Search results for: resource estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4396

Search results for: resource estimation

4396 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research

Authors: R. Gupta, P. Jain, S. Das

Abstract:

One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.

Keywords: construction planning techniques, time scheduling, resource planning, cost control

Procedia PDF Downloads 488
4395 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation

Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan

Abstract:

Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.

Keywords: binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform

Procedia PDF Downloads 314
4394 The Resource Curse Hypothesis: Relevance to the Nigerian Economy

Authors: Modupeoluwa Solawon, Folusho Oluwole

Abstract:

The resource curse hypothesis is a widely discussed topic that suggests despite expectations of boosting economic development and improving the well-being of citizens, natural resource wealth in a country can lead to negative outcomes. The study focused on crude oil price, crude oil production, the pump price of petrol, agricultural production, and natural resources rent in Nigeria to determine the possible curse of these resources. The study also looked into the well-being of the citizens by employing gross domestic product per capita. The data used for the study were drawn from the World Bank Data Indicators in 2022, limited to annual data from 1981 to 2022, using the autoregressive distributed lag (ARDL) as the main estimation technique. The findings of the study revealed that natural resource rent influenced the GDP per capita detrimentally, indicating that natural resource rent has not led to better welfare for Nigerians. This effect could likely be a result of corruption in the system, causing the inability of the rents to promote better welfare in Nigeria. In conclusion, the study recommends reducing the cost of living in Nigeria and making productive use of revenues generated from its natural resources.

Keywords: ARDL, corruption, natural resources, resource curse hypothesis

Procedia PDF Downloads 9
4393 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions

Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh

Abstract:

Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.

Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility

Procedia PDF Downloads 53
4392 Wind Resource Estimation and Economic Analysis for Rakiraki, Fiji

Authors: Kaushal Kishore

Abstract:

Immense amount of imported fuels are used in Fiji for electricity generation, transportation and for carrying out miscellaneous household work. To alleviate its dependency on fossil fuel, paramount importance has been given to instigate the utilization of renewable energy sources for power generation and to reduce the environmental dilapidation. Amongst the many renewable energy sources, wind has been considered as one of the best identified renewable sources that are comprehensively available in Fiji. In this study the wind resource assessment for three locations in Rakiraki, Fiji has been carried out. The wind resource estimation at Rokavukavu, Navolau and at Tuvavatu has been analyzed. The average wind speed at 55 m above ground level (a.g.l) at Rokavukavu, Navolau, and Tuvavatu sites are 5.91 m/s, 8.94 m/s and 8.13 m/s with the turbulence intensity of 14.9%, 17.1%, and 11.7% respectively. The moment fitting method has been used to estimate the Weibull parameter and the power density at each sites. A high resolution wind resource map for the three locations has been developed by using Wind Atlas Analysis and Application Program (WAsP). The results obtained from WAsP exhibited good wind potential at Navolau and Tuvavatu sites. A wind farm has been proposed at Navolau and Tuvavatu site that comprises six Vergnet 275 kW wind turbines at each site. The annual energy production (AEP) for each wind farm is estimated and an economic analysis is performed. The economic analysis for the proposed wind farms at Navolau and Tuvavatu sites showed a payback period of 5 and 6 years respectively.

Keywords: annual energy production, Rakiraki Fiji, turbulence intensity, Weibull parameter, wind speed, Wind Atlas Analysis and Application Program

Procedia PDF Downloads 191
4391 Simulation of 3-D Direction-of-Arrival Estimation Using MUSIC Algorithm

Authors: Duckyong Kim, Jong Kang Park, Jong Tae Kim

Abstract:

DOA (Direction of Arrival) estimation is an important method in array signal processing and has a wide range of applications such as direction finding, beam forming, and so on. In this paper, we briefly introduce the MUSIC (Multiple Signal Classification) Algorithm, one of DOA estimation methods for analyzing several targets. Then we apply the MUSIC algorithm to the two-dimensional antenna array to analyze DOA estimation in 3D space through MATLAB simulation. We also analyze the design factors that can affect the accuracy of DOA estimation through simulation, and proceed with further consideration on how to apply the system.

Keywords: DOA estimation, MUSIC algorithm, spatial spectrum, array signal processing

Procedia PDF Downloads 380
4390 The Impact of Bim Technology on the Whole Process Cost Management of Civil Engineering Projects in Kenya

Authors: Nsimbe Allan

Abstract:

The study examines the impact of Building Information Modeling (BIM) on the cost management of engineering projects, focusing specifically on the Mombasa Port Area Development Project. The objective of this research venture is to determine the mechanisms through which Building Information Modeling (BIM) facilitates stakeholder collaboration, reduces construction-related expenses, and enhances the precision of cost estimation. Furthermore, the study investigates barriers to execution, assesses the impact on the project's transparency, and suggests approaches to maximize resource utilization. The study, selected for its practical significance and intricate nature, conducted a Systematic Literature Review (SLR) using credible databases, including ScienceDirect and IEEE Xplore. To constitute the diverse sample, 69 individuals, including project managers, cost estimators, and BIM administrators, were selected via stratified random sampling. The data were obtained using a mixed-methods approach, which prioritized ethical considerations. SPSS and Microsoft Excel were applied to the analysis. The research emphasizes the crucial role that project managers, architects, and engineers play in the decision-making process (47% of respondents). Furthermore, a significant improvement in cost estimation accuracy was reported by 70% of the participants. It was found that the implementation of BIM resulted in enhanced project visibility, which in turn optimized resource allocation and facilitated the process of budgeting. In brief, the study highlights the positive impacts of Building Information Modeling (BIM) on collaborative decision-making and cost estimation, addresses challenges related to implementation, and provides solutions for the efficient assimilation and understanding of BIM principles.

Keywords: cost management, resource utilization, stakeholder collaboration, project transparency

Procedia PDF Downloads 69
4389 Resource Management Framework in Cloud Computing

Authors: Gagandeep Kaur, Sonal Chawla

Abstract:

In a Cloud Computing environment, resource provisioning, resource allocation and resource scheduling is the most complex issues these days. Cloud User expects the best resource utilization and Cloud Provider expects revenue maximization by considering budget and time constraints. In this research paper, Resource Management Framework has been proposed to allocate the resources to Cloud Users and Cloud Providers in Cloud environment. The main aim of the proposed work is to provide the resources and services to Cloud Providers and Cloud Users in an efficient and effective manner. The proposed framework has been simulated and tested using the CloudSim simulator tool.

Keywords: cloud computing, resource allocation, auction, provisioning

Procedia PDF Downloads 150
4388 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 150
4387 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies

Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi

Abstract:

Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.

Keywords: state of charge estimation, battery modeling, one-state hysteresis, filtering and estimation

Procedia PDF Downloads 444
4386 Construction and Demolition Waste Management in Indian Cities

Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee

Abstract:

Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.

Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency

Procedia PDF Downloads 306
4385 Resource Constrained Time-Cost Trade-Off Analysis in Construction Project Planning and Control

Authors: Sangwon Han, Chengquan Jin

Abstract:

Time-cost trade-off (TCTO) is one of the most significant part of construction project management. Despite the significance, current TCTO analysis, based on the Critical Path Method, does not consider resource constraint, and accordingly sometimes generates an impractical and/or infeasible schedule planning in terms of resource availability. Therefore, resource constraint needs to be considered when doing TCTO analysis. In this research, genetic algorithms (GA) based optimization model is created in order to find the optimal schedule. This model is utilized to compare four distinct scenarios (i.e., 1) initial CPM, 2) TCTO without considering resource constraint, 3) resource allocation after TCTO, and 4) TCTO with considering resource constraint) in terms of duration, cost, and resource utilization. The comparison results identify that ‘TCTO with considering resource constraint’ generates the optimal schedule with the respect of duration, cost, and resource. This verifies the need for consideration of resource constraint when doing TCTO analysis. It is expected that the proposed model will produce more feasible and optimal schedule.

Keywords: time-cost trade-off, genetic algorithms, critical path, resource availability

Procedia PDF Downloads 189
4384 Volume Estimation of Trees: An Exploratory Study on Pterocarpus erinaceus Logging Operations within Forest Transition and Savannah Ecological Zones of Ghana

Authors: Albert Kwabena Osei Konadu

Abstract:

Pterocarpus erinaceus, also known as Rosewood, is tropical wood, endemic in forest savannah transition zones within the middle and northern portion of Ghana. Its economic viability has made it increasingly popular and in high demand, leading to widespread conservation concerns. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective, sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.

Keywords: convention on international trade in endangered species, cubic volume formula, forest transition savannah zones, pterocarpus erinaceus, smallian’s volume formula, tree information form

Procedia PDF Downloads 111
4383 Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon

Abstract:

In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.

Keywords: frequency offset estimation, maximum-likelihood, non-Gaussian noise environment, OFDM, training symbol

Procedia PDF Downloads 355
4382 Parameters Estimation of Multidimensional Possibility Distributions

Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin

Abstract:

We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.

Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification

Procedia PDF Downloads 471
4381 A Packet Loss Probability Estimation Filter Using Most Recent Finite Traffic Measurements

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

A packet loss probability (PLP) estimation filter with finite memory structure is proposed to estimate the packet rate mean and variance of the input traffic process in real-time while removing undesired system and measurement noises. The proposed PLP estimation filter is developed under a weighted least square criterion using only the finite traffic measurements on the most recent window. The proposed PLP estimation filter is shown to have several inherent properties such as unbiasedness, deadbeat, robustness. A guideline for choosing appropriate window length is described since it can affect significantly the estimation performance. Using computer simulations, the proposed PLP estimation filter is shown to be superior to the Kalman filter for the temporarily uncertain system. One possible explanation for this is that the proposed PLP estimation filter can have greater convergence time of a filtered estimate as the window length M decreases.

Keywords: packet loss probability estimation, finite memory filter, infinite memory filter, Kalman filter

Procedia PDF Downloads 675
4380 Volume Estimation of Trees: An Exploratory Study on Rosewood Logging Within Forest Transition and Savannah Ecological Zones of Ghana

Authors: Albert Kwabena Osei Konadu

Abstract:

One of the endemic forest species of the savannah transition zones enlisted by the Convention of International Treaty for Endangered Species (CITES) in Appendix II is the Rosewood, also known as Pterocarpus erinaceus or Krayie. Its economic viability has made it increasingly popular and in high demand. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. The study was limited by the usage of regulators assigned volume as benchmark and also fraught with potential volume measurement error in the stacked billet scenario due to the existence of spaces within packed billets. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.

Keywords: cubic volume formula, smallian volume formula, pterocarpus erinaceus, tree information form, forest transition and savannah zones, harvested tree volume

Procedia PDF Downloads 44
4379 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings

Authors: Sergei Aleinik, Mikhail Stolbov

Abstract:

In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.

Keywords: cross-correlation, delay estimation, signal envelope, signal processing

Procedia PDF Downloads 487
4378 VaR Estimation Using the Informational Content of Futures Traded Volume

Authors: Amel Oueslati, Olfa Benouda

Abstract:

New Value at Risk (VaR) estimation is proposed and investigated. The well-known two stages Garch-EVT approach uses conditional volatility to generate one step ahead forecasts of VaR. With daily data for twelve stocks that decompose the Dow Jones Industrial Average (DJIA) index, this paper incorporates the volume in the first stage volatility estimation. Afterwards, the forecasting ability of this conditional volatility concerning the VaR estimation is compared to that of a basic volatility model without considering any trading component. The results are significant and bring out the importance of the trading volume in the VaR measure.

Keywords: Garch-EVT, value at risk, volume, volatility

Procedia PDF Downloads 287
4377 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 281
4376 Parameter Estimation of Induction Motors by PSO Algorithm

Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad

Abstract:

After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.

Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method

Procedia PDF Downloads 636
4375 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network

Authors: Cheng Fang, Lingwei Quan, Cunyue Lu

Abstract:

Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.

Keywords: computer vision, pose estimation, pose tracking, Siamese network

Procedia PDF Downloads 154
4374 Impact of Climate Change on Water Resource Systems in Taiwan

Authors: Chia-Ling Chang, Hao-Bo Chang

Abstract:

Global climate change alters rainfall characteristics, while the variation of these characteristics further influences environmental conditions, such as hydrologic responses, landslide areas, and the amounts of diffuse pollution. The variations of environmental conditions may impact the stability of water resource systems. The objective of this study is to assess the present conditions of major water resource systems in Taiwan. The impact of climate change on each system is also discussed herein. Compared to the water resource systems in northern Taiwan, the ratio of the precipitation during the rainy season to that during the dry season has a larger increase in southern Taiwan. This variation of hydrologic condition impacts the stability of water resource systems and increases the risk of normal water supply. The findings in this work can be important references for water resource management.

Keywords: basin management, climate change, water resource system, water resource management

Procedia PDF Downloads 381
4373 Exploring the Application of Human Resource Management Bundles: A Case Study

Authors: Maniam Kaliannan

Abstract:

Studies on best practice or “bundles” of human resource management aims at providing a ‘universal solution’ to organizations yet critics challenge this view and place importance on the architecture of human resource processes in response to the dynamic needs of organizations. This paper identifies these best practices and explores how the applications of selected human resource management practices to a case study help solved their human resource problems. The case study includes insights on the problems faced; the approach taken to identify its root causes and explores how selected human resource management practices helped managed the overall predicament. The case study results supports the importance of aligning ‘bundles’ of practices with organizational architecture and ensuring that the architecture of human resource practices evolve with the changing needs of organizations. In addition, a framework based on the events of the case study is proposed to systematically manage their human resources

Keywords: bundles, best practices, human resource management, organizational architecture, framework

Procedia PDF Downloads 427
4372 Characteristic Function in Estimation of Probability Distribution Moments

Authors: Vladimir S. Timofeev

Abstract:

In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.

Keywords: characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation

Procedia PDF Downloads 507
4371 An Experimental Approach to the Influence of Tipping Points and Scientific Uncertainties in the Success of International Fisheries Management

Authors: Jules Selles

Abstract:

The Atlantic and Mediterranean bluefin tuna fishery have been considered as the archetype of an overfished and mismanaged fishery. This crisis has demonstrated the role of public awareness and the importance of the interactions between science and management about scientific uncertainties. This work aims at investigating the policy making process associated with a regional fisheries management organization. We propose a contextualized computer-based experimental approach, in order to explore the effects of key factors on the cooperation process in a complex straddling stock management setting. Namely, we analyze the effects of the introduction of a socio-economic tipping point and the uncertainty surrounding the estimation of the resource level. Our approach is based on a Gordon-Schaefer bio-economic model which explicitly represents the decision making process. Each participant plays the role of a stakeholder of ICCAT and represents a coalition of fishing nations involved in the fishery and decide unilaterally a harvest policy for the coming year. The context of the experiment induces the incentives for exploitation and collaboration to achieve common sustainable harvest plans at the Atlantic bluefin tuna stock scale. Our rigorous framework allows testing how stakeholders who plan the exploitation of a fish stock (a common pool resource) respond to two kinds of effects: i) the inclusion of a drastic shift in the management constraints (beyond a socio-economic tipping point) and ii) an increasing uncertainty in the scientific estimation of the resource level.

Keywords: economic experiment, fisheries management, game theory, policy making, Atlantic Bluefin tuna

Procedia PDF Downloads 257
4370 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms

Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili

Abstract:

In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.

Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm

Procedia PDF Downloads 635
4369 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter

Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas

Abstract:

This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.

Keywords: biomass concentration, extended Kalman filter, particle filter, state estimation, specific growth rate

Procedia PDF Downloads 431
4368 Estimation of Fuel Cost Function Characteristics Using Cuckoo Search

Authors: M. R. Al-Rashidi, K. M. El-Naggar, M. F. Al-Hajri

Abstract:

The fuel cost function describes the electric power generation-cost relationship in thermal plants, hence, it sheds light on economical aspects of power industry. Different models have been proposed to describe this relationship with the quadratic function model being the most popular one. Parameters of second order fuel cost function are estimated in this paper using cuckoo search algorithm. It is a new population based meta-heuristic optimization technique that has been used in this study primarily as an accurate estimation tool. Its main features are flexibility, simplicity, and effectiveness when compared to other estimation techniques. The parameter estimation problem is formulated as an optimization one with the goal being minimizing the error associated with the estimated parameters. A case study is considered in this paper to illustrate cuckoo search promising potential as a valuable estimation and optimization technique.

Keywords: cuckoo search, parameters estimation, fuel cost function, economic dispatch

Procedia PDF Downloads 582
4367 ML-Based Blind Frequency Offset Estimation Schemes for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon

Abstract:

This paper proposes frequency offset (FO) estimation schemes robust to the non-Gaussian noise for orthogonal frequency division multiplexing (OFDM) systems. A maximum-likelihood (ML) scheme and a low-complexity estimation scheme are proposed by applying the probability density function of the cyclic prefix of OFDM symbols to the ML criterion. From simulation results, it is confirmed that the proposed schemes offer a significant FO estimation performance improvement over the conventional estimation scheme in non-Gaussian noise environments.

Keywords: frequency offset, cyclic prefix, maximum-likelihood, non-Gaussian noise, OFDM

Procedia PDF Downloads 476