Search results for: non-linear optimization
4427 Topology Optimization of Composite Structures with Material Nonlinearity
Authors: Mengxiao Li, Johnson Zhang
Abstract:
Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.Keywords: topology optimization, material composition, nonlinear modeling, hardening rules
Procedia PDF Downloads 4824426 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone
Authors: Xinhuang Wu, Yousef Sardahi
Abstract:
A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones
Procedia PDF Downloads 734425 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6554424 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation
Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab
Abstract:
This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation
Procedia PDF Downloads 1384423 Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications
Authors: Mohamed Rahal, Djaouida Guetta
Abstract:
In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach.Keywords: global optimization, Hölder functions, sequential covering method, systems of nonlinear equations
Procedia PDF Downloads 3694422 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems
Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh
Abstract:
It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property
Procedia PDF Downloads 2054421 X-Ray Dynamical Diffraction 'Third Order Nonlinear Renninger Effect'
Authors: Minas Balyan
Abstract:
Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically.Keywords: Bragg diffraction, nonlinear Takagi’s equations, nonlinear Renninger effect, third order nonlinearity
Procedia PDF Downloads 3854420 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis
Authors: Haider M. Alsaeq
Abstract:
The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element
Procedia PDF Downloads 3914419 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds
Authors: Seyedehsomayeh Hosseini
Abstract:
Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential
Procedia PDF Downloads 3614418 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: identification, Hammerstein-Wiener, optimization, quantization
Procedia PDF Downloads 2574417 Interactive Winding Geometry Design of Power Transformers
Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald
Abstract:
Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design
Procedia PDF Downloads 3804416 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designing the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics
Procedia PDF Downloads 4784415 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: synthetic gene network, network identification, optimization, nonlinear modeling
Procedia PDF Downloads 1564414 A New Nonlinear State-Space Model and Its Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model.Keywords: nonlinear systems, state-space model, Kronecker product, nonlinear estimator
Procedia PDF Downloads 6914413 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 2824412 Achieving Better Security by Using Nonlinear Cellular Automata as a Cryptographic Primitive
Authors: Swapan Maiti, Dipanwita Roy Chowdhury
Abstract:
Nonlinear functions are essential in different cryptoprimitives as they play an important role on the security of the cipher designs. Rule 30 was identified as a powerful nonlinear function for cryptographic applications. However, an attack (MS attack) was mounted against Rule 30 Cellular Automata (CA). Nonlinear rules as well as maximum period CA increase randomness property. In this work, nonlinear rules of maximum period nonlinear hybrid CA (M-NHCA) are studied and it is shown to be a better crypto-primitive than Rule 30 CA. It has also been analysed that the M-NHCA with single nonlinearity injection proposed in the literature is vulnerable against MS attack, whereas M-NHCA with multiple nonlinearity injections provide maximum length cycle as well as better cryptographic primitives and they are also secure against MS attack.Keywords: cellular automata, maximum period nonlinear CA, Meier and Staffelbach attack, nonlinear functions
Procedia PDF Downloads 3144411 Urban Planning Compilation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hyper-Cycle Theory
Authors: Hong Dongchen, Chen Qiuxiao, Wu Shuang
Abstract:
Systematic science reveals the complex nonlinear mechanisms of behaviour in urban system. However, in China, when the current city planners face with the system, most of them are still taking simple linear thinking to consider the open complex giant system. This paper introduces the hyper-cycle theory, which is one of the basis theories of systematic science, based on the analysis of the reasons why the current urban planning failed, and proposals for optimization ideas that urban planning compilation should change, from controlling quantitative to the changes of relationship, from blueprint planning to progressive planning based on the nonlinear characteristics and from management control to dynamically monitor feedback.Keywords: systematic science, hyper-cycle theory, urban planning, urban management
Procedia PDF Downloads 4054410 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations
Procedia PDF Downloads 4314409 A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity and Parameter Uncertainties: A Linear Matrix Inequality Approach
Authors: Sofiane Bououden, Ilyes Boulkaibet
Abstract:
In this paper, a robust model predictive controller (RMPC) for uncertain nonlinear system under actuator saturation is designed to control a DC-DC buck converter in PV pumping application, where this system is subject to actuator saturation and parameter uncertainties. The considered nonlinear system contains a linear constant part perturbed by an additive state-dependent nonlinear term. Based on the saturating actuator property, an appropriate linear feedback control law is constructed and used to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The proposed approach has successfully provided a solution to the optimization problem that can stabilize the nonlinear plants. Furthermore, sufficient conditions for the existence of the proposed controller guarantee the robust stability of the system in the presence of polytypic uncertainties. In addition, the simulation results have demonstrated the efficiency of the proposed control scheme.Keywords: PV pumping system, DC-DC buck converter, robust model predictive controller, nonlinear system, actuator saturation, linear matrix inequality
Procedia PDF Downloads 1804408 Solution of Nonlinear Fractional Programming Problem with Bounded Parameters
Authors: Mrinal Jana, Geetanjali Panda
Abstract:
In this paper a methodology is developed to solve a nonlinear fractional programming problem in which the coefficients of the objective function and constraints are interval parameters. This model is transformed into a general optimization problem and relation between the original problem and the transformed problem is established. Finally the proposed methodology is illustrated through a numerical example.Keywords: fractional programming, interval valued function, interval inequalities, partial order relation
Procedia PDF Downloads 5194407 Nonlinear Observer Canonical Form for Genetic Regulation Process
Authors: Bououden Soraya
Abstract:
This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results.Keywords: nonlinear observer canonical form, observer, design, gene regulation, gene expression
Procedia PDF Downloads 4324406 A New Family of Globally Convergent Conjugate Gradient Methods
Authors: B. Sellami, Y. Laskri, M. Belloufi
Abstract:
Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, a new family of conjugate gradient method is proposed for unconstrained optimization. This method includes the already existing two practical nonlinear conjugate gradient methods, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the efficiency of the new method, which implies the new method is promising. In addition the methods related to this family are uniformly discussed.Keywords: conjugate gradient method, global convergence, line search, unconstrained optimization
Procedia PDF Downloads 4104405 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network
Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib
Abstract:
The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.Keywords: heat exchanger network, synthesis, NLP, optimization
Procedia PDF Downloads 1624404 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties
Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd
Abstract:
Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas.Keywords: conjugate gradient method, conjugate gradient coefficient, global convergence
Procedia PDF Downloads 4634403 X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect
Authors: Minas Balyan
Abstract:
In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity.Keywords: third order nonlinearity, Bragg diffraction, nonlinear Renninger effect, rocking curves
Procedia PDF Downloads 4064402 A Filtering Algorithm for a Nonlinear State-Space Model
Authors: Abdullah Eqal Al Mazrooei
Abstract:
Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.Keywords: Kalman filter, filtering algorithm, nonlinear systems, state-space model
Procedia PDF Downloads 3754401 Comparison Between Genetic Algorithms and Particle Swarm Optimization Optimized Proportional Integral Derirative and PSS for Single Machine Infinite System
Authors: Benalia Nadia, Zerzouri Nora, Ben Si Ali Nadia
Abstract:
Abstract: Among the many different modern heuristic optimization methods, genetic algorithms (GA) and the particle swarm optimization (PSO) technique have been attracting a lot of interest. The GA has gained popularity in academia and business mostly because to its simplicity, ability to solve highly nonlinear mixed integer optimization problems that are typical of complex engineering systems, and intuitiveness. The mechanics of the PSO methodology, a relatively recent heuristic search tool, are modeled after the swarming or cooperative behavior of biological groups. It is suitable to compare the performance of the two techniques since they both aim to solve a particular objective function but make use of distinct computing methods. In this article, PSO and GA optimization approaches are used for the parameter tuning of the power system stabilizer and Proportional integral derivative regulator. Load angle and rotor speed variations in the single machine infinite bus bar system is used to measure the performance of the suggested solution.Keywords: SMIB, genetic algorithm, PSO, transient stability, power system stabilizer, PID
Procedia PDF Downloads 824400 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization
Authors: Susanta Kumar Gachhayat, S. K. Dash
Abstract:
Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.Keywords: economic load dispatch, ELD, biogeography-based optimization, BBO, ramp rate biogeography-based optimization, RRBBO, valve-point loading, VPL
Procedia PDF Downloads 3794399 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller
Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou
Abstract:
This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller
Procedia PDF Downloads 4164398 On the Topological Entropy of Nonlinear Dynamical Systems
Authors: Graziano Chesi
Abstract:
The topological entropy plays a key role in linear dynamical systems, allowing one to establish the existence of stabilizing feedback controllers for linear systems in the presence of communications constraints. This paper addresses the determination of a robust value of the topological entropy in nonlinear dynamical systems, specifically the largest value of the topological entropy over all linearized models in a region of interest of the state space. It is shown that a sufficient condition for establishing upper bounds of the sought robust value of the topological entropy can be given in terms of a semidefinite program (SDP), which belongs to the class of convex optimization problems.Keywords: non-linear system, communication constraint, topological entropy
Procedia PDF Downloads 320