Search results for: short-term electricity price forecast
2406 A Theory and Empirical Analysis on the Efficency of Chinese Electricity Pricing
Authors: Jianlin Wang, Jiajia Zhao
Abstract:
This paper applies the theory and empirical method to examine the relationship between electricity price and coal price, as well as electricity and industry output, for China during Jan 1999-Dec 2012. Our results indicate that there is no any causality between coal price and electricity price under other factors are controlled. However, we found a bi-directional causality between electricity consumption and industry output. Overall, the electricity price set by China’s NDRC is inefficient, which lead to the electricity supply shortage after 2004. It is time to reform electricity price system for China’s reformers.Keywords: electricity price, coal price, power supply, China
Procedia PDF Downloads 4662405 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 2912404 The Effect of Oil Price Uncertainty on Food Price in South Africa
Authors: Goodness C. Aye
Abstract:
This paper examines the effect of the volatility of oil prices on food price in South Africa using monthly data covering the period 2002:01 to 2014:09. Food price is measured by the South African consumer price index for food while oil price is proxied by the Brent crude oil. The study employs the GARCH-in-mean VAR model, which allows the investigation of the effect of a negative and positive shock in oil price volatility on food price. The model also allows the oil price uncertainty to be measured as the conditional standard deviation of a one-step-ahead forecast error of the change in oil price. The results show that oil price uncertainty has a positive and significant effect on food price in South Africa. The responses of food price to a positive and negative oil price shocks is asymmetric.Keywords: oil price volatility, food price, bivariate, GARCH-in-mean VAR, asymmetric
Procedia PDF Downloads 4752403 Demand and Supply Management for Electricity Markets: Econometric Analysis of Electricity Prices
Authors: Ioana Neamtu
Abstract:
This paper investigates the potential for demand-side management for the system price in the Nordic electricity market and the price effects of introducing wind-power into the system. The model proposed accounts for the micro-structure of the Nordic electricity market by modeling each hour individually, while still accounting for the relationship between the hours within a day. This flexibility allows us to explore the differences between peak and shoulder demand hours. Preliminary results show potential for demand response management, as indicated by the price elasticity of demand as well as a small but statistically significant decrease in price, given by the wind power penetration. Moreover, our study shows that these effects are stronger during day-time and peak hours,compared to night-time and shoulder hours.Keywords: structural model, GMM estimation, system of equations, electricity market
Procedia PDF Downloads 4352402 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network
Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem
Abstract:
This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting
Procedia PDF Downloads 2282401 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 02400 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices
Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe
Abstract:
An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.Keywords: electricity prices, realized volatility, semivariances, volatility spillovers
Procedia PDF Downloads 1732399 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid
Authors: Abdulla Rahil, Rupert Gammon, Neil Brown
Abstract:
The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen
Procedia PDF Downloads 2282398 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network
Authors: Liu Zhiyuan, Sun Zongdi
Abstract:
In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City
Procedia PDF Downloads 3502397 The Impact of Dispatching with Rolling Horizon Control in Sizing Thermal Storage for Solar Tower Plant Participating in Wholesale Spot Electricity Market
Authors: Navid Mohammadzadeh, Huy Truong-Ba, Michael Cholette
Abstract:
The solar tower (ST) plant is a promising technology to exploit large-scale solar irradiation. With thermal energy storage, ST plant has the potential to shift generation to high electricity price periods. However, the size of storage limits the dispatchability of the plant, particularly when it should compete with uncertainty in forecasts of solar irradiation and electricity prices. The purpose of this study is to explore the size of storage when Rolling Horizon Control (RHC) is employed for dispatch scheduling. To this end, RHC is benchmarked against perfect knowledge (PK) forecast and two day-ahead dispatching policies. With optimisation of dispatch planning using PK policy, the optimal achievable profit for a specific size of the storage is determined. A sensitivity analysis using Monte-Carlo simulation is conducted, and the size of storage for RHC and day-ahead policies is determined with the objective of reaching the profit obtained from the PK policy. A case study is conducted for a hypothetical ST plant with thermal storage located in South Australia and intends to dispatch under two market scenarios: 1) fixed price and 2) wholesale spot price. The impact of each individual source of uncertainty on storage size is examined for January and August. The exploration of results shows that dispatching with RH controller reaches optimal achievable profit with ~15% smaller storage compared to that in day-ahead policies. The results of this study may be applied to the CSP plant design procedure.Keywords: solar tower plant, spot market, thermal storage system, optimized dispatch planning, sensitivity analysis, Monte Carlo simulation
Procedia PDF Downloads 1222396 One-Way Electric Vehicle Carsharing in an Urban Area with Vehicle-To-Grid Option
Authors: Cem Isik Dogru, Salih Tekin, Kursad Derinkuyu
Abstract:
Electric vehicle (EV) carsharing is an alternative method to tackle urban transportation problems. This method can be applied by several options. One of the options is the one-way carsharing, which allow an EV to be taken at a designated location and leaving it on another specified location customer desires. Although it may increase users’ satisfaction, the issues, namely, demand dissatisfaction, relocation of EVs and charging schedules, must be dealt with. Also, excessive electricity has to be stored in batteries of EVs. To cope with aforementioned issues, two-step mixed integer programming (MIP) model is proposed. In first step, the integer programming model is used to determine amount of electricity to be sold to the grid in terms of time periods for extra profit. Determined amounts are provided from the batteries of EVs. Also, this step works in day-ahead electricity markets with forecast of periodical electricity prices. In second step, other MIP model optimizes daily operations of one-way carsharing: charging-discharging schedules, relocation of EVs to serve more demand and renting to maximize the profit of EV fleet owner. Due to complexity of the models, heuristic methods are introduced to attain a feasible solution and different price information scenarios are compared.Keywords: electric vehicles, forecasting, mixed integer programming, one-way carsharing
Procedia PDF Downloads 1282395 Financial Portfolio Optimization in Electricity Markets: Evaluation via Sharpe Ratio
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity plays an indispensable role in human life and the economy. It is a unique product or service that must be balanced instantaneously, as electricity is not stored, generation and consumption should be proportional. Effective and efficient use of electricity is very important not only for society, but also for the environment. A competitive electricity market is one of the best ways to provide a suitable platform for effective and efficient use of electricity. On the other hand, it carries some risks that should be carefully managed by the market players. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Markowitz’s Mean-variance, Down-side and Semi-variance methods for a case study. Performance of optimal electricity sale solutions are measured and evaluated via Sharpe-Ratio, and the optimal portfolio solutions are improved. Two years of historical weekdays’ price data of the Turkish Day Ahead Market are used to demonstrate the approach.Keywords: electricity market, portfolio optimization, risk management in electricity market, sharpe ratio
Procedia PDF Downloads 3622394 Levy Model for Commodity Pricing
Authors: V. Benedico, C. Anacleto, A. Bearzi, L. Brice, V. Delahaye
Abstract:
The aim in present paper is to construct an affordable and reliable commodity prices based on a recalculation of its cost through time which allows visualize the potential risks and thus, take more appropriate decisions regarding forecasts. Here attention has been focused on Levy model, more reliable and realistic than classical random Gaussian one as it takes into consideration observed abrupt jumps in case of sudden price variation. In application to Energy Trading sector where it has never been used before, equations corresponding to Levy model have been written for electricity pricing in European market. Parameters have been set in order to predict and simulate the price and its evolution through time to remarkable accuracy. As predicted by Levy model, the results show significant spikes which reach unconventional levels contrary to currently used Brownian model.Keywords: commodity pricing, Lévy Model, price spikes, electricity market
Procedia PDF Downloads 4272393 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique
Authors: P. Kanakasabapathy, S. Radhika
Abstract:
In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self-scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self-scheduling to ensure profit for the plant.Keywords: ancillary services, BPSO, power system economics, self-scheduling, sliding window technique
Procedia PDF Downloads 3992392 On the Effectiveness of Electricity Market Development Strategies: A Target Model for a Developing Country
Authors: Ezgi Avci-Surucu, Doganbey Akgul
Abstract:
Turkey’s energy reforms has achieved energy security through a variety of interlinked measures including electricity, gas, renewable energy and energy efficiency legislation; the establishment of an energy sector regulatory authority; energy price reform; the creation of a functional electricity market; restructuring of state-owned energy enterprises; and private sector participation through privatization and new investment. However, current strategies, namely; “Electricity Sector Reform and Privatization Strategy” and “Electricity Market and Supply Security Strategy” has been criticized for various aspects. The present paper analyzes the implementation of the aforementioned strategies in the framework of generation scheduling, transmission constraints, bidding structure and general aspects; and argues the deficiencies of current strategies which decelerates power investments and creates uncertainties. We conclude by policy suggestions to eliminate these deficiencies in terms of price and risk management, infrastructure, customer focused regulations and systematic market development.Keywords: electricity markets, risk management, regulations, balancing and settlement, bilateral trading, generation scheduling, bidding structure
Procedia PDF Downloads 5512391 An Application of the Single Equation Regression Model
Authors: S. K. Ashiquer Rahman
Abstract:
Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or OPEC announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study about the number of wellheads and other economic variables may give us some understanding of the mechanism indicated by the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: the price of the wellhead, domestic output, and GNP constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.Keywords: price, domestic output, GNP, trend variable, wildcat activity
Procedia PDF Downloads 592390 Financial Portfolio Optimization in Turkish Electricity Market via Value at Risk
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity has an indispensable role in human daily life, technological development and economy. It is a special product or service that should be instantaneously generated and consumed. Sources of the world are limited so that effective and efficient use of them is very important not only for human life and environment but also for technological and economic development. Competitive electricity market is one of the important way that provides suitable platform for effective and efficient use of electricity. Besides benefits, it brings along some risks that should be carefully managed by a market player like Electricity Generation Company. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Value at Risk methods for case studies. Performance of optimal electricity sale solutions are measured and the portfolio performance has been evaluated via Sharpe-Ratio, and compared with conventional approach. Biennial historical electricity price data of Turkish Day Ahead Market are used to demonstrate the approach.Keywords: electricity market, portfolio optimization, risk management, value at risk
Procedia PDF Downloads 3112389 IPO Valuation and Profitability Expectations: Evidence from the Italian Exchange
Authors: Matteo Bonaventura, Giancarlo Giudici
Abstract:
This paper analyses the valuation process of companies listed on the Italian Exchange in the period 2000-2009 at their Initial Public Offering (IPO). One the most common valuation techniques declared in the IPO prospectus to determine the offer price is the Discounted Cash Flow (DCF) method. We develop a ‘reverse engineering’ model to discover the short term profitability implied in the offer prices. We show that there is a significant optimistic bias in the estimation of future profitability compared to ex-post actual realization and the mean forecast error is substantially large. Yet we show that such error characterizes also the estimations carried out by analysts evaluating non-IPO companies. The forecast error is larger the faster has been the recent growth of the company, the higher is the leverage of the IPO firm, the more companies issued equity on the market. IPO companies generally exhibit better operating performance before the listing, with respect to comparable listed companies, while after the flotation they do not perform significantly different in term of return on invested capital. Pre-IPO book building activity plays a significant role in partially reducing the forecast error and revising expectations, while the market price of the first day of trading does not contain information for further reducing forecast errors.Keywords: initial public offerings, DCF, book building, post-IPO profitability drop
Procedia PDF Downloads 3512388 Does sustainability disclosure improve analysts’ forecast accuracy Evidence from European banks
Authors: Albert Acheampong, Tamer Elshandidy
Abstract:
We investigate the extent to which sustainability disclosure from the narrative section of European banks’ annual reports improves analyst forecast accuracy. We capture sustainability disclosure using a machine learning approach and use forecast error to proxy analyst forecast accuracy. Our results suggest that sustainability disclosure significantly improves analyst forecast accuracy by reducing the forecast error. In a further analysis, we also find that the induction of Directive 2014/95/European Union (EU) is associated with increased disclosure content, which then reduces forecast error. Collectively, our results suggest that sustainability disclosure improves forecast accuracy, and the induction of the new EU directive strengthens this improvement. These results hold after several further and robustness analyses. Our findings have implications for market participants and policymakers.Keywords: sustainability disclosure, machine learning, analyst forecast accuracy, forecast error, European banks, EU directive
Procedia PDF Downloads 712387 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 932386 Overview of Risk Management in Electricity Markets Using Financial Derivatives
Authors: Aparna Viswanath
Abstract:
Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as non-storability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.Keywords: financial derivatives, forward, futures, options, risk management
Procedia PDF Downloads 4762385 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes
Authors: V. Churkin, M. Lopatin
Abstract:
The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States
Procedia PDF Downloads 3462384 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios
Authors: S. Sakthivel
Abstract:
Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer
Procedia PDF Downloads 1402383 The Cost of Solar-Centric Renewable Portfolio
Authors: Timothy J. Considine, Edward J. M. Manderson
Abstract:
This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide
Procedia PDF Downloads 4832382 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.Keywords: logistic regression, decisions tree, random forest, VAR model
Procedia PDF Downloads 4442381 Loan Supply and Asset Price Volatility: An Experimental Study
Authors: Gabriele Iannotta
Abstract:
This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment
Procedia PDF Downloads 1232380 Evaluating Forecasts Through Stochastic Loss Order
Authors: Wilmer Osvaldo Martinez, Manuel Dario Hernandez, Juan Manuel Julio
Abstract:
We propose to assess the performance of k forecast procedures by exploring the distributions of forecast errors and error losses. We argue that non systematic forecast errors minimize when their distributions are symmetric and unimodal, and that forecast accuracy should be assessed through stochastic loss order rather than expected loss order, which is the way it is customarily performed in previous work. Moreover, since forecast performance evaluation can be understood as a one way analysis of variance, we propose to explore loss distributions under two circumstances; when a strict (but unknown) joint stochastic order exists among the losses of all forecast alternatives, and when such order happens among subsets of alternative procedures. In spite of the fact that loss stochastic order is stronger than loss moment order, our proposals are at least as powerful as competing tests, and are robust to the correlation, autocorrelation and heteroskedasticity settings they consider. In addition, since our proposals do not require samples of the same size, their scope is also wider, and provided that they test the whole loss distribution instead of just loss moments, they can also be used to study forecast distributions as well. We illustrate the usefulness of our proposals by evaluating a set of real world forecasts.Keywords: forecast evaluation, stochastic order, multiple comparison, non parametric test
Procedia PDF Downloads 872379 Optimal Scheduling of Load and Operational Strategy of a Load Aggregator to Maximize Profit with PEVs
Authors: Md. Shafiullah, Ali T. Al-Awami
Abstract:
This project proposes optimal scheduling of imported power of a load aggregator with the utilization of EVs to maximize its profit. As with the increase of renewable energy resources, electricity price in competitive market becomes more uncertain and, on the other hand, with the penetration of renewable distributed generators in the distribution network the predicted load of a load aggregator also becomes uncertain in real time. Though there is uncertainties in both load and price, the use of EVs storage capacity can make the operation of load aggregator flexible. LA submits its offer to day-ahead market based on predicted loads and optimized use of its EVs to maximize its profit, as well as in real time operation it uses its energy storage capacity in such a way that it can maximize its profit. In this project, load aggregators profit maximization algorithm is formulated and the optimization problem is solved with the help of CVX. As in real time operation the forecasted loads differ from actual load, the mismatches are settled in real time balancing market. Simulation results compare the profit of a load aggregator with a hypothetical group of 1000 EVs and without EVs.Keywords: CVX, electricity market, load aggregator, load and price uncertainties, profit maximization, real time balancing operation
Procedia PDF Downloads 4152378 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models
Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana
Abstract:
The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.Keywords: electricity demand forecasting, load shedding, demand side management, data science
Procedia PDF Downloads 592377 Structured Tariff Calculation to Promote Geothermal for Energy Security
Authors: Siti Mariani, Arwin DW Sumari, Retno Gumilang Dewi
Abstract:
This paper analyzes the necessity of a structured tariff calculation for geothermal electricity in Indonesia. Indonesia is blessed with abundant natural resources and a choices of energy resources to generate electricity among other are coal, gas, biomass, hydro to geothermal, creating a fierce competition in electricity tariffs. While geothermal is inline with energy security principle and green growth initiative, it requires a huge capital funding. Geothermal electricity development consists of phases of project with each having its own financial characteristics. The Indonesian government has set a support in the form of ceiling price of geothermal electricity tariff by 11 U.S cents / kWh. However, the government did not set a levelized cost of geothermal, as an indication of lower limit capacity class, to which support is given. The government should establish a levelized cost of geothermal energy to reflect its financial capability in supporting geothermal development. Aside of that, the government is also need to establish a structured tariff calculation to reflect a fair and transparent business cooperation.Keywords: load fator, levelized cost of geothermal, geothermal power plant, structured tariff calculation
Procedia PDF Downloads 438