Search results for: Griffith's phase
4198 BIM Application and Construction Schedule Simulation for the Horizontal Work Area
Authors: Hyeon-Seong Kim, Sang-Mi Park, Seul-Gi Kim, Seon-Ju Han, Leen-Seok Kang
Abstract:
The use of BIM, including 4D CAD system, in a construction project is gradually increasing. Since the building construction works repeatedly in the vertical space, it is relatively easy to confirm the interference effect when applying the BIM, but the interference effect for the civil engineering project is relatively small because the civil works perform non-repetitive processes in the horizontal space. For this reason, it is desirable to apply BIM to the construction phase when applying BIM to the civil engineering project, and the most active BIM tool applied to the construction phase is the 4D CAD function for the schedule management. This paper proposes the application procedure of BIM by the construction phase of civil engineering project and a linear 4D CAD construction methodology suitable for the civil engineering project in which linear work is performed.Keywords: BIM, 4D CAD, linear 4D simulation, VR
Procedia PDF Downloads 4034197 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank
Authors: Chargui Ridha, Agrebi Sameh
Abstract:
The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.Keywords: phase change materials, storage tank, heat exchanger, flat plate collector
Procedia PDF Downloads 1004196 Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer
Authors: Bhavya Tripathi, Bhupendra Kumar Sharma
Abstract:
In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients.Keywords: two phase blood flow, radiation, magnetohydrodynamics (MHD), stenosis
Procedia PDF Downloads 2074195 Catalytic Deoxygenation of Propionic Acid in the Vapour Phase
Authors: Hossein Bayahia, Mohammed Saad Motlaq Al-Gahmdi
Abstract:
The gas-phase deoxygenation of propionic acid was investigated in the presence of Co-Mo catalysts in N2 or H2 flow at 200-400 °C. In the presence of N2 the main product was 3-pentanone with other deoxygenates and some light gases: ethane and ethene. Using H2 flow, the catalyst was active for decarboxylation and decarbonylation of acid and the yields of ethane and ethene. The decarboxylation and decarbonylation reactions increased with increasing temperature. Cobalt-molybdenum supported on alumina showed better performance than bulk catalyst, especially at 400 °C in the presence of N2 for the ketonisation of propionic acid to form 3-pentanone as the main product. Bulk and supported catalysts were characterized by surface area porosity (BET), thermogravimetric analysis (TGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of pyridine adsorption.Keywords: deoxygenation, propionic acid, gas-phase, catalyst
Procedia PDF Downloads 2874194 Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying
Authors: Jinan B. Al-Dabbagh, Rozman Mohd Tahar, Mahadzir Ishak
Abstract:
TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders.Keywords: TiAl alloys, nanocrystalline materials, mechanical alloying, materials science
Procedia PDF Downloads 3614193 The Impact of Barefoot versus Shod Running on Lower Limb Gait Cycle Pattern among Recreational Club Runners in Durban, South Africa
Authors: Siyabonga Kunene, Calvin Shipley
Abstract:
Introduction: Despite health benefits that come with running, injuries are common with prevalence ranging between 18.2% and 92.4% worldwide. Differences in gait patterns between barefoot and shod running, can determine traits that could lead to running injuries. The aim was to assess and compare lower limb gait cycle patterns between barefoot and shod running among runners. Methods: An experimental same-subject study design was used. The study population consisted of male and female adult recreational runners who were injury free from a running club in Durban. A convenience sampling method was used and 14 participants were recruited. The study was conducted in the physiotherapy performance laboratory at the University of KwaZulu-Natal. A Woodway Desmo Treadmill and KinePro gait analysis system were used. Descriptive & inferential statistics were analysed using Microsoft Excel and Intercooled Stata. Results: Participants included a greater percentage of females (57.1%, n = 8) than males (42.9%, n = 6). The mean population age was 38.57. A significant difference (p < 0.0009) between barefoot cadence (177.9236steps/min) and shod cadence (171.9445steps/min) was observed. Right (0.261s) and left (0.257s) barefoot stand phase was shorter than right (0.273s) and left (0.270s) shod stand phase. Right barefoot swing phase exhibited less significant (0.420s) results when compared to right shod swing phase (0.427s), whereas left barefoot swing phase was quicker (0.416s) than left shod swing phase (0.432s). Significant differences between barefoot and shod stand (p < 0.009) and swing (p < 0.040) phase symmetry occurred. Conclusion: A considerable difference was found between barefoot and shod running gait cycle patterns among participants. This difference may play a role in prevention of running related injuries.Keywords: barefoot running, shod running, gait cycle pattern, same-subject study design
Procedia PDF Downloads 2564192 Robust Control of a Single-Phase Inverter Using Linear Matrix Inequality Approach
Authors: Chivon Choeung, Heng Tang, Panha Soth, Vichet Huy
Abstract:
This paper presents a robust control strategy for a single-phase DC-AC inverter with an output LC-filter. An all-pass filter is utilized to create an artificial β-signal so that the proposed controller can be simply used in dq-synchronous frame. The proposed robust controller utilizes a state feedback control with integral action in the dq-synchronous frame. A linear matrix inequality-based optimization scheme is used to determine stabilizing gains of the controllers to maximize the convergence rate to steady state in the presence of uncertainties. The uncertainties of the system are described as the potential variation range of the inductance and resistance in the LC-filter.Keywords: single-phase inverter, linear matrix inequality, robust control, all-pass filter
Procedia PDF Downloads 1444191 Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions
Authors: Abdullah Khan, Per Redelius, Nicole Kringos
Abstract:
The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation.Keywords: bitumen emulsions, breaking and coalescence, cold mix asphalt, emulsifiers, relaxation, salts
Procedia PDF Downloads 3424190 Impact of Nanoparticles in Enhancement of Thermal Conductivity of Phase Change Materials in Thermal Energy Storage and Cooling of Concentrated Photovoltaics
Authors: Ismaila H. Zarma, Mahmoud Ahmed, Shinichi Ookawara, Hamdi Abo-Ali
Abstract:
Phase change materials (PCM) are an ideal thermal storage medium. They are characterized by a high latent heat, which allows them to store large amounts of energy when the material transitions into different physical states. Concentrated photovoltaic (CPV) systems are widely recognized as the most efficient form of Photovoltaic (PV) for thermal energy which can be stored in Phase Change Materials (PCM). However, PCMs often have a low thermal conductivity which leads to a slow transient response. This makes it difficult to quickly store and access the energy stored within the PCM based systems, so there is need to improve transient responses and increase the thermal conductivity. The present study aims to investigate and analyze the melting and solidification process of phase change materials (PCMs) enhanced by nanoparticle contained in a container. Heat flux from concentrated photovoltaic is applied in an attempt to analyze the thermal performance and the impact of nanoparticles. The work will be realized by using a two dimensional model which take into account the phase change phenomena based on the principle of enthalpy method. Numerical simulations have been performed to investigate heat and flow characteristics by using governing equations, to ascertain the impacts of the nanoparticle loading. The Rayleigh number, sub-cooling as well as the unsteady evolution of the melting front and the velocity and temperature fields were also observed. The predicted results exhibited a good agreement, showing thermal enhancement due to present of nanoparticle which leads to decreasing the melting time.Keywords: thermal energy storage, phase-change material, nanoparticle, concentrated photovoltaic
Procedia PDF Downloads 2054189 Method Development and Validation for Quantification of Active Content and Impurities of Clodinafop Propargyl and Its Enantiomeric Separation by High-Performance Liquid Chromatography
Authors: Kamlesh Vishwakarma, Bipul Behari Saha, Sunilkumar Sing, Abhishek Mishra, Sreenivas Rao
Abstract:
A rapid, sensitive and inexpensive method has been developed for complete analysis of Clodinafop Propargyl. Clodinafop Propargyl enantiomers were separated on chiral column, Chiral Pak AS-H (250 mm. 4.6mm x 5µm) with mobile phase n-hexane: IPA (96:4) at flow rate 1.5 ml/min. The effluent was monitored by UV detector at 230 nm. Clodinafop Propagyl content and impurity quantification was done with reverse phase HPLC. The present study describes a HPLC method using simple mobile phase for the quantification of Clodinafop Propargyl and its impurities. The method was validated and found to be accurate, precise, convenient and effective. Moreover, the lower solvent consumption along with short analytical run time led to a cost effective analytical method.Keywords: Clodinafop Propargyl, method, validation, HPLC-UV
Procedia PDF Downloads 3734188 Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers
Authors: Wenjuan Du
Abstract:
The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillations. By using linearized equal area criterion, a theoretical proof to the application for the PSS design is presented. Hence PSS design in the paper is an example of stable tending control by localized method.Keywords: phase compensation method, power system small-signal stability, power system stabilizer
Procedia PDF Downloads 6454187 Modelling and Simulation of Hysteresis Current Controlled Single-Phase Grid-Connected Inverter
Authors: Evren Isen
Abstract:
In grid-connected renewable energy systems, input power is controlled by AC/DC converter or/and DC/DC converter depending on output voltage of input source. The power is injected to DC-link, and DC-link voltage is regulated by inverter controlling the grid current. Inverter performance is considerable in grid-connected renewable energy systems to meet the utility standards. In this paper, modelling and simulation of hysteresis current controlled single-phase grid-connected inverter that is utilized in renewable energy systems, such as wind and solar systems, are presented. 2 kW single-phase grid-connected inverter is simulated in Simulink and modeled in Matlab-m-file. The grid current synchronization is obtained by phase locked loop (PLL) technique in dq synchronous rotating frame. Although dq-PLL can be easily implemented in three-phase systems, there is difficulty to generate β component of grid voltage in single-phase system because single-phase grid voltage exists. Inverse-Park PLL with low-pass filter is used to generate β component for grid angle determination. As grid current is controlled by constant bandwidth hysteresis current control (HCC) technique, average switching frequency and variation of switching frequency in a fundamental period are considered. 3.56% total harmonic distortion value of grid current is achieved with 0.5 A bandwidth. Average value of switching frequency and total harmonic distortion curves for different hysteresis bandwidth are obtained from model in m-file. Average switching frequency is 25.6 kHz while switching frequency varies between 14 kHz-38 kHz in a fundamental period. The average and maximum frequency difference should be considered for selection of solid state switching device, and designing driver circuit. Steady-state and dynamic response performances of the inverter depending on the input power are presented with waveforms. The control algorithm regulates the DC-link voltage by adjusting the output power.Keywords: grid-connected inverter, hysteresis current control, inverter modelling, single-phase inverter
Procedia PDF Downloads 4804186 Gas Holdups in a Gas-Liquid Upflow Bubble Column With Internal
Authors: C. Milind Caspar, Valtonia Octavio Massingue, K. Maneesh Reddy, K. V. Ramesh
Abstract:
Gas holdup data were obtained from measured pressure drop values in a gas-liquid upflow bubble column in the presence of string of hemispheres promoter internal. The parameters that influenced the gas holdup are gas velocity, liquid velocity, promoter rod diameter, pitch and base diameter of hemisphere. Tap water was used as liquid phase and nitrogen as gas phase. About 26 percent in gas holdup was obtained due to the insertion of promoter in in the present study in comparison with empty conduit. Pitch and rod diameter have not shown any influence on gas holdup whereas gas holdup was strongly influenced by gas velocity, liquid velocity and hemisphere base diameter. Correlation equation was obtained for the prediction of gas holdup by least squares regression analysis.Keywords: bubble column, gas-holdup, two-phase flow, turbulent promoter
Procedia PDF Downloads 1114185 A Study of Carbon Emissions during Building Construction
Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli
Abstract:
In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.Keywords: building construction phase, carbon emissions assessment, building life cycle
Procedia PDF Downloads 7564184 Development of High Temperature Mo-Si-B Based In-situ Composites
Authors: Erhan Ayas, Buse Katipoğlu, Eda Metin, Rifat Yılmaz
Abstract:
The search for new materials has begun to be used even higher than the service temperature (~1150ᵒC) where nickel-based superalloys are currently used. This search should also meet the increasing demands for energy efficiency improvements. The materials studied for aerospace applications are expected to have good oxidation resistance. Mo-Si-B alloys, which have higher operating temperatures than nickel-based superalloys, are candidates for ultra-high temperature materials used in gas turbine and jet engines. Because the Moss and Mo₅SiB₂ (T2) phases exhibit high melting temperature, excellent high-temperature creep strength and oxidation resistance properties, however, low fracture toughness value at room temperature is a disadvantage for these materials, but this feature can be improved with optimum Moss phase and microstructure control. High-density value is also a problem for structural parts. For example, in turbine rotors, the higher the weight, the higher the centrifugal force, which reduces the creep life of the material. The density value of the nickel-based superalloys and the T2 phase, which is the Mo-Si-B alloy phase, is in the range of 8.6 - 9.2 g/cm³. But under these conditions, T2 phase Moss (density value 10.2 g/cm³), this value is above the density value of nickel-based superalloys. So, with some ceramic-based contributions, this value is enhanced by optimum values.Keywords: molybdenum, composites, in-situ, mmc
Procedia PDF Downloads 714183 Text2Time: Transformer-Based Article Time Period Prediction
Authors: Karthick Prasad Gunasekaran, B. Chase Babrich, Saurabh Shirodkar, Hee Hwang
Abstract:
Construction preparation is crucial for the success of a construction project. By involving project participants early in the construction phase, project managers can plan ahead and resolve issues early, resulting in project success and satisfaction. This study uses quantitative data from construction management projects to determine the relationship between the pre-construction phase, construction schedule, and customer satisfaction. This study examined a total of 65 construction projects and 93 clients per job to (a) identify the relationship between the pre-construction phase and program reduction and (b) the pre-construction phase and customer retention. Based on a quantitative analysis, this study found a negative correlation between pre-construction status and project schedule in 65 construction projects. This finding means that the more preparatory work done on a particular project, the shorter the total construction time. The Net Promoter Score of 93 clients from 65 projects was then used to determine the relationship between construction preparation and client satisfaction. The pre-construction status and the projects were further analyzed, and a positive correlation between them was found. This shows that customers are happier with projects with a higher ready-to-build ratio than projects with less ready-to-build.Keywords: NLP, BERT, LLM, deep learning, classification
Procedia PDF Downloads 1084182 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine
Authors: Bessaad Taieb, Benbouali Abderrahmen
Abstract:
Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine
Procedia PDF Downloads 1014181 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning
Authors: ChoLiang Chung, YuMin Chen
Abstract:
C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.Keywords: carbon, TiO2, chitosan, electrospinning
Procedia PDF Downloads 2614180 Acute Phase Proteins, Proinflammatory Cytokines and Oxidative Stress Biomarkers in Sheep with Pneumonic Pasteurellosis
Authors: Wael M. El-Deeb
Abstract:
The aim of this study was to assess the pathophysiological importance of lipid profile, acute phase proteins, proinflammatory cytokines and oxidative stress markers in sheep with pneumonic pasteurellosis. Blood samples were collected from 36 Pasteurellamultocida-infected sheep, together with 20 healthy controls. Samples for bacteriological examination (nasal swabs, bronchoalveolar lavage) were collected from all animals and subjected to bacteriological examinations. Moreover, heart blood and lung samples were collected from the dead pneumonic sheep and subjected also to bacteriological examinations. A lipid profile was determined, along with a blood picture and other biochemical parameters. The acute phase proteins (fibrinogen, haptoglobin, serum amyloid A), the proinflammatory cytokine tumour necrosis factor-alpha, interleukins (IL-1α, IL-1β, IL-6), interferon-gamma and the oxidative stress markers malondialdehyde, super oxide dismutase, glutathione and catalase were also measured. The examined biochemical parameters were increased in the pneumonic sheep, except for cholesterol and high-density lipoprotein cholesterol (HDL-c), which were significantly lower than control group. Acute phase proteins and cytokines were significantly higher in the pneumonic sheep when compared to the healthy sheep. There was a significant increase in the levels of malondialdehyde; however, a significant decrease in the levels of super oxide dismutase, glutathione and catalase was observed. The present study shed the light on the possible pathphysiological role of lipid profile, acute phase proteins (APPs), proinflammatory cytokines and oxidative stress markers in pneumonic pasteurelosis in sheep.Keywords: acute phase proteins, sheep, pasteurella, interleukins, stress
Procedia PDF Downloads 3954179 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis
Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks
Abstract:
Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol
Procedia PDF Downloads 5254178 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 2174177 Implicit and Explicit Mechanisms of Emotional Contagion
Authors: Andres Pinilla Palacios, Ricardo Tamayo
Abstract:
Emotional contagion is characterized as an automatic tendency to synchronize behaviors that facilitate emotional convergence among humans. It might thus play a pivotal role to understand the dynamics of key social interactions. However, a few research has investigated its potential mechanisms. We suggest two complementary but independent processes that may underlie emotional contagion. The efficient contagion hypothesis, based on fast and implicit bottom-up processes, modulated by familiarity and spread of activation in the emotional associative networks of memory. Secondly, the emotional contrast hypothesis, based on slow and explicit top-down processes guided by deliberated appraisal and hypothesis-testing. In order to assess these two hypotheses, an experiment with 39 participants was conducted. In the first phase, participants were induced (between-groups) to an emotional state (positive, neutral or negative) using a standardized video taken from the FilmStim database. In the second phase, participants classified and rated (within-subject) the emotional state of 15 faces (5 for each emotional state) taken from the POFA database. In the third phase, all participants were returned to a baseline emotional state using the same neutral video used in the first phase. In a fourth phase, participants classified and rated a new set of 15 faces. The accuracy in the identification and rating of emotions was partially explained by the efficient contagion hypothesis, but the speed with which these judgments were made was partially explained by the emotional contrast hypothesis. However, results are ambiguous, so a follow-up experiment is proposed in which emotional expressions and activation of the sympathetic system will be measured using EMG and EDA respectively.Keywords: electromyography, emotional contagion, emotional valence, identification of emotions, imitation
Procedia PDF Downloads 3204176 Poly(Ethylene Glycol)-Silicone Containing Phase Change Polymer for Thermal Energy Storage
Authors: Swati Sundararajan, , Asit B. Samui, Prashant S. Kulkarni
Abstract:
The global energy crisis has led to extensive research on alternative sources of energy. The gap between energy supply and demand can be met by thermal energy storage techniques, of which latent heat storage is most effective in the form of phase change materials (PCMs). Phase change materials utilize latent heat absorbed or released over a narrow temperature range of the material undergoing phase transformation, to store energy. The latent heat can be utilized for heating or cooling purposes. It can also be used for converting to electricity. All these actions amount to minimizing the load on electricity demand. These materials retain this property over repeated number of cycles. Different PCMs differ in the phase change temperature and the heat storage capacities. Poly(ethylene glycol) (PEG) was cross-linked to hydroxyl-terminated poly(dimethyl siloxane) (PDMS) in the presence of cross-linker, tetraethyl orthosilicate (TEOS) and catalyst, dibutyltin dilaurate. Four different ratios of PEG and PDMS were reacted together, and the composition with the lowest PEG concentration resulted in the formation of a flexible solid-solid phase change membrane. The other compositions are obtained in powder form. The enthalpy values of the prepared PCMs were studied by using differential scanning calorimetry and the crystallization properties were analyzed by using X-ray diffraction and polarized optical microscopy. The incorporation of silicone moiety was expected to reduce the hydrophilic character of PEG, which was evaluated by measurement of contact angle. The membrane forming ability of this crosslinked polymer can be extended to several smart packaging, building and textile applications. The detailed synthesis, characterization and performance evaluation of the crosslinked polymer blend will be incorporated in the presentation.Keywords: phase change materials, poly(ethylene glycol), poly(dimethyl siloxane), thermal energy storage
Procedia PDF Downloads 3564175 Audit Is a Production Performance Tool
Authors: Lattari Samir
Abstract:
The performance of a production process is the result of proper operation where the management tools appear as the key to success through process management which consists of managing and implementing a quality policy, organizing and planning the manufacturing, and thus defining an efficient logic as the main areas covered by production management. To carry out this delicate mission, which requires reconciling often contradictory objectives, the auditor is called upon, who must be able to express an opinion on the effectiveness of the operation of the "production" function. To do this, the auditor must structure his mission in three phases, namely, the preparation phase to assimilate the particularities of this function, the implementation phase and the conclusion phase. The audit is a systematic and independent examination of all the stages of a manufacturing process intended to determine whether the pre-established arrangements for the combination of production factors are respected, whether their implementation is effective and whether they are relevant in relation to the goals.Keywords: audit, performance of process, independent examination, management tools, audit of accounts
Procedia PDF Downloads 784174 Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes
Authors: R. Faiez, M. Mashhoudi, F. Najafi
Abstract:
Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermos-capillary flow affects inversely the phase boundaries of distinct shapes. The in homogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow.Keywords: computer simulation, fluid flow, interface shape, thermos-capillary effect
Procedia PDF Downloads 2514173 Comparison of E-learning and Face-to-Face Learning Models Through the Early Design Stage in Architectural Design Education
Authors: Gülay Dalgıç, Gildis Tachir
Abstract:
Architectural design studios are ambiencein where architecture design is realized as a palpable product in architectural education. In the design studios that the architect candidate will use in the design processthe information, the methods of approaching the design problem, the solution proposals, etc., are set uptogetherwith the studio coordinators. The architectural design process, on the other hand, is complex and uncertain.Candidate architects work in a process that starts with abstre and ill-defined problems. This process starts with the generation of alternative solutions with the help of representation tools, continues with the selection of the appropriate/satisfactory solution from these alternatives, and then ends with the creation of an acceptable design/result product. In the studio ambience, many designs and thought relationships are evaluated, the most important step is the early design phase. In the early design phase, the first steps of converting the information are taken, and converted information is used in the constitution of the first design decisions. This phase, which positively affects the progress of the design process and constitution of the final product, is complex and fuzzy than the other phases of the design process. In this context, the aim of the study is to investigate the effects of face-to-face learning model and e-learning model on the early design phase. In the study, the early design phase was defined by literature research. The data of the defined early design phase criteria were obtained with the feedback graphics created for the architect candidates who performed e-learning in the first year of architectural education and continued their education with the face-to-face learning model. The findings of the data were analyzed with the common graphics program. It is thought that this research will contribute to the establishment of a contemporary architectural design education model by reflecting the evaluation of the data and results on architectural education.Keywords: education modeling, architecture education, design education, design process
Procedia PDF Downloads 1434172 Effects of Copper Oxide Doping on Hydrothermal Ageing in Alumina Toughened Zirconia
Authors: Mohamed Abbas, Ramesh Singh
Abstract:
This study investigates the hydrothermal aging behavior of undoped and copper oxide-doped alumina-toughened zirconia (ATZ). The ATZ ceramic composites underwent conventional sintering at temperatures ranging from 1250 to 1500°C with a holding time of 12 minutes. XRD analysis revealed a stable 100% tetragonal phase for conventionally sintered ATZ samples up to 1450°C, even after 100 hours of exposure. At 1500℃, XRD patterns of both undoped and doped ATZ samples showed no phase transformation after up to 3 hours of exposure to superheated steam. Extended exposure, however, resulted in phase transformation beyond 10 hours. CuO-doped ATZ samples initially exhibited lower monoclinic content, gradually increasing with aging. Undoped ATZ demonstrated better-aging resistance, maintaining ~40% monoclinic content after 100 hours. FESEM images post-aging revealed surface roughness changes due to the tetragonal-to-monoclinic phase transformation, with limited nucleation in the largest tetragonal grains. Fracture analysis exhibited macrocracks and microcracks on the transformed surface layer after aging. This study found that 0.2wt% CuO doping did not prevent the low-temperature degradation (LTD) phenomenon at elevated temperatures. Transformation zone depth (TZD) calculations supported the trend observed in the transformed monoclinic phase.Keywords: alumina toughened zirconia, conventional sintering, copper oxide, hydrothermal ageing
Procedia PDF Downloads 764171 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).Keywords: acoustic emission, dual phase steels, deformation, failure, fracture
Procedia PDF Downloads 4074170 Investigation of the Growth Kinetics of Phases in Ni–Sn System
Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul
Abstract:
Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system
Procedia PDF Downloads 3104169 Development of a Process Method to Manufacture Spreads from Powder Hardstock
Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien
Abstract:
It has been over 200 years since margarine was discovered and manufactured using liquid oil, liquified hardstock oils and other oil phase & aqueous phase ingredients. Henry W. Bradley first used vegetable oils in liquid state and around 1871, since then; spreads have been traditionally manufactured using liquified oils. The main objective of this study was to develop a process method to produce spreads using spray dried hardstock fat powders as a structing fats in place of current liquid structuring fats. A high shear mixing system was used to condition the fat phase and the aqueous phase was prepared separately. Using a single scraped surface heat exchanger and pin stirrer, margarine was produced. The process method was developed for to produce spreads with 40%, 50% and 60% fat . The developed method was divided into three steps. In the first step, fat powders were conditioned by melting and dissolving them into liquid oils. The liquified portion of the oils were at 65 °C, whilst the spray dried fat powder was at 25 °C. The two were mixed using a mixing vessel at 900 rpm for 4 minutes. The rest of the ingredients i.e., lecithin, colorant, vitamins & flavours were added at ambient conditions to complete the fat/ oil phase. The water phase was prepared separately by mixing salt, water, preservative, acidifier in the mixing tank. Milk was also separately prepared by pasteurizing it at 79°C prior to feeding it into the aqueous phase. All the water phase contents were chilled to 8 °C. The oil phase and water phase were mixed in a tank, then fed into a single scraped surface heat exchanger. After the scraped surface heat exchanger, the emulsion was fed in a pin stirrer to work the formed crystals and produce margarine. The margarine produced using the developed process had fat levels of 40%, 50% and 60%. The margarine passed all the qualitative, stability, and taste assessments. The scores were 6/10, 7/10 & 7.5/10 for the 40%, 50% & 60% fat spreads, respectively. The success of the trials brought about differentiated knowledge on how to manufacture spreads using non micronized spray dried fat powders as hardstock. Manufacturers do not need to store structuring fats at 80-90°C and even high in winter, instead, they can adapt their processes to use fat powders which need to be stored at 25 °C. The developed process method used one scrape surface heat exchanger instead of the four to five currently used in votator based plants. The use of a single scraped surface heat exchanger translated to about 61% energy savings i.e., 23 kW per ton of product. Furthermore, it was found that the energy saved by implementing separate pasteurization was calculated to be 6.5 kW per ton of product produced.Keywords: margarine emulsion, votator technology, margarine processing, scraped sur, fat powders
Procedia PDF Downloads 93