Search results for: sequential dependence model
17777 Book Recommendation Using Query Expansion and Information Retrieval Methods
Authors: Ritesh Kumar, Rajendra Pamula
Abstract:
In this paper, we present our contribution for book recommendation. In our experiment, we combine the results of Sequential Dependence Model (SDM) and exploitation of book information such as reviews, tags and ratings. This social information is assigned by users. For this, we used CLEF-2016 Social Book Search Track Suggestion task. Finally, our proposed method extensively evaluated on CLEF -2015 Social Book Search datasets, and has better performance (nDCG@10) compared to other state-of-the-art systems. Recently we got the good performance in CLEF-2016.Keywords: sequential dependence model, social information, social book search, query expansion
Procedia PDF Downloads 28917776 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback
Authors: Jung–Min Yang
Abstract:
Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.Keywords: asynchronous sequential machines, corrective control, model matching, input/output control
Procedia PDF Downloads 34417775 Tolerating Input Faults in Asynchronous Sequential Machines
Authors: Jung-Min Yang
Abstract:
A method of tolerating input faults for input/state asynchronous sequential machines is proposed. A corrective controller is placed in front of the considered asynchronous machine to realize model matching with a reference model. The value of the external input transmitted to the closed-loop system may change by fault. We address the existence condition for the controller that can counteract adverse effects of any input fault while maintaining the objective of model matching. A design procedure for constructing the controller is outlined. The proposed reachability condition for the controller design is validated in an illustrative example.Keywords: asynchronous sequential machines, corrective control, fault tolerance, input faults, model matching
Procedia PDF Downloads 42417774 Model-Based Software Regression Test Suite Reduction
Authors: Shiwei Deng, Yang Bao
Abstract:
In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.Keywords: dependence analysis, EFSM model, greedy algorithm, regression test
Procedia PDF Downloads 42917773 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 34617772 The Importance of Science and Technology Education in Skill Acquisition for Self Dependence
Authors: Olaje Monday Olaje
Abstract:
Science and technology has been prove to be the back bone for economic development of any country, and for Nigeria, it has more critical role to play. This paper examines the importance of science and technology education for national development and self dependence for Nigerian citizens. A historical overview of the interconnectivity of science and technology and self dependence is heighted. The current situation and challenges facing science and technology education are also highlighted to bring out the theoretical importance of science and technology education for self dependence which actually has not been practically achieved. Recommendations are also made at the of the study so as to skill acquisition through science and technology for self dependence.Keywords: acquisition, education, self-dependence, science, technology
Procedia PDF Downloads 50617771 A Sequential Approach for Random-Effects Meta-Analysis
Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya
Abstract:
The objective in meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence based for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research finding changed with year publication and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable to fixed effect model (FEM). For random-effects model (REM), the analysis incorporates the heterogeneity variance, tau-squared and its estimation create complications. In this paper proposed the use of Gombay and Serbian (2005) truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring of REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of application.Keywords: meta-analysis, random-effects model, sequential test, temporal changes in effect sizes
Procedia PDF Downloads 46917770 Conditions for Fault Recovery of Interconnected Asynchronous Sequential Machines with State Feedback
Authors: Jung–Min Yang
Abstract:
In this paper, fault recovery for parallel interconnected asynchronous sequential machines is studied. An adversarial input can infiltrate into one of two submachines comprising parallel composition of the considered asynchronous sequential machine, causing an unauthorized state transition. The control objective is to elucidate the condition for the existence of a corrective controller that makes the closed-loop system immune against any occurrence of adversarial inputs. In particular, an efficient existence condition is presented that does not need the complete modeling of the interconnected asynchronous sequential machine.Keywords: asynchronous sequential machines, parallel composi-tion, corrective control, fault tolerance
Procedia PDF Downloads 23217769 Analysis of the Temperature Dependence of Local Avalanche Compact Model for Bipolar Transistors
Authors: Robert Setekera, Ramses van der Toorn
Abstract:
We present an extensive analysis of the temperature dependence of the local avalanche model used in most of the modern compact models for bipolar transistors. This local avalanche model uses the Chynoweth's empirical law for ionization coefficient to define the generation of the avalanche current in terms of the local electric field. We carry out the model analysis using DC-measurements taken on both Si and advanced SiGe bipolar transistors. For the advanced industrial SiGe-HBTs, we consider both high-speed and high-power devices (both NPN and PNP transistors). The limitations of the local avalanche model in modeling the temperature dependence of the avalanche current mostly in the weak avalanche region are demonstrated. In addition, the model avalanche parameters are analyzed to see if they are in agreement with semiconductor device physics.Keywords: avalanche multiplication, avalanche current, bipolar transistors, compact modeling, electric field, impact ionization, local avalanche
Procedia PDF Downloads 62317768 The Generalized Pareto Distribution as a Model for Sequential Order Statistics
Authors: Mahdy Esmailian, Mahdi Doostparast, Ahmad Parsian
Abstract:
In this article, sequential order statistics (SOS) censoring type II samples coming from the generalized Pareto distribution are considered. Maximum likelihood (ML) estimators of the unknown parameters are derived on the basis of the available multiple SOS data. Necessary conditions for existence and uniqueness of the derived ML estimates are given. Due to complexity in the proposed likelihood function, a useful re-parametrization is suggested. For illustrative purposes, a Monte Carlo simulation study is conducted and an illustrative example is analysed.Keywords: bayesian estimation, generalized pareto distribution, maximum likelihood estimation, sequential order statistics
Procedia PDF Downloads 51217767 Simultaneous versus Sequential Model in Foreign Entry
Authors: Patricia Heredia, Isabel Saz, Marta Fernández
Abstract:
This article proposes that the decision regarding exporting and the choice of export channel are nested and non-independent decisions. We assume that firms make two sequential decisions before arriving at their final choice: the decision to access foreign markets and the decision about the type of channel. This hierarchical perspective of the choices involved in the process is appealing for two reasons. First, it supports the idea that people have a limited analytical capacity. Managers often break down a complex decision into a hierarchical process because this makes it more manageable. Secondly, it recognizes that important differences exist between entry modes. In light of the above, the objective of this study is to test different entry mode choice processes: independent decisions and nested and non-independent decisions. To do this, the methodology estimates and compares the following two models: (i) a simultaneous single-stage model with three entry mode choices (using a multinomial logit model); ii) a two-stage model with the export decision preceding the channel decision using a sequential logit model. The study uses resource-based factors in determining these decision processes concerning internationalization and the study carries out empirical analysis using a DOC Rioja sample of 177 firms.Using the Akaike and Schwarz Information Criteria, the empirical evidence supports the existence of a nested structure, where the decision about exporting precedes the export mode decision. The implications and contributions of the findings are discussed.Keywords: sequential logit model, two-stage choice process, export mode, wine industry
Procedia PDF Downloads 3317766 Contagion and Stock Interdependence in the BRIC+M Block
Authors: Christian Bucio Pacheco, Miriam Magnolia Sosa Castro, María Alejandra Cabello Rosales
Abstract:
This paper aims to analyze the contagion effect among the stock markets of the BRIC+M block (Brazil, Russia, India, China plus Mexico). The contagion effect is proved through increasing on dependence parameters during crisis periods. The dependence parameters are estimated through copula approach in a period of time from July 1997 to December 2015. During this period there are instability and calm episodes, allowing to analyze changes in the relations of dependence. Empirical results show strong evidence of time-varying dependence among the BRIC+M markets and an increasing dependence relation during global financial crisis period.Keywords: BRIC+M Block, Contagion effect, Copula, dependence
Procedia PDF Downloads 34817765 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model
Authors: Xiang Zhang, David Rey, S. Travis Waller
Abstract:
Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning
Procedia PDF Downloads 30117764 Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach
Authors: Adrian O'Hagan, Robert McLoughlin
Abstract:
Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal.Keywords: empirical copula, extreme events, insurance loss reserving, upper tail dependence coefficient
Procedia PDF Downloads 28417763 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices
Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues
Abstract:
This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.Keywords: matrix minimization algorithm, decoding sequential search algorithm, image compression, DCT, DWT
Procedia PDF Downloads 15317762 Design and Implementation of Testable Reversible Sequential Circuits Optimized Power
Authors: B. Manikandan, A. Vijayaprabhu
Abstract:
The conservative reversible gates are used to designed reversible sequential circuits. The sequential circuits are flip-flops and latches. The conservative logic gates are Feynman, Toffoli, and Fredkin. The design of two vectors testable sequential circuits based on conservative logic gates. All sequential circuit based on conservative logic gates can be tested for classical unidirectional stuck-at faults using only two test vectors. The two test vectors are all 1s, and all 0s. The designs of two vectors testable latches, master-slave flip-flops and double edge triggered (DET) flip-flops are presented. We also showed the application of the proposed approach toward 100% fault coverage for single missing/additional cell defect in the quantum- dot cellular automata (QCA) layout of the Fredkin gate. The conservative logic gates are in terms of complexity, speed, and area.Keywords: DET, QCA, reversible logic gates, POS, SOP, latches, flip flops
Procedia PDF Downloads 30617761 The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery
Authors: Khadidja Belbachir, Hafida Belbachir
Abstract:
subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm.Keywords: association rules, distributed data mining, partition, parallel algorithms
Procedia PDF Downloads 42117760 Group Sequential Covariate-Adjusted Response Adaptive Designs for Survival Outcomes
Authors: Yaxian Chen, Yeonhee Park
Abstract:
Driven by evolving FDA recommendations, modern clinical trials demand innovative designs that strike a balance between statistical rigor and ethical considerations. Covariate-adjusted response-adaptive (CARA) designs bridge this gap by utilizing patient attributes and responses to skew treatment allocation in favor of the treatment that is best for an individual patient’s profile. However, existing CARA designs for survival outcomes often hinge on specific parametric models, constraining their applicability in clinical practice. In this article, we address this limitation by introducing a CARA design for survival outcomes (CARAS) based on the Cox model and a variance estimator. This method addresses issues of model misspecification and enhances the flexibility of the design. We also propose a group sequential overlapweighted log-rank test to preserve type I error rate in the context of group sequential trials using extensive simulation studies to demonstrate the clinical benefit, statistical efficiency, and robustness to model misspecification of the proposed method compared to traditional randomized controlled trial designs and response-adaptive randomization designs.Keywords: cox model, log-rank test, optimal allocation ratio, overlap weight, survival outcome
Procedia PDF Downloads 6517759 On Control of Asynchronous Sequential Machines with Switching Capability
Authors: Jung-Min Yang
Abstract:
Corrective control enables us to change the stable state behavior of an asynchronous sequential machine without modifying inner logic of the machine. This paper addresses corrective control for asynchronous machines with switching capability. The considered asynchronous machine consists of a set of different submachines and switches to each machine according to a constant switching sequence. The control goal is to design a corrective controller such that the closed-loop system can match the behavior of a reference model. The reachability of the switched asynchronous machine is described by a logic calculation of the reachability of submachines. The design procedure of the proposed corrective controller is outlined, and the applicability of the proposed scheme is validated in an example.Keywords: switched asynchronous sequential machines, corrective control, state feedback, switching sequences
Procedia PDF Downloads 45717758 Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current
Authors: Lei Ren, Michael Hartnett, Stephen Nash
Abstract:
The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation.Keywords: data assimilation, CODAR, HF radar, surface current, direct insertion
Procedia PDF Downloads 57517757 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 40217756 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 18417755 Physics of Black Holes. A Closed Cycle of Transformation of Matter in the Universe
Authors: Igor V. Kuzminov
Abstract:
The proposed article is a development of the topics of gravity, the inverse temperature dependence of gravity, the action of the inverse temperature dependence of gravity, and the second law of thermodynamics, dark matter, the identity of gravity, inertial forces, and centrifugal forces. All interaction schemes are built on the basis of Newton's laws of classical mechanics and Rutherford's planetary model of the structure of the atom. The basis of all constructions is the gyroscopic effect of rotation of all particles of the atomic structure. In this case, interatomic and intermolecular bonds are accepted as the static part of the gyroscope, and the rotation of an electron in an atom is accepted as the dynamic part. The structure of the planet Earth is accepted as a model of the structure of the Black Hole. Namely, gravitational and thermodynamic phenomena in the structure of the planet Earth are accepted as a model. Based on this model, assumptions are made about the processes inside the Black Hole. Moreover, a version is put forward, a scheme of a closed cycle of transformation of matter in the Universe.Keywords: black hole, gravity, inverse temperature dependence of gravitational forces, second law of thermodynamics, gyroscopic effect, dark matter
Procedia PDF Downloads 2917754 Development of an Automatic Sequential Extraction Device for Pu and Am Isotopes in Radioactive Waste Samples
Authors: Myung Ho Lee, Hee Seung Lim, Young Jae Maeng, Chang Hoon Lee
Abstract:
This study presents an automatic sequential extraction device for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO₃, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO₃ medium with anion exchange resin. For leaching solution passed through the anion exchange column, the Am isotopes were sequentially separated with TRU resin. Automatic sequential extraction device built-in software information of separation for Pu and Am isotopes was developed. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after the micro-precipitation of neodymium. The data of Pu and Am isotopes in radioactive waste with an automatic sequential extraction device developed in this study were validated with the ICP-MS system.Keywords: automatic sequential extraction device, Pu isotopes, Am isotopes, alpha spectrometer, radioactive waste samples, ICP-MS system
Procedia PDF Downloads 7717753 Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications
Authors: Mohamed Rahal, Djaouida Guetta
Abstract:
In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach.Keywords: global optimization, Hölder functions, sequential covering method, systems of nonlinear equations
Procedia PDF Downloads 37217752 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 19617751 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty
Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos
Abstract:
Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning
Procedia PDF Downloads 21117750 The Role of Language Strategy on International Survival of Firm: A Conceptual Framework from Resource Dependence Perspective
Authors: Sazzad Hossain Talukder
Abstract:
Survival in the competitive international market with unforeseen environmental contingencies has always been a concern of the firms that led to adopting different strategies to deal with different situations. Language strategy is considered to enhance the international performance of a firm by organizing language diversity and fostering communications within and outside the firm. Yet there is a lack of theoretical attention or model development on the role of language strategy on firm international survival. From resource dependence perspective, the adoption of language strategy and its relationship with firm survival are determined by the firm´s capability to prevent dependency concentration and/or increase relative power on the external environment. However, the impact of language strategy on firm survival is complex and multifaceted as the strategy influence firm performance indirectly through communication, coordination, learning and value creation. The evidence of various types of language strategies and different forms of firm survival also bring in complexities to understand the effects of a language strategy on the international survival of a firm. Based on language literatures and resource dependence logic, certain propositions are developed to conceptualize the relationship between language strategy and firm international survival in this conceptual paper. For the purpose of this paper, a conceptual model is proposed to examine how different kinds of language strategy foster reduction of resource dependency that lead to firm international survival in respond to local responsiveness and global integration. In this proposed model, it is theorized that language strategy has a positive relationship with the international survival of the firm, as the strategy is likely to reduce external resource dependency and increase the ability to continue independent operations both in short and long term.Keywords: language strategy, language diversity, firm international survival, resource dependence logic
Procedia PDF Downloads 28217749 A Comparative Study of GTC and PSP Algorithms for Mining Sequential Patterns Embedded in Database with Time Constraints
Authors: Safa Adi
Abstract:
This paper will consider the problem of sequential mining patterns embedded in a database by handling the time constraints as defined in the GSP algorithm (level wise algorithms). We will compare two previous approaches GTC and PSP, that resumes the general principles of GSP. Furthermore this paper will discuss PG-hybrid algorithm, that using PSP and GTC. The results show that PSP and GTC are more efficient than GSP. On the other hand, the GTC algorithm performs better than PSP. The PG-hybrid algorithm use PSP algorithm for the two first passes on the database, and GTC approach for the following scans. Experiments show that the hybrid approach is very efficient for short, frequent sequences.Keywords: database, GTC algorithm, PSP algorithm, sequential patterns, time constraints
Procedia PDF Downloads 39017748 Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries
Authors: Eyup Dogan
Abstract:
This empirical aims to analyze the impacts of real income and biomass energy consumption on the level of emissions in the EKC model for the panel of biomass-consuming countries over the period 1980-2011. Because we detect the presence of cross-sectional dependence and heterogeneity across countries for the analyzed data, we use panel estimation methods robust to cross-sectional dependence and heterogeneity. The CADF and the CIPS panel unit root tests indicate that carbon emissions, real income and biomass energy consumption are stationary at the first-differences. The LM bootstrap panel cointegration test shows that the analyzed variables are cointegrated. Results from the panel group-mean DOLS and the panel group-mean FMOLS estimators show that increase in biomass energy consumption decreases CO2 emissions and the EKC hypothesis is validated. Therefore, countries are advised to boost their production and increase the use of biomass energy for lower level of emissions.Keywords: biomass energy, CO2 emissions, EKC model, heterogeneity, cross-sectional dependence
Procedia PDF Downloads 297