Search results for: SIFT feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1593

Search results for: SIFT feature

1323 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
1322 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 413
1321 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
1320 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: fall detection, machine learning, deep learning, pose estimation, tracking

Procedia PDF Downloads 189
1319 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 385
1318 The Hubs of Transformation Dictated by the Innovation Wave: Boston as a Case Study. Exploring How Design is Emerging as an Essential Feature in the Process of Laboratorisation of Cities

Authors: Luana Parisi, Sohrab Donyavi

Abstract:

Cities have become the nodes of global networks, standing at the intersection points of the flows of capital, goods, workers, businesses and travellers, making them the spots where innovation, progress and economic development occur. The primary challenge for them is to create the most fertile ecosystems for triggering innovation activities. Design emerges as an essential feature in this process of laboratorisation of cities. This paper aims at exploring the spatial hubs of transformation within the knowledge economy, providing an overview of the current models of innovation spaces, before focusing on the innovation district of one of the cities that are riding the innovation wave, namely, Boston, USA. Useful lessons will be drawn from the case study of the innovation district in Boston, allowing to define precious tools for policymakers, in the form of a range of factors that define the broad strategy able to implement the model successfully. A mixed methodology is implemented, including information from observations, exploratory interviews to key stakeholders and on-desk data.

Keywords: Innovation District, innovation ecosystem, economic development, urban regeneration

Procedia PDF Downloads 127
1317 An Evaluation Model for Automatic Map Generalization

Authors: Quynhan Tran, Hong Fan, Quockhanh Pham

Abstract:

Automatic map generalization is a well-known problem in cartography. The development of map generalization research accompanied the development of cartography. The traditional map is plotted manually by cartographic experts. The paper studies none-scale automation generalization of resident polygons and house marker symbol, proposes methodology to evaluate the result maps based on minimal spanning tree. In this paper, the minimal spanning tree before and after map generalization is compared to evaluate whether the generalization result maintain the geographical distribution of features. The minimal spanning tree in vector format is firstly converted into a raster format and the grid size is 2mm (distance on the map). The statistical number of matching grid before and after map generalization and the ratio of overlapping grid to the total grids is calculated. Evaluation experiments are conduct to verify the results. Experiments show that this methodology can give an objective evaluation for the feature distribution and give specialist an hand while they evaluate result maps of none-scale automation generalization with their eyes.

Keywords: automatic cartography generalization, evaluation model, geographic feature distribution, minimal spanning tree

Procedia PDF Downloads 639
1316 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 335
1315 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 147
1314 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction

Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun

Abstract:

The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.

Keywords: usability, qualitative data, text-processing algorithm, natural language processing

Procedia PDF Downloads 285
1313 Phonological and Syntactic Evidence from Arabic in Favor of Biolinguistics

Authors: Marwan Jarrah

Abstract:

This research paper provides two pieces of phonological and syntactic evidence from Arabic for biolinguistics perspective of language processing. The first piece of evidence concerns the instances where a singular noun is converted to a plural noun in Arabic. Based on the findings of several research papers, this study shows that a singular word does not lose any of its moras when it is pluralized either regularly or irregularly. This mora conservation principle complies with the general physical law of the conservation of mass which states that mass is neither created nor destroyed but changed from one form into another. The second piece of evidence concerns the observation that when the object in some Arabic dialects including Jordanian Arabic and Najdi Arabic is a topic and positioned in situ (i.e. after the verb), the verb agrees with it, something that generates an agreeing inflection marker of the verb that agrees in Number, Person, and Gender with the in-situ topicalized object. This interaction between the verb and the object in such cases is invoked because of the extra feature the object bears, i.e. TOPIC feature. We suggest that such an interaction complies with the general natural law that elements become active when they, e.g., get an additional electron, when the mass number is not equal to the atomic number.

Keywords: biolinguistics, Arabic, physics, interaction

Procedia PDF Downloads 230
1312 Towards an Adversary-Aware ML-Based Detector of Spam on Twitter Hashtags

Authors: Niddal Imam, Vassilios G. Vassilakis

Abstract:

After analysing messages posted by health-related spam campaigns in Twitter Arabic hashtags, we found that these campaigns use unique hijacked accounts (we call them adversarial hijacked accounts) as adversarial examples to fool deployed ML-based spam detectors. Existing ML-based models build a behaviour profile for each user to detect hijacked accounts. This approach is not applicable for detecting spam in Twitter hashtags since they are computationally expensive. Hence, we propose an adversary-aware ML-based detector, which includes a newly designed feature (avg posts) to improve the detection of spam tweets posted by the adversarial hijacked accounts at a tweet-level in trending hashtags. The proposed detector was designed considering three key points: robustness, adaptability, and interpretability. The new feature leverages the account’s temporal patterns (i.e., account age and number of posts). It is faster to compute compared to features discussed in the literature and improves the accuracy of detecting the identified hijacked accounts by 73%.

Keywords: Twitter spam detection, adversarial examples, evasion attack, adversarial concept drift, account hijacking, trending hashtag

Procedia PDF Downloads 80
1311 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise

Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang

Abstract:

Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.

Keywords: electromyographic feature extraction, muscle status, pedaling exercise, relaxation segment

Procedia PDF Downloads 303
1310 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 141
1309 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities

Authors: Chusak Thanawattano, Roongroj Bhidayasiri

Abstract:

This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.

Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation

Procedia PDF Downloads 443
1308 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran

Authors: Rojin Bana Derakhshan, Abbas Toloie

Abstract:

For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.

Keywords: energy saving, key elements of success, optimization of energy consumption, data mining

Procedia PDF Downloads 471
1307 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer

Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu

Abstract:

Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.

Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature

Procedia PDF Downloads 216
1306 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 107
1305 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila , V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest

Procedia PDF Downloads 311
1304 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 445
1303 Revealing the Feature of Mind Wandering on People with High Creativity and High Mental Health through Experience Sampling Method

Authors: A. Yamaoka, S. Yukawa

Abstract:

Mind wandering is a mental phenomenon of drifting away from a current task or external environment toward inner thought. This research examines the feature of mind wandering which people who have high creativity and high mental health engage in because it is expected that mind wandering which such kind of people engage in may not induce negative affect, although it can improve creativity. Sixty-seven participants were required to complete questionnaires which measured their creativity and mental health. After that, researchers conducted experience sampling method and measured the details of their mind wandering and the situation when mind wandering was generated in daily life for three days. The result showed that high creative people and high mental health people more think about positive things during mind wandering and less think about negative things. In further research, researchers will examine how to induce positive thought during mind wandering and how to inhibit negative thought during mind wandering. Doing so will contribute to improve creative problem solving without generation of negative affect.

Keywords: creativity, experience sampling method, mental health, mind wandering

Procedia PDF Downloads 174
1302 Automatic Integrated Inverter Type Smart Device for Safe Kitchen

Authors: K. M. Jananni, R. Nandini

Abstract:

The proposed wireless, inverter type design of a LPG leakage monitoring system aims to provide a smart and safe kitchen. The system detects the LPG gas leak using Nano-sensors and alerts the concerned individual through GSM system. The system uses two sensors, one attached to the chimney and other to the regulator of the LPG cylinder. Upon a leakage being detected, the sensor at the regulator actuates the system to cut off the gas supply immediately using a solenoid control valve. The sensor at the chimney checks for the permissible level of LPG mix in the air and when the level exceeds the threshold, the system sends an automatic SMS to the numbers saved. Further the sensor actuates the mini suction system fixed at the chimney within 20 seconds of a leakage to suck out the gas until the level falls well below the threshold. As a safety measure, an automatic window opening and alarm feature is also incorporated into the system. The key feature of this design is that the system is provided with a special inverter designed to make the device function effectively even during power failures. In this paper, utilization of sensors in the kitchen area is discussed and this gives the proposed architecture for real time field monitoring with a PIC Micro-controller.

Keywords: nano sensors, global system for mobile communication, GSM, micro controller, inverter

Procedia PDF Downloads 474
1301 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 79
1300 Audio-Visual Recognition Based on Effective Model and Distillation

Authors: Heng Yang, Tao Luo, Yakun Zhang, Kai Wang, Wei Qin, Liang Xie, Ye Yan, Erwei Yin

Abstract:

Recent years have seen that audio-visual recognition has shown great potential in a strong noise environment. The existing method of audio-visual recognition has explored methods with ResNet and feature fusion. However, on the one hand, ResNet always occupies a large amount of memory resources, restricting the application in engineering. On the other hand, the feature merging also brings some interferences in a high noise environment. In order to solve the problems, we proposed an effective framework with bidirectional distillation. At first, in consideration of the good performance in extracting of features, we chose the light model, Efficientnet as our extractor of spatial features. Secondly, self-distillation was applied to learn more information from raw data. Finally, we proposed a bidirectional distillation in decision-level fusion. In more detail, our experimental results are based on a multi-model dataset from 24 volunteers. Eventually, the lipreading accuracy of our framework was increased by 2.3% compared with existing systems, and our framework made progress in audio-visual fusion in a high noise environment compared with the system of audio recognition without visual.

Keywords: lipreading, audio-visual, Efficientnet, distillation

Procedia PDF Downloads 134
1299 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 241
1298 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 420
1297 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems

Authors: Hala Zaghloul, Taymoor Nazmy

Abstract:

One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.

Keywords: cognitive system, image processing, segmentation, PCNN kernels

Procedia PDF Downloads 281
1296 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 39
1295 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm

Authors: Jiawen Wang, Qijun Chen

Abstract:

The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.

Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size

Procedia PDF Downloads 130
1294 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM

Authors: Rajpal Kaur, Pooja Choudhary

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.

Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM

Procedia PDF Downloads 385