywords: aging, atmospheric environment, outdoor exposure, polyurethane coating

Procedia PDF Downloads 126
714 A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion

Authors: Ying Zhang

Abstract:

In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load.

Keywords: plastic load, plastic work, strain hardening, plastic work-tangent criterion

Procedia PDF Downloads 355
713 Calculate Product Carbon Footprint through the Internet of Things from Network Science

Authors: Jing Zhang

Abstract:

To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.

Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment

Procedia PDF Downloads 116
712 Non-thermal Plasma Promotes Boar Sperm Quality Through Increasing AMPK Methylation

Authors: Jiaojiao Zhang

Abstract:

Boar sperm quality, as an important indicator of reproductive efficiency, directly affects the efficiency of livestock production. Here, this study was conducted to improve the boar sperm quality by using a non-thermal dielectric barrier discharge (DBD) plasma. Our results showed that DBD plasma exposure at 2.1 W for 15 s could improve boar sperm quality by increasing the exon methylation level of adenosine monophosphate-activated protein kinase (AMPK) and thus improving the glycolytic flux, mitochondrial function, and antioxidant capacity without damaging the integrity of sperm DNA and acrosome. In addition, DBD plasma could rescue DNA methyltransferase inhibitor decitabine-caused low sperm quality by reducing oxidative stress and mitochondrial damage. Therefore, the application of non-thermal plasma provides a new strategy for reducing sperm oxidative damage and improving sperm quality, which shows great potential in assisted reproduction to solve the problem of male infertility.

Keywords: non-thermal DBD plasma, sperm quality, AMPK methylation, energy metabolism, antioxidant capacity

Procedia PDF Downloads 13
711 Effects of the Flow Direction on the Fluid Flow and Heat Transfer in the Rod Bundle

Authors: Huirui Han, Chao Zhang

Abstract:

The rod bundle is used in the fuel assembly of the supercritical water-cooled nuclear reactor. In the rod bundle, the coolant absorbs the heat contributed by the fission process. Because of the dramatic variations in the thermophysical properties of water at supercritical conditions, it is essential to investigate the heat transfer characteristics of supercritical water in the rod bundle to ensure the safety of the nuclear power plant. In this study, the effects of the flow direction, including horizontal, upward, and downward, on the fluid flow and heat transfer of the supercritical water in the rod bundle were studied numerically. The results show the possibility of gap vortices in the flow subchannels of the rod bundle. In addition, the distributions of the circumferential wall temperature show differences in different flow direction conditions. It was also found that the circumferential cladding surface temperature distribution in the upward flow condition is extremely non-uniform, and there is a large difference between the maximum wall temperatures for different fuel rods.

Keywords: heat transfer, rod bundle, supercritical water, wall temperature

Procedia PDF Downloads 101
710 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179
709 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 146
708 The Research on Association between Social Media and Audit Opinion

Authors: Meiqun Yin, Jidong Zhang, Fan Liu

Abstract:

The paper investigates the impact of social media on audit opinion. The numbers of posting and reposting negative reports from SINA Micro-blog are collected to measure the influence of social media. The research collected the samples from Chinese public firms from 2012 to 2014. It is found that the numbers of posting and reposting negative reports in SINA Micro-Blog would significantly relate to the qualified opinion while controlling firm size. Another finding is that the numbers of posting and reposting negative reports would be much more significantly impact on audit opinion if the firm received a qualified opinion in the previous period. It is also found that the involvement of more independent directors has no relationship with the influence of social media on audit opinion.

Keywords: association, social media, audit opinion, SINA Micro-Blog

Procedia PDF Downloads 268
707 Influencing Factors of Residents’ Intention to Participate in the Governance of Old Community Renewal: A Case Study of Nanjing

Authors: Tiantian Gu, Dezhi Li, Mian Zhang, Ying Jiang

Abstract:

Considering the characteristics of residents’ participation in the governance of old community renewal (OCR), a theoretical model of the determinant of residents’ intention to participate in the governance of OCR has been built based on the theory of planned behavior. Seven old communities in Nanjing have been chosen as cases to conduct empirical analysis. The result indicates that participation attitude, subjective norm and perceived behavioral control have significant positive effects on residents’ intention to participate in the governance of the OCR. Recognition of the community, cognition of the OCR and perceived behavioral control have indirect positive effects on residents’ intention to participate in the OCR. In addition, the education level and the length of residence have positive effects on their participation intention, while the gender, age, and monthly income have little effect on it. The research result provides suggestions for the improvement of residents’ participation in the OCR.

Keywords: old community renewal, residents’ participation in governance, intention, theory of planned behavior

Procedia PDF Downloads 187
706 RGB-D SLAM Algorithm Based on pixel level Dense Depth Map

Authors: Hao Zhang, Hongyang Yu

Abstract:

Scale uncertainty is a well-known challenging problem in visual SLAM. Because RGB-D sensor provides depth information, RGB-D SLAM improves this scale uncertainty problem. However, due to the limitation of physical hardware, the depth map output by RGB-D sensor usually contains a large area of missing depth values. These missing depth information affect the accuracy and robustness of RGB-D SLAM. In order to reduce these effects, this paper completes the missing area of the depth map output by RGB-D sensor and then fuses the completed dense depth map into ORB SLAM2. By adding the process of obtaining pixel-level dense depth maps, a better RGB-D visual SLAM algorithm is finally obtained. In the process of obtaining dense depth maps, a deep learning model of indoor scenes is adopted. Experiments are conducted on public datasets and real-world environments of indoor scenes. Experimental results show that the proposed SLAM algorithm has better robustness than ORB SLAM2.

Keywords: RGB-D, SLAM, dense depth, depth map

Procedia PDF Downloads 141
705 Personalized Email Marketing Strategy: A Reinforcement Learning Approach

Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan

Abstract:

Email marketing is one of the most important segments of online marketing. It has been proved to be the most effective way to acquire and retain customers. The email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of email has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.

Keywords: email marketing, email content, reinforcement learning, machine learning, Q-learning

Procedia PDF Downloads 195