Search results for: salinity tolerance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 962

Search results for: salinity tolerance

962 Isolation and Characterization of Salt-Tolerance of Rhizobia under the Effects of Salinity

Authors: Sarra Sobti, Baelhadj Hamdi-Aïssa

Abstract:

The bacteria of the soil, usually called rhizobium, have a considerable importance in agriculture because of their capacity to fix the atmospheric nitrogen in symbiosis with the plants of the family of legumes. The present work was to study the effect of the salinity on growth and nodulation of alfalfa-rhizobia symbiosis at different agricultural experimental sites in Ouargla. The experiment was conducted in 3 steps. The first one was the isolation and characterization of the Rhizobia; next, the evolution of the isolates tolerance to salinity at three levels of NaCl (6, 8,12 and 16 g/L); and the last step was the evolution of the tolerance on symbiotic characteristics. The results showed that the phenotypic characterizations behave practically as Rhizobia spp, and the effects of salinity affect the symbiotic process. The tolerance to high levels of salinity and the survival and persistence in severe and harsh desert conditions make these rhizobia highly valuable inoculums to improve productivity of the leguminous plants cultivated under extreme environments.

Keywords: rhizobia, symbiosis, salinity, tolerance, nodulation, soil, Medicago sativa L.

Procedia PDF Downloads 315
961 Role of Osmoregulators for Enhancing Salinity Stress Tolerance in Chickpea

Authors: Mahmoud Ahmed Khater

Abstract:

This study aimed to improve the deleterious effects of salinity stress in chickpeas using both proline and glycine betaine as osmoregulants. The aim was achieved using foliar spraying with different concentrations of proline (5 mM and 10 mM) and glycinebetaine (10 mM and 20 mM) to chickpea plants grown in pots under salinity stress (3000 mg/l NaCl) at the greenhouse of the National Research Centre, Egypt, during two successive seasons 2021/2022 and 2022/2023. Results indicated that all applied treatments caused significant increases in most of the investigated parameters of chickpea plants irrigated with either tap water or saline solution relative to the corresponding control. It is worth mentioning that proline treatments were more effective than glycine betaine treatments in increasing the salinity tolerance of chickpea plants, reflected in their quality and quantity. Moreover, proline treatment at 5mM was the most pronounced treatment in alleviating the deleterious effect of salinity on chickpea plants.

Keywords: cicer arietinum L., osmoprotectant, proline, glycinebetaine salinity tolerance

Procedia PDF Downloads 46
960 Exploitation of Variability for Salinity Tolerance in Maize Hybrids (Zea Mays L.) at Early Growth Stage

Authors: Abdul Qayyum, Hafiz Muhammad Saeed, Mamoona Hanif, Etrat Noor, Waqas Malik, Shoaib Liaqat

Abstract:

Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germplasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure.

Keywords: salinity, hybrids, maize, variation

Procedia PDF Downloads 712
959 Mapping QTLs Associated with Salinity Tolerance in Maize at Seedling Stage

Authors: Mohammad Muhebbullah Ibne Hoque, Zheng Jun, Wang Guoying

Abstract:

Salinity stress is one of the most important abiotic factors contributing to crop growth and yield loss. Exploring the genetic basis is necessary to develop maize varieties with salinity tolerance. In order to discover the inherent basis for salinity tolerance traits in maize, 121 polymorphic SSR markers were used to analyze 163 F2 individuals derived from a single cross of inbred line B73 (a salt susceptible inbred line) and CZ-7 (a salt tolerant inbred line). A linkage map was constructed and the map covered 1195.2 cM of maize genome with an average distance of 9.88 cM between marker loci. Ten salt tolerance traits at seedling stage were evaluated for QTL analysis in maize seedlings. A total of 41 QTLs associated with seedling shoot and root traits were detected, with 16 and 25 QTLs under non-salinity and salinity condition, respectively. And only 4 major stable QTLs were detected in two environments. The detected QTLs were distributed on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, and chromosome 10. Phenotypic variability for the identified QTLs for all the traits was in the range from 6.27 to 21.97%. Fourteen QTLs with more than 10% contributions were observed. Our results and the markers associated with the major QTL detected in this study have the potential application for genetic improvement of salt tolerance in maize through marker-assisted selection.

Keywords: salt tolerance, seedling stage, root shoot traits, quantitative trait loci, simple sequence repeat, maize

Procedia PDF Downloads 317
958 Evaluation of Genetic Diversity for Salt Stress in Maize Hybrids (Zea Mays L.) at Seedling Stage

Authors: Abdu Qayyum, Hafiz Muhammad Saeed, Mamoona Hanif, Etrat Noor, Waqas Malik, Shoaib Liaqat

Abstract:

Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germ plasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure.

Keywords: salinity, hybrids, maize, variation

Procedia PDF Downloads 717
957 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Compost Application

Authors: Ayman El Sabagh, SobhySorour, AbdElhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. What adds to the concern is that all the legume crops are sensitive to increasing soil salinity. So it is implacable to either search for salinity enhancement of legume plants. The exogenous of osmoprotectants has been found effective in reducing the adverse effects of salinity stress on plant growth. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine and compost application on soybean plants grown under salinity stress. Experiments were carried out in the greenhouse of the experimental station, plant nutritional physiology, Hiroshima University, Japan in 2011- 2012. The experiment was arranged in a factorial design with 4 replications at NaCl concentrations (0 and 15 mM). The exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Compost treatments (0 and 24 t ha-1). Results indicated that salinity stress induced reduction in all growth and physiological parameters (dry weights plant-1, chlorophyll content, N and K+ content) likewise, seed and quality traits of soybean plant compared with those of the unstressed plants. In contrast, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Thus tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved membrane stability, K+, and proline accumulation on contrary, decreased Na+ content. These results clearly demonstrate that could be used to reduce the harmful effect of salinity on both physiological aspects and growth parameters of soybean. They are capable of restoring yield potential and quality of seed and may be useful in agronomic situations where saline conditions are diagnosed as a problem. Consequently, exogenous osmo-protectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance in the drylands.

Keywords: compost, glycine betaine, proline, salinity tolerance, soybean

Procedia PDF Downloads 370
956 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh

Authors: B. Hossen, Y. Helmut

Abstract:

Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.

Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing

Procedia PDF Downloads 339
955 Increase of Quinoa Tolerance to High Salinity Involves Agrophysiological Parameters Improvement by Soil Amendments

Authors: Bourhim Mohammad Redouane, Cheto Said, Qaddoury Ahmed, Hirich Abdelaziz, Ghoulam Cherki

Abstract:

Several abiotic stresses cause disruptions in the properties of agricultural soils and hence their loss worldwide. Among these abiotic stresses, Salinity to which most crops were exposed caused an important reduction in their productivity. Therefore, in order to deal with this challenging problem, we rely on cultivating alternative plants that can tolerate the adverse salinity stress, such as quinoa (Chenopodium quinoa). Although even it was qualified as tolerant to Salinity, the quinoa’s performance could be negatively affected under high salinity levels. Thus, our study aims to assess the effects of the application of soil amendments to improve quinoa tolerance levels under high Salinity. Thus, three quinoa varieties (Puno, ICBA-Q5, and Titicaca) were grown on agricultural soil under a greenhouse with five amendments; Biochar “Bc,” compost “Cp,” black soldier insect frass “If,” cow manure “Fb” and phosphogypsum “Pg.” Two controls without amendment were adopted consisting of the salinized negative one “T(-)” and the non-salinized positive one “T(+).” After 20 days from sowing, the plants were irrigated with a saline solution of 16 dS/m prepared with NaCl for a period of 60 days. Then plant tolerance was assessed based on agrophysiological parameters. The results showed that salinity stress negatively affected the quinoa plants for all the analyzed agrophysiological parameters in the three varieties compared to their corresponding controls “T(+).” However, most of these parameters were significantly enhanced by the application of soil amendments compared to their negative controls “T(-).” For instance, the biomass was improved by 91.8% and 69.4%, respectively, for Puno and Titicaca varieties amended with “Bc.” The total nitrogen amount was increased by 220% for Titicaca and ICBA-Q5 plants cultivated in the soil amended with “If.” One of the most important improvements was noted for potassium content in Titicaca amended with “Pg,” which was six times higher compared to the negative control. Besides, the plants of Puno amended with “Cp” showed an improvement of 75.9% for the stomatal conductance and 58.5% for nitrate reductase activity. Nevertheless, the pronounced varietal difference was registered between Puno and Titicaca, presenting the highest performances mainly for the soil amended with “If,” “Bc,” and “Pg.”

Keywords: chenopodium quinoa, salinity, soil amendments, growth, nutrients, nitrate reductase

Procedia PDF Downloads 71
954 Growth and Yield Response of Solanum retroflexum to Different Level of Salinity

Authors: Fhatuwani Herman Nndwambi, P. W. Mashela

Abstract:

Salinity is a major constraint limiting crop productivity. It has been predicted that by the year 2050, more than 50% of the arable land will be affected by salinity. Two similar salinity experiments were conducted in two seasons under greenhouse condition. Six levels of salinity plus control (viz; control, 2, 4, 8, 16, 32 and 64 % NaCl and CaCl2 at 3:1 ratio) were applied in a form of irrigation water in a single factor experiment arranged in a complete block design with 20 replications. Plant growth and yield were negatively affected by salinity treatments especially at the high levels of salinity. For example, our results suggest that the 32 and 64% of NaCl and CaCl2 treatment were too much for the plant to withstand as determined by reduced dry shoot mass, stem diameter and plant height in both seasons. On the other hand, stomatal conductance and chlorophyll content increased with an increased level of salinity.

Keywords: growth, salinity, season, yield

Procedia PDF Downloads 164
953 Foliar Feeding of Methyl Jasmonate Induces Resistance in Normal and Salinity Stressed Tomato Plants, at Different Stages

Authors: Abdul Manan, Choudhary Muhammad Ayyub, Rashid Ahmad, Muhammad Adnan Bukhari

Abstract:

A project was designed to investigate the effect of foliar application of methyl jasmonate (MeJA) on physiological, biochemical and ionic attributes of salinity stressed and normal tomato plants at different stages. Salinity stress at every stage markedly reduced the net photosynthetic rate, stomatal conductance, transpiration rate, water relations parameters, protein contents, total free aminoacids and potassium (K+) contents. While, antioxidant enzymes (peroxidase (POX) and catalase (CAT)), sodium (Na+) contents and proline contents were increased substantially. Foliar application of MeJA ameliorated the drastic effects of salinity regime by recovery of physiological and biochemical attributes by enhanced production of antioxidant enzymes and osmoprotectants. The efficacy of MeJA at very initial stage (15 days after sowing (15 DAS)).proved effective for attenuating the deleterious effects of salinity stress than other stages (15 days after transplanting (15 DAT) and 30 days after transplanting (30 DAT)). To the best of our knowledge, different times of foliar feeding of MeJA was observed first time for amelioration of salinity stress in tomato plants that would be of pivotal significance for scientist to better understand the dynamics of physiological and biochemical processes in tomato.

Keywords: methyl jasmonate, osmoregulation, salinity stress, stress tolerance, tomato

Procedia PDF Downloads 306
952 Salicylic Acid Improves Growth, Physiological Attributes and Salt Tolerance in Bread Wheat Cultivar (Triticum Aestivum L.)

Authors: Faiza Ateeq, Huma Jawed, Kamran Azim, Nadeem Khalid

Abstract:

Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on bread wheat cultivars AAI_10 from Faisalabad, Pakistan (Triticum aestivum L.) grown under salt stress in the presence and absence of 0.5 mM salicylic acid. The Physiological test was performed using different concentrations of salt solutions, i.e., 0%, 1%, 2%, 4%, and 6% on leaf blades, and determined the germination of seedlings growth after 14 days. Results showed a reduction in the weights of wheat seedlings when it’s dry and fresh in the consideration of salt stress. Salicylic Acid treatment has a positive effect when evaluated in the case of salt-treated control. The morphological test (Lowry method) was performed to determine the concentration of proteins in different samples. Results showed that the samples treated with SA showed the highest absorbance(720nm) as compared to the control and other treated samples absorbance was determined. Thus, Salicylic Acid treating wheat seedlings enables the growth of anti-stress effects, such as maintaining proline accumulation. The morphological and physiological parameters revealed that SA treatment not only decreased the negative effect of salinity on the development of the seedlings but also accelerated the reparation of the growth processes. These results suggested that salicylic acid application improved the salt tolerance of bread wheat cultivars.

Keywords: salinity, salicylic acid, biotic and abiotic stresses, proline

Procedia PDF Downloads 60
951 Salinity Stress: Effects on Growth Biochemical Parameters and Ion Homeostasis in Spinach (Spinacia Oleracea L.)

Authors: Umar Jaafar, Mungadi

Abstract:

Plant growth, biochemical parameters, cytotoxic ion sequestration and ionic in balance were determined for spinach in response to varied concentrations of NaCl. The plant show decline in all vegetative parameters measured. Free proline content increase with increasing salt concentration and differ significantly (p<0.05) while the glycine betaine insignificantly (p>0.05) affected by concentration of NaCl. Salinity increases the cytotoxic ions, sodium chlorine ion and calcium with corresponding decrease in potassium ion concentrations. The ionic balance (Na+/K+) is low due to high content of potassium ion in plant accumulation ranging from 7700 to 6500 mg/kg. It can be concluded that the osmolyte accumulations, high number of leaves are possible indicators of salt tolerance in the spinach.

Keywords: spinach, salinity, osmolyte, cytotoxic

Procedia PDF Downloads 357
950 Allelopathic Effect of Duranta Repens on Salinity-Stressed Solanum Lycopersicum Seedlings

Authors: Olusola Nafisat Omoniyi

Abstract:

Aqueous extract of Duranta repens leaves was investigated for its allelopathic effect on Solanum lycopersicum Seedlings germinated and grown under salinity condition. The study was carried out using both laboratory petri dish and pot assays to simulate the plant’s natural environmental conditions. The experiment consisted of 5 groups (1-5), each containing 5 replicates (of 10 seeds). Group 1 was treated with distilled water; Group 2 was treated with 5 mM NaCl; Group 3 was treated with the Extract, Group 4 was treated with a mixture of 5 mM NaCl and the Extract (2:1 v/v), and Group 5 was treated with a mixture of 5 mM NaCl and the Extract (1:2 v/v). The results showed that treatment with NaCl caused significant reductions in germination, growth parameters (plumule and radicle lengths), and chlorophyll concentration of S. lycopersicum seedlings when compared to those treated with D. rupens aqueous leaf extract. Salinity also caused an increase in malondialdehyde and proline concentrations and lowered the activity of superoxide dismutase. However, in the presence of the extract, the adverse effects of the NaCl were attenuated, implying that the extract improved tolerance of S. lycopersicum seedlings. In conclusion, the findings of this study show that the extract is very important in the optimal growth of the plant in saline soil, which has become useful for the management of soil salinity problems.

Keywords: agriculture, allelopathic, salinity, soil, tomato, production, photosynthesis

Procedia PDF Downloads 218
949 Impact of Saline Water and Water Restriction in Laying Hens

Authors: Reza Vakili

Abstract:

This experiment was conducted to investigate the effect of duration water restriction of drinking water and salinity level on production performance, egg quality and biochemical and hematological blood indices of laying hens. A total of 240 Hy-Line laying hens were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Experimental treatments were: 1) free access to drinking water and a low level of salinity (TDS below 500 mg/L) (FAW+LS), 2) free access to water and a high level of salinity (TDS above 1500 mg/L), (FAW+HS), 3) 12 h nightly water restriction and a low level of salinity (LAW+LS), and 4) 12 h water restriction and a high level of salinity (LAW+HS). Intake of feed, percentage of egg production and egg weight and mass were not affected by water restriction or salinity level (P > 0.05), however, a trend (P < 0.01) for lower water consumption was detected in water-restricted hens, regardless of salinity level (213 vs 187). A tendency for lower eggshell and yolk weights was observed in hens that had limited access to water with high salinity compared to those had free access to high saline water (P = 0.08). Serum total protein and glucose concentrations significantly reduced (P < 0.05) in hens drank high salinity water, regardless of water restriction. Moreover, saline water increased the concentration of uric acid, creatinine, and cholesterol when compared to low salinity drank-hens (P < 0.05). The concentrations of ALT and AST increased with salinity level (P < 0.05) and water restriction caused an increment in AST content (P < 0.05). In conclusion, Hy-Line laying hens could withstand water restriction, whilst could not tolerate water salinity of about 1500 mg/L.

Keywords: chemical pollutants, eggs, laying hens, salinity, water quality

Procedia PDF Downloads 21
948 Growth and Yield Potential of Quinoa genotypes on Salt Affected Soils

Authors: Shahzad M. A. Basra, Shahid Iqbal, Irfan Afzal, Hafeez-ur-Rehman

Abstract:

Quinoa a facultative halophyte crop plant is a new introduction in Pakistan due to its superior nutritional profile and its abiotic stress tolerance, especially against salinity. Present study was conducted to explore halophytic behavior of quinoa. Four quinoa genotypes (A1, A2, A7 and A9) were evaluated against high salinity (control, 100, 200, 300 and 400 mM). Evaluation was made on the basis of ionic analysis (Na+, K+ and K+: Na+ ratio in shoot) and root- shoot fresh and dry weight at four leaf stage. Seedling growth i.e. fresh and dry weight of shoot and root increased by 100 mM salinity and then growth decreased gradually with increasing salinity level in all geno types. Mineral analysis indicated that A2 and A7 have more tolerant behavior having low Na+ and high K+ ¬concentration as compared to A1 and A9. Same geno types as above were also evaluated against high salinity (control, 10, 20, 30, and 40 dS m-1) in pot culture during 2012-13. It was found that increase in salinity up to 10 dS m-1 the plant height, stem diameter and yield related traits increased but decreased with further increase in salinity. Same trend was observed in ionic contents. Maximum grain yield was achieved by A7 (100 g plant-1) followed by A2 (82 g plant-1) at salinity level 10 dS m-1. Next phase was carried out through field settings by using salt tolerant geno types (A2 and A7) at Crop Physiology Research Area Farm (non saline soil as control)/ Proka Farm (salt affected with EC up to 15 dS m-1), University of Agriculture, Faisalabad and Soil Salinity Research Institute, Pindi Bhtiaan (SSRI) Farm (one normal as control and two salt affected fields with EC values up to 15 and 30 dS m-1) during 2013-14. Genotype A7 showed maximum growth and gave maximum yield (3200 kg ha-1) at Proka Farm which was statistically at par to the values of yield obtained on normal soils of Faisalabad. Geno type A7 also gave maximum yield 2800 kg ha-1 on normal field of Pindi bhtiaan followed by as obtained (2340) on salt problem field (15 dS m-1) of same location.

Keywords: quinoa, salinity, halophyte, genotype

Procedia PDF Downloads 568
947 Transformation of ectA Gene From Halomonas elongata in Tomato Plant

Authors: Narayan Moger, Divya B., Preethi Jambagi, Krishnaveni C. K., Apsana M. R., B. R. Patil, Basvaraj Bagewadi

Abstract:

Salinity is one of the major threats to world food security. Considering the requirement for salt tolerant crop plants in the present study was undertaken to clone and transferred the salt tolerant ectA gene from marine ecosystem into agriculture crop system to impart salinity tolerance. Ectoine is the compatible solute which accumulates in the cell membrane, is known to be involved in salt tolerance activity in most of the Halophiles. The present situation is insisting to development of salt tolerant transgenic lines to combat abiotic stress. In this background, the investigation was conducted to develop transgenic tomato lines by cloning and transferring of ectA gene is an ectoine derivative capable of enzymatic action for the production of acetyl-diaminobutyric acid. The gene ectA is involved in maintaining the osmotic balance of plants. The PCR amplified ectA gene (579bp) was cloned into T/A cloning vector (pTZ57R/T). The construct pDBJ26 containing ectA gene was sequenced by using gene specific forward and reverse primers. Sequence was analyzed using BLAST algorithm to check similarity of ectA gene with other isolates. Highest homology of 99.66 per cent was found with ectA gene sequences of isolates Halomonas elongata with the available sequence information in NCBI database. The ectA gene was further sub cloned into pRI101-AN plant expression vector and transferred into E. coli DH5α for its maintenance. Further pDNM27 was mobilized into A. tumefaciens LBA4404 through tri-parental mating system. The recombinant Agrobacterium containing pDNM27 was transferred into tomato plants through In planta plant transformation method. Out of 300 seedlings, co-cultivated only twenty-seven plants were able to well establish under the greenhouse condition. Among twenty-seven transformants only twelve plants showed amplification with gene specific primers. Further work must be extended to evaluate the transformants at T1 and T2 generations for ectoine accumulation, salinity tolerance, plant growth and development and yield.

Keywords: salinity, computable solutes, ectA, transgenic, in planta transformation

Procedia PDF Downloads 80
946 Drought Alters the Expression of a Candidate Zea Mays P-Coumarate 3-Hydroxylase Gene and Caffeic Acid Biosynthesis

Authors: Zintle Kolo, Ndiko Ludidi

Abstract:

The enzymatic activity of p-coumarate 3-hydroxylase (C3H) synthesize caffeic acid from p-coumaric acid. We recently showed that exogenously applied caffeic acid confers salinity tolerance in soybean (Glycine max) by inducing antioxidant enzymatic activity to promote enhanced scavenging or reactive oxygen species, thus limiting salinity-induced oxidative stress. Recent evidence also establishes that pre-treatment of plants with exogenously supplied caffeic acid improves plant tolerance to osmotic stress by improving plant antioxidant capacity and enhancing biosynthesis of compatible solutes. We aimed to identify a C3H in maize (Zea mays) and evaluate the effect of drought on the spatial and temporal expression of the gene encoding the candidate maize C3H (ZmC3H). Primary sequence analysis shows that ZmC3H shares 71% identity with an Arabidopsis thaliana C3H that is implicated in the control of Arabidopsis cell expansion, growth, and responses to stress. In silico ZmC3H promoter analysis reveals the presence of cis-acting elements that interact with transcription factors implicated in plant responses to drought. Spatial expression analysis by semi-quantitative RT-PCR shows that ZmC3H is expressed in both leaves and roots under normal conditions. However, drought represses the expression of ZmC3H in leaves whereas it up-regulates its expression in roots. These changes in ZmC3H expression correlate with the changes in the content of caffeic acid in maize in response to drought. We illustrate the implications of these changes in the expression of the gene in relation to maize responses to drought and discuss the potential of regulating caffeic acid biosynthesis towards genetic improvement of maize tolerance to drought stress. These findings have implications for food security because of the potential of the implications of the study for drought tolerance in maize.

Keywords: caffeic acid, drought-responsive expression, maize drought tolerance, p-coumarate 3-hydroxylase

Procedia PDF Downloads 471
945 Effect of Pre-treatment with Salicylic Acid on Vegetative Growth and Yield Components of Wheat under Salinity

Authors: Saad M. Howladar, Mike Dennett

Abstract:

At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components.

Keywords: salinity, salicylic acid, growth, chlorophyll fluorescence, gas exchange, yield

Procedia PDF Downloads 469
944 Effect of Pre-Treatment with Salicylic Acid on Vegetative Growth and Yield Components of Saudi’s Wheat under Salinity

Authors: Saad Howladar, Mike Dennett

Abstract:

At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components.

Keywords: salinity, salicylic acid, growth, chlorophyll fluorescence, gas exchange, yield

Procedia PDF Downloads 420
943 Study of Halophytic Vegetation of Chott Gamra (Batna, High Plateaus of Eastern Algeria)

Authors: Marref C., Marref S., Melakhssou M. A.

Abstract:

The halophytic vegetation of Chott Gamra (Gadaïne Eco-complex, High Plateaus of Eastern Algeria) is characterized by a very rich cover. It is structured according to the variation in soil salinity and moisture. The objective of this study is to understand the biodiversity, distribution, and classification of halophytic vegetation. This wetland is characterized by a Mediterranean climate in the semi-arid to cool winter stage. The wetland area of the High Plateaus of Eastern Algeria constitutes a biodiversity reservoir. It is considered exceptional, although it remains little explored and documented to date. The study was conducted over consecutive spring seasons (2020/2021). Indeed, the inventory we established includes forty plant species belonging to fourteen different families, the majority of which are resistant to salinity and drought. These halophytic species that thrive there establish themselves in bands according to their tolerance threshold to salinity and their affinity to the hygroscopic level of the soil. Thus, other edaphic factors may come into play in the zonation of halophytes in saline environments. Species belonging to the Juncaceae and Poaceae families dominate by far the non-flooded vegetation cover of this site. These plants are perfectly adapted to saline environments.

Keywords: halophytes, biodiversity, salinity, wetland

Procedia PDF Downloads 49
942 Evaluation of Existing Wheat Genotypes of Bangladesh in Response to Salinity

Authors: Jahangir Alam, Ayman El Sabagh, Kamrul Hasan, Shafiqul Islam Sikdar, Celaleddin Barutçular, Sohidul Islam

Abstract:

The experiment (Germination test and seedling growth) was carried out at the laboratory of Agronomy Department, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh during January 2014. Germination and seedling growth of 22 existing wheat genotypes in Bangladesh viz. Kheri, Kalyansona, Sonora, Sonalika, Pavon, Kanchan, Akbar, Barkat, Aghrani, Prativa, Sourab, Gourab, Shatabdi, Sufi, Bijoy, Prodip, BARI Gom 25, BARI Gom 26, BARI Gom 27, BARI Gom 28, Durum and Triticale were tested with three salinity levels (0, 100 and 200 mM NaCl) for 10 days in sand culture in small plastic pot. Speed of germination as expressed by germination percentage (GP), rate of germination (GR), germination coefficient (GC) and germination vigor index (GVI) of all wheat genotypes was delayed and germination percentage was reduced due to salinization compared to control. The lower reduction of GP, GR, GC and VI due to salinity was observed in BARI Gom 25, BARI Gom 27, Shatabdi, Sonora, and Akbbar and higher reduction was recorded in BARI Gom 26, Duram, Triticale, Sufi and Kheri. Shoot and root lengths, fresh and dry weights were found to be affected due to salinization and shoot was more affected than root. Under saline conditions, longer shoot and root length were recorded in BARI Gom 25, BARI Gom 27, Akbar, and Shatabdi, i.e. less reduction of shoot and root lengths was observed while, BARI Gom 26, Duram, Prodip and Triticale produced shorted shoot and root lengths. In this study, genotypes BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed better performance in terms shoot and root growth (fresh and dry weights) and proved to be tolerant genotypes to salinity. On the other hand, Duram, BARI Gom 26, Triticale, Kheri and Prodip affected seriously in terms of fresh and dry weights by the saline environment. BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed more salt tolerance index (STI) based on shoot dry weight while, BARI Gom 26, Triticale, Durum, Sufi, Prodip and Kalyanson demonstrate lower STI value under saline conditions. Based on the most salt tolerance and susceptible trait, genotypes under 100 and 200 mM NaCl stresses can be arranged as salt tolerance genotypes: BARI Gom 25> BARI Gom 27> Shatabdi> Sonora, and salt susceptible genotypes: BARI Gom 26> Durum> Triticale> Prodip> Sufi> Kheri. Considering the experiment, it can be concluded that the BARI Gom 25 may be treated as the most salt tolerant and BARI Gom 26 as the most salt sensitive genotypes in Bangladesh.

Keywords: genotypes, germination, salinity, wheat

Procedia PDF Downloads 300
941 Study the Effect of Tolerances for Press Tool Assembly: Computer Aided Tolerance Analysis

Authors: Subodh Kumar, Ramkisan Pawar, Gopal D. Belurkar

Abstract:

This paper describes a study for simple blanking tool. In blanking or piercing operation, punch and die should be concentric for proper cutting. In this study, tolerance analysis method is used to analyze the variation in the press tool assembly. Variation results into the eccentricity in between die and punch due to cumulative tolerance of parts used in assembly. 1D variation analysis were performed by CREO parametric computer aided design (CAD) Software Powered by CETOL 6σ computer aided tolerance analysis software. Use of CAD analysis software given the opportunity to find out the cause of variation in tool assembly. Accordingly, the new specification of tolerance and process setting for die set manufacturing has determined. Tolerance allocation and tolerance analysis method were performed iteratively to conclude that position tolerance as well as size tolerance of hole in top plate for bush and size tolerance of guide pillar were more responsible for eccentricity in punch and die. This work proposes optimum tolerance for press tool assembly parts to achieve 100 % yield for specified .015mm minimum tolerance zone.

Keywords: blanking, GD&T (Geometric Dimension and Tolerancing), DPMU (defects per million unit), press tool, stackup analysis, tolerance allocation, yield percentage

Procedia PDF Downloads 359
940 Dynamics of Soil Carbon and Nitrogen Contents and Stocks along a Salinity Gradient

Authors: Qingqing Zhao, Junhong Bai

Abstract:

To investigate the effects of salinity on dynamics of soil carbon and nitrogen contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68±4.25 ms/cm) > T (5.89±3.17 ms/cm) > S (3.19±1.01 ms/cm) > P (2.26±0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), soil microbial biomass carbon (MBC), soil total nitrogen (TC) and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD), soil microbial biomass carbon density (MBCD), soil nitrogen density (TCD) and soil microbial biomass nitrogen density (MBND) were calculated at four sites. The results showed that the mean concentrations of TC, SOC, MBC, TN and MBN showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD, MBCD, TND and MBND exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56. 51. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC, SOC and MBC at four sampling sites were significantly negatively correlated with salinity (P < 0.01 or P < 0.05), indicating that salinity could inhibit soil carbon accumulation. However, no significant relationship was observed between TN, MBN and salinity (P > 0.05).

Keywords: carbon content and stock, nitrogen content and stock, salinity, coastal wetland

Procedia PDF Downloads 314
939 Differential Response of Cellular Antioxidants and Proteome Expression to Salt, Cadmium and Their Combination in Spinach (Spinacia oleracea)

Authors: Rita Bagheri, Javed Ahmed, Humayra Bashir, M. Irfan Qureshi

Abstract:

Agriculture lands suffer from a combination of stresses such as salinity and metal contamination including cadmium at the same time. Under such condition of multiple stresses, plant may exhibit unique responses different from the stress occurring individually. Thus, it would be interesting to investigate that how plant respond to combined stress at level of antioxidants and proteome expression, and identifying the proteins which are involved in imparting stress tolerance. With an approach of comparative proteomics and antioxidant analysis, present study investigates the response of Spinacia oleracea to salt (NaCl), cadmium (Cd), and their combination (NaCl+Cd) stress. Two-dimensional gel electrophoresis was used for resolving leaf proteome, and proteins of interest were identified using PDQuest software. A number of proteins expressed differentially, those indicated towards their roles in imparting stress tolerance, were digested by trypsin and analyzed on mass spectrometer for peptide mass fingerprinting (PMF). Data signals were then matched with protein databases using MASCOT. Results show that NaCl, Cd and both together (NaCl+Cd) induce oxidative stress which was highest in combined stress of Cd+NaCl. Correspondingly, the activities of enzymatic antioxidants viz., SOD, APX, GR and CAT, and non-enzymatic antioxidants had highest changes under combined stress compares to single stress over their respective controls. Among the identified proteins, several interesting proteins were identified that may be have role in Spinacia oleracia tolerance in individual and combinatorial stress of salt and cadmium. The functional classification of identified proteins indicates the importance and necessity of keeping higher ratio of defence and disease responsive proteins.

Keywords: Spinacia oleracea, Cd, salinity, proteomics, antioxidants, combinatorial stress

Procedia PDF Downloads 380
938 Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System

Authors: Modreck Gomo

Abstract:

Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity.

Keywords: acid mine drainage, carbonates, neutralization, salinity

Procedia PDF Downloads 140
937 Study of Salinity Stress and Calcium Interaction on Morphological and Physiological Traits of Vicia villosa under Hydroponic Condition

Authors: Raheleh Khademian, Roghayeh Aminian

Abstract:

For the study of salinity stress on Vicia villosa and calcium effect for modulation of that, an experiment was conducted under hydroponic condition, and some important morphological and physiological characteristics were evaluated. This experiment was conducted as a factorial based on randomized complete design with three replications. The treatments include salinity stress in three levels (0, 50, and 100 mM NaCl) and calcium in two levels (content in Hoagland solution and double content). The results showed that all morphological and physiological traits include root and shoot length, root and shoot wet and dry weight, leaf area, leaf chlorophyll content, RWC, CMS, and biological yield was significantly different from the control and is affected by the salinity stress severely. But, calcium effect on them was not significant despite of decreasing salinity effect.

Keywords: Vicia villossa, salinity stress, calcium, hydroponic

Procedia PDF Downloads 261
936 Effect of Salinity on Carbon Isotope Discrimination in Chamomile

Authors: Mehdi Ghanavati

Abstract:

The Effects of salinity level and duration on carbon isotope discrimination (Δ) of Matricaria chamomilla and Matricaria aurea were evaluated. Four ecotypes of M. chamomilla and four ecotypes of M. aurea were grown at different NaCl concentrations (control, 6, 12 and 18 dS/m) in sand culture condition. Carbon isotope discrimination (Δ) varied significantly (p<0.001) among ecotypes. The amount of carbon isotope discrimination (Δ) increased in first salinity level (6 dS/m), but in other levels (12 and 18 dS/m) it did not increase. Stages of salinity treatments (two stages: first from seedling stage until the end of the experiment and second stage of stress exertion began at stem elongation and seedlings emergence from rosette stage to harvest) had not a significant difference. Study of two spices of chamomile showed the M. aurea had a higher amount of carbon isotope discrimination (Δ) (22.9%) than M. chamomilla (22.48%).

Keywords: salinity, carbon isotope discrimination, Matricaria chamomilla, Matricaria aurea

Procedia PDF Downloads 440
935 Soil Salinity Mapping using Electromagnetic Induction Measurements

Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri

Abstract:

Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization

Keywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable

Procedia PDF Downloads 185
934 Screening Some Accessions of Lentil (Lens culinaris M.) for Salt Tolerance at Germination and Early Seedling Stage in Eastern Ethiopia

Authors: Azene Tesfaye, Yohannes Petros, Habtamu Zeleke

Abstract:

To evaluate genetic variation among Ethiopian lentil, laboratory experiment were conducted to screen 12 accessions of lentil (Lens culinaris M.) for salt tolerance. Seeds of 12 Lentil accessions were grown at laboratory (Petri dish) condition with different levels of salinity (0, 2, 4, and 8 dSm-1 NaCl) for 4 weeks. The experimental design was completely randomized design (CRD) in factorial combination with three replications. Data analysis was carried out using SAS software. Average germination time, germination percentage, seedling shoot and root traits, seedling shoot and root weight were evaluated. The two way ANOVA for varieties revealed statistically significant variation among lentil accession, NaCl level and their interactions (p<0.001) with respect to the entire parameters. It was found that salt stress significantly delays germination rate and decreases germination percentage, shoot and root length, seedling shoot and root weight of lentil accessions. The degree of decrement varied with accessions and salinity levels. Accessions 36120, 9235 and 36004 were better salt tolerant than the other accessions. As the result, it is recommended to be used as a genetic resource for the development of lentil accession and other very salt sensitive crop with improved germination under salt stress condition.

Keywords: accession, germination, lentil, NaCl, screening, seedling stage

Procedia PDF Downloads 337
933 Study of Frequency and Distribution of Skin Ionocytes in Caspian Sea Zander Larvae during Acclimation to Different Salinity

Authors: Mohaddeseh Ahmadnezhad, Shahrbano Oryan, Mahmoud Bahmani, Mohammadd Sayad Bourani

Abstract:

Changes in abundance and size of skin ionocytes were investigated in two larval stage of Caspian sea zander, Sander lucioperca, before and after yolk sac absorption, at 96h after transfer from fresh water (FW; <0.5‰) to 7‰ (estuary) and 12‰ (Caspian sea water=CW) salinity. Survival rate in the stage of after yolk sac absorption were more than larval pre-absorbed yolk sac in condition of salinity (p<0.05). Ionocyte abundance increased significantly in 7 and 12‰ salinity (p<0.05), but not about ionocyte size. The results of this study suggest that development of skin Ionocyte osmoregulatory function and osmoregulation capability of Caspian Sea zander larvae increased with growth of the larvae.

Keywords: Caspian Sea, larvae, Sander lucioperca, salinity, skin ionocyte

Procedia PDF Downloads 294