Search results for: metal forming hydrides
3293 Compare Hot Forming and Cold Forming in Rolling Process
Authors: Ali Moarrefzadeh
Abstract:
In metalworking, rolling is a metal forming process in which metal stock is passed through a pair of rolls. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. This article describes the use of advanced tubing inspection NDT methods for boiler and heat exchanger equipment in the petrochemical industry to supplement major turnaround inspections. The methods presented include remote field eddy current, magnetic flux leakage, internal rotary inspection system and eddy current.Keywords: hot forming, cold forming, metal, rolling, simulation
Procedia PDF Downloads 5303292 Study on Multi-Point Stretch Forming Process for Double Curved Surface
Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang
Abstract:
Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing
Procedia PDF Downloads 4833291 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals
Authors: Masoud Ghermezi
Abstract:
Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory
Procedia PDF Downloads 3663290 Device for Reversible Hydrogen Isotope Storage with Aluminum Oxide Ceramic Case
Authors: Igor P. Maximkin, Arkady A. Yukhimchuk, Victor V. Baluev, Igor L. Malkov, Rafael K. Musyaev, Damir T. Sitdikov, Alexey V. Buchirin, Vasily V. Tikhonov
Abstract:
Minimization of tritium diffusion leakage when developing devices handling tritium-containing media is key problems whose solution will at least allow essential enhancement of radiation safety and minimization of diffusion losses of expensive tritium. One of the ways to solve this problem is to use Al₂O₃ high-strength non-porous ceramics as a structural material of the bed body. This alumina ceramics offers high strength characteristics, but its main advantages are low hydrogen permeability (as against the used structural material) and high dielectric properties. The latter enables direct induction heating of an hydride-forming metal without essential heating of the pressure and containment vessel. The use of alumina ceramics and induction heating allows: - essential reduction of tritium extraction time; - several orders reduction of tritium diffusion leakage; - more complete extraction of tritium from metal hydrides due to its higher heating up to melting in the event of final disposal of the device. The paper presents computational and experimental results for the tritium bed designed to absorb 6 liters of tritium. Titanium was used as hydrogen isotope sorbent. Results of hydrogen realize kinetic from hydride-forming metal, strength and cyclic service life tests are reported. Recommendations are also provided for the practical use of the given bed type.Keywords: aluminum oxide ceramic, hydrogen pressure, hydrogen isotope storage, titanium hydride
Procedia PDF Downloads 4073289 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel
Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci
Abstract:
316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna
Procedia PDF Downloads 3353288 Parametrical Simulation of Sheet Metal Forming Process to Control the Localized Thinning
Authors: Hatem Mrad, Alban Notin, Mohamed Bouazara
Abstract:
Sheet metal forming process has a multiple successive steps starting from sheets fixation to sheets evacuation. Often after forming operation, the sheet has defects requiring additional corrections steps. For example, in the drawing process, the formed sheet may have several defects such as springback, localized thinning and bends. All these defects are directly dependent on process, geometric and material parameters. The prediction and elimination of these defects requires the control of most sensitive parameters. The present study is concerned with a reliable parametric study of deep forming process in order to control the localized thinning. The proposed approach will be based on stochastic finite element method. Especially, the polynomial Chaos development will be used to establish a reliable relationship between input (process, geometric and material parameters) and output variables (sheet thickness). The commercial software Abaqus is used to conduct numerical finite elements simulations. The automatized parametrical modification is provided by coupling a FORTRAN routine, a PYTHON script and input Abaqus files.Keywords: sheet metal forming, reliability, localized thinning, parametric simulation
Procedia PDF Downloads 4233287 QTAIM View of Metal-Metal Bonding in Trinuclear Mixed-Metal Bridged Ligand Clusters Containing Ruthenium and Osmium
Authors: Nadia Ezzat Al-Kirbasee, Ahlam Hussein Hassan, Shatha Raheem Helal Alhimidi, Doaa Ezzat Al-Kirbasee, Muhsen Abood Muhsen Al-Ibadi
Abstract:
Through DFT/QTAIM calculations, we have provided new insights into the nature of the M-M, M-H, M-O, and M-C bonds of the (Cp*Ru)n(Cp*Os)3−n(μ3-O)2(μ-H)(Cp* = η5-C5Me5, n= 3,2,1,0). The topological analysis of the electron density reveals important details of the chemical bonding interactions in the clusters. Calculations confirm the absence of bond critical points (BCP) and the corresponding bond paths (BP) between Ru-Ru, Ru-Os, and Os-Os. The position of bridging hydrides and Oxo atoms coordinated to Ru-Ru, Ru-Os, and Os-Os determines the distribution of the electron densities and which strongly affects the formation of the bonds between these transition metal atoms. On the other hand, the results confirm that the four clusters contain a 6c–12e and 4c–2e bonding interaction delocalized over M3(μ-H)(μ-O)2 and M3(μ-H), respectively, as revealed by the non-negligible delocalization indexes calculations. The small values for electron density ρ(b) above zero, together with the small values, again above zero, for laplacian ∇2ρ(b) and the small negative values for total energy density H(b) are shown by the Ru-H, Os-H, Ru-O, and Os-O bonds in the four clusters are typical of open shell interactions. Also, the topological data for the bonds between Ru and Os atoms with the C atoms of the pentamethylcyclopentadienyl (Cp*) ring ligands are basically similar and show properties very consistent with open shell interactions in the QTAIM classification.Keywords: metal-metal and metal-ligand interactions, organometallic complexes, topological analysis, DFT and QTAIM analyses
Procedia PDF Downloads 943286 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel
Authors: Kittiphat Rattanachan
Abstract:
The sheet metal forming process, the raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloy, which have the different cell unit, mechanical property and chemical composition. They were forming into cone shape specimens 100 mm diameter with different wall’s incline angle: 90o, 75o, and 60o. The investigation, the specimens were forming until the surface fracture was occurred. The experimental result showed that both materials with the smaller wall’s incline angle, the higher formability. The formability limited of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 was higher formability than SUS 304. This result could be used as the initial utilized data in designing the single point incremental forming parts.Keywords: NC incremental forming, single point incremental forming, wall incline angle, formability
Procedia PDF Downloads 3443285 Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst
Authors: Napat Hataivichian
Abstract:
The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal.Keywords: alumina, dehydrogenation, platinum, transition metal
Procedia PDF Downloads 3113284 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31
Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi
Abstract:
As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.Keywords: magnesium, plasticity, superplastic forming, finite element analysis
Procedia PDF Downloads 1573283 Investigation of a Hybrid Process: Multipoint Incremental Forming
Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo
Abstract:
Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.Keywords: incremental forming, numerical simulation, MPIF, multipoint forming
Procedia PDF Downloads 3583282 Experimental and FEA Study for Reduction of Damage in Sheet Metal Forming
Authors: Amitkumar R. Shelar, B. P. Ronge, Sridevi Seshabhattar, R. M. Wabale
Abstract:
This paper gives knowledge about the behavior of cold rolled steel IS 513_2008 CR2_D having grade D for the reduction of ductile damage. CR specifies Cold Rolled and D for Drawing grade. Problems encountered during sheet metal forming operations are dent, wrinkles, thinning, spring back, insufficient stretching etc. In this paper, wrinkle defect was studied experimentally and by using FE software on one of the auto components due to which its functionality was decreased. Experimental result and simulation result were found to be in agreement.Keywords: deep drawing, FE software-LS DYNA, friction, wrinkling
Procedia PDF Downloads 4893281 Simulation of Kinetic Friction in L-Bending of Sheet Metals
Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang
Abstract:
This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.Keywords: friction, L-bending, springback, Stribeck curves
Procedia PDF Downloads 4933280 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material
Authors: Ghazi R. Reda Mahmoud Reda
Abstract:
Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption
Procedia PDF Downloads 3643279 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method
Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng
Abstract:
Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.Keywords: shot peen forming, process parameter, response surface model, numerical simulation
Procedia PDF Downloads 893278 Open Forging of Cylindrical Blanks Subjected to Lateral Instability
Authors: A. H. Elkholy, D. M. Almutairi
Abstract:
The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen
Procedia PDF Downloads 2933277 The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄
Authors: Burcu Kiren, Alattin CAkan, Nezihe Ayas
Abstract:
Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite.Keywords: sodium borohydride, hydrolysis, catalyst, Ni/dolomite, hydrogen
Procedia PDF Downloads 1673276 Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming
Authors: A. Anbu Raj, V. Mugendiren
Abstract:
Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software.Keywords: incremental forming, response surface methodology, optimization, wall thickness, surface roughness
Procedia PDF Downloads 3383275 Numerical Determination of Transition of Cup Height between Hydroforming Processes
Authors: H. Selcuk Halkacı, Mevlüt Türköz, Ekrem Öztürk, Murat Dilmec
Abstract:
Various attempts concerning the low formability issue for lightweight materials like aluminium and magnesium alloys are being investigated in many studies. Advanced forming processes such as hydroforming is one of these attempts. In last decades sheet hydroforming process has an increasing interest, particularly in the automotive and aerospace industries. This process has many advantages such as enhanced formability, the capability to form complex parts, higher dimensional accuracy and surface quality, reduction of tool costs and reduced die wear compared to the conventional sheet metal forming processes. There are two types of sheet hydroforming. One of them is hydromechanical deep drawing (HDD) that is a special drawing process in which pressurized fluid medium is used instead of one of the die half compared to the conventional deep drawing (CDD) process. Another one is sheet hydroforming with die (SHF-D) in which blank is formed with the act of fluid pressure and it takes the shape of die half. In this study, transition of cup height according to cup diameter between the processes was determined by performing simulation of the processes in Finite Element Analysis. Firstly SHF-D process was simulated for 40 mm cup diameter at different cup heights chancing from 10 mm to 30 mm and the cup height to diameter ratio value in which it is not possible to obtain a successful forming was determined. Then the same ratio was checked for a different cup diameter of 60 mm. Then thickness distributions of the cups formed by SHF-D and HDD processes were compared for the cup heights. Consequently, it was found that the thickness distribution in HDD process in the analyses was more uniform.Keywords: finite element analysis, HDD, hydroforming sheet metal forming, SHF-D
Procedia PDF Downloads 4303274 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation
Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi
Abstract:
Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation
Procedia PDF Downloads 5273273 Study on the Changes in Material Strength According to Changes in Forming Methods in Hot-Stamping Process
Authors: Yong-Jun Jeon, Hyung-Pil Park, Min-Jae Song, Baeg-Soon Cha
Abstract:
Following the recent trend of having increased demand in producing lighter-weight car bodies for improvement of automobile safety and gas mileage, there is a forming method that makes use of hot-stamping technique, which satisfies all conditions mentioned above. Hot-stamping is a forming technique with advantages of excellent formability, good dimensional precision and others since it is a process in which steel plates are heated up to temperatures of at least approximately 900°C after which forming is conducted in die at room temperature followed by rapid cooling. In addition, it has characteristics of allowing for improvement in material strength through achievement of quenching effect by having simultaneous forming and rapid cooling of material of high temperatures. However, there is insufficient information on the changes in material strength according to changes in material temperature with regards to material heating method and forming process in hot-stamping. Accordingly, this study aims to design and press die for T-type product of the scale models of the center pillar and to understand the changes in material strength in relation to changes in forming methods of hot-stamping process. Thus in order to understand the changes in material strength due to quenching effect among the hot-stamping process, material strength and material forming precision were to be studied while varying the forming and forming method when forming. For test methods, material strength was observed by using boron steel that has boron additives, which was heated up to 950°C, after which it was transferred to a die and was cooled down to material temperature of 400°C followed by air cooling process. During the forming and cooling process here, experiment was conducted with forming parameters of 2 holding rates and 3 flange heating rates wherein changing appearance in material strength according to changes forming method were observed by verifying forming strength and forming precision for each of the conditions.Keywords: hot-stamping, formability, quenching, forming, press die, forming methods
Procedia PDF Downloads 4623272 Hydro-Mechanical Forming of AZ31 Sheet
Authors: Yong-Nam Kwon
Abstract:
In the present study, we have designed the hydro-mechanical forming in which AZ31 sheet was drawn to a kind of preform step following gas blow forming for accurate geometry. In order to judge a formability enhancement of AZ31 sheet, model geometry came from a practical automotive part which had quite depth with complicated curvatures, which was proven that a single sheet forming could not gave a successful part. Experimentally, we succeeded to make the model part with accurate dimension. The optimum forming conditions for respective forming steps were considered most important technical features of this hydro-mechanical and would be discussed in details. Also, the effort to avoid detrimental abnormal grain growth was given and discussed for a practical application.Keywords: hydro-mechanical forming, AZ31, abnormal grain growth, model geometry
Procedia PDF Downloads 5133271 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine
Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana
Abstract:
Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.Keywords: flow forming, pressure vessel, four rollers, feed rate, spindle speed, cold work
Procedia PDF Downloads 3313270 Forming for Confirmation of Predicted Epoxy Forming Composition Range in Cr-Zn System
Authors: Foad Saadi
Abstract:
Aim of this work was to determine the approximate Epoxy forming composition range of Cr-Zn system for the composites produced by forming compositing. It was predicted by MI edema semi-empirical model that the composition had to be in the range of 30-60 wt. % tin, while Cr-32Zn had the most susceptibility to produce amorphous composite. In the next stage, some different compositions of Cr-Zn were foamingly composited, where one of them had the proper predicted composition. Products were characterized by SDM analysis. There was a good agreement between calculation and experiments, in which Cr-32Zn composite had the most amorphization degree.Keywords: Cr-Zn system, forming compositing, amorphous composite, MI edema model
Procedia PDF Downloads 2973269 Design of Process Parameters in Electromagnetic Forming Apparatus by FEM
Authors: Hyeong-Gyu Park, Hak-Gon Noh, Beom-Soo Kang, Jeong Kim
Abstract:
Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density.Keywords: electromagnetic forming, high-speed forming, RLC circuit, Lorentz force
Procedia PDF Downloads 4563268 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process
Authors: A. Soualem
Abstract:
The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys. The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restraint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.Keywords: springback, deep drawing, expansion, restricted deep drawing
Procedia PDF Downloads 4553267 Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes
Authors: Sang-Woo Kim, Young-Seon Lee
Abstract:
An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally.Keywords: magnesium, AZ31 alloy, ductile fracture, FEM, sheet forming, Erichsen cupping test
Procedia PDF Downloads 3753266 Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application
Authors: Juree Hong, Sanggeun Lee, Jungmok Seo, Taeyoon Lee
Abstract:
We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2.Keywords: metal nanoparticle, galvanic displacement reaction, graphene, hydrogen sensor
Procedia PDF Downloads 4273265 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.Keywords: artificial neural network, bending angle, fuzzy logic, laser forming
Procedia PDF Downloads 5993264 Roll Forming Process and Die Design for a Large Size Square Tube
Authors: Jinn-Jong Sheu, Cang-Fu Liang, Cheng-Hsien Yu
Abstract:
This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making.Keywords: cold roll forming, FEM analysis, roll forming die design, tube roll forming
Procedia PDF Downloads 312